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Galois theory of special trinomials

Shreeram S. Abhyankar

Abstract

This is the material which I presented at the 60th birthday con-
ference of my good friend José Luis Vicente in Seville in September
2001. It is based on the nine lectures, now called sections, which
were given by me at Purdue in Spring 1997. This should provide
a good calculational background for the Galois theory of vectorial
(= additive) polynomials and their iterates.

1. Introduction

Let q > 1 be a power of a prime p, let

k ⊂ K ⊂ Ω

be fields of characteristic p where Ω is an algebraic closure of K, and let us
use the abbreviation

〈i〉 = 1 + q + · · · + qi.

For any integer m > 1, in my papers Nice Equations For Nice Groups [2]
and Projective Polynomials [3], we considered the Galois groups of the tri-
nomials

Fm,q = Fm,q(Y ) = Y 〈m−1〉 + Y + X

and
Φm,q = Φm,q(Y ) = Fm,q(Y

q−1) = Y qm−1 + Y q−1 + X

and
Φ̂m,q = Φ̂m,q(Y ) = Y Φm,q(Y ) = Y qm

+ Y q + XY.
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Here Φ̂m,q is a monic separable vectorial q-polynomial of q-degree m over

k(X), Φm,q is the subvectorial associate of Φ̂m,q, and Fm,q is the projective

associate of Φ̂m,q. In the above two papers we showed that if GF(q) ⊂ k then

Gal(Fm,q, k(X)) = PGL(m, q) and Gal(Φm,q, k(X)) = Gal(Φ̂m,q, k(X)) =
GL(m, q). In Sections 2 to 4, without using these results about the Galois
groups, we shall make a detailed study of the splitting fields of these trino-
mials in case of m = 2. In Section 9 we shall extend the considerations of
Section 2 to slightly more general trinomials.

Quite generally, by a vectorial q-polynomial of q-degree m over K, where
m ≥ 0 is any integer, we mean a polynomial of the form

Φ̂ = Φ̂(Y ) =

m∑
i=0

aiY
qm−i

where ai ∈ K with a0 �= 0.

Its subvectorial associate is

Φ = Φ(Y ) =

m∑
i=0

aiY
qm−i−1

and its projective associate is

F = F (Y ) =

m∑
i=0

aiY
〈m−1−i〉

where we note that Φ(Y ) = F (Y q−1) and Φ̂(Y ) = Y Φ(Y ). These polynomi-
als are monic if a0 = 1 and separable if am �= 0.

In Section 5 we shall study such a monic separable vectorial q-polynomial
Φ̂ of any q-degree m ≥ 0, and in Section 6 we shall revert to the case of
m = 2. Note that the set V of all roots of Φ̂ in Ω is an m-dimensional GF(q)-
vector-subspace of Ω with GF(q) ⊂ K(V ); moreover, if GF(q) ⊂ K then in

a natural manner we have Gal(Φ,K) = Gal(Φ̂,K) < GL(V ) ≈ GL(m, q)
and Gal(F,K) < PGL(V ) ≈ PGL(m, q), where < denotes subgroup and ≈
denotes isomorphism; see (4.1.1) of my paper on Semilinear Transforma-
tions [4].

For every integer n ≥ 0 let Φ̂[[n]] be the n-th iterate of Φ̂, i.e., inductively
we put Φ̂[[n]] = Φ̂(Φ̂[[n−1]](Y )) with Φ̂[[0]](Y ) = Y and Φ̂[[1]](Y ) = Φ̂(Y ). Let
us say that we are in the generic case to mean that GF(q) ⊂ k ⊂ K =
k(a1, . . . , am) with m ≥ 1 = a0 and the elements a1, . . . , am are algebraically
independent over k. In the paper just cited, it is shown that in the generic
case we have Gal(Φ̂,K) = GL(m, q). In my paper [6] with Ganesh Sundaram
on the Galois Theory of Moore-Carlitz-Drinfeld Modules, it is shown that
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in the generic case we have Gal(Φ̂[[n]],K) = GL(m, q, n) with GL(m, q, n) =
GL(m, GF(q, n)) where GF(q, n) is the residue class ring of the univariate
polynomial ring GF(q)[T ] by the ideal generated by T n. In Sections 7 and 8
we shall give a sketch of this material.

Now we may ask if the above iteration result is true for the specialization
Φ̂m,q of Φ̂, i.e., is it true that if GF(q) ⊂ k then for all m, q, n we have

Gal(Φ̂
[[n]]
m,q , k(X)) = GL(m, q, n). In the concluding Remark of Section 7 we

shall indicate how the calculations of Section 3 show this not to be true in
case of (m, p, n) = (2, 2, 2).

2. Degree Two

To study the case of m = 2 let F = F2,q and Φ = Φ2,q and Φ̂ = Φ̂2,q. Assume
that

GF(q) ⊂ k ⊂ K = k(X).

Note that now

(2.1) F = F (Y ) = Y 1+q + Y + X

and

(2.2) Φ = Φ(Y ) = F (Y q−1) = Y q2−1 + Y q−1 + X

and

(2.3) Φ̂ = Φ̂(Y ) = Y Φ(Y ) = Y q2

+ Y q + XY.

We want to solve the equations F = 0 and Φ̂ = 0 and/or compute their

Galois groups. Note that Gal(Φ̂,K) = Gal(Φ,K) < GL(2, q), where the

Galois group of Φ̂ acts on the two-dimensional vector space V = GF(q)2 =

the set of all roots of Φ̂, whereas the Galois group of Φ acts on the nonzero
vectors of V . Likewise Gal(F,K) < PGL(2, q) acting on the projective line
P(V ) = the set of all roots of F . Let F ′(Y ) be the twisted derivative of
F (Y ) at a root y of F (Y ) in the algebraic closure Ω of K, i.e., let

(2.4) y1+q + y + X = 0

and

(2.5) F ′(Y ) = Y −1[F (Y + y) − F (y)] = Y q + yY q−1 + (yq + 1).
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Let F †(Y ) be obtained by dividing the roots of F ′(Y ) by y + 1, i.e., let

(2.6) F †(Y ) = (y + 1)−qF ′((y + 1)Y ) = Y q +
y

y + 1
Y q−1 + 1

where by (2.4) we know that y �= 0 �= y + 1. Let E(Y ) be obtained by
reciprocating F †(Y ), i.e.,

(2.7) E(Y ) = Y qF †(Y −1) = Y q +
y

y + 1
Y + 1.

Let E′(Y ) be the twisted derivative of E(Y ) at a root η of E(Y ) in Ω, i.e., let

(2.8) ηq +
y

y + 1
η + 1 = 0

and

(2.9) E′(Y ) = Y −1[E(Y + η) − E(η)] = Y q−1 +
y

y + 1
.

Let ζ be a root of E′(Y ) in Ω and note that then

(2.10) ζq−1 +
y

y + 1
= 0.

By (2.8) and (2.10) we see that

0 = ζ−q(ηq − ζq−1η + 1) = (ηζ−1)q − (ηζ−1) + ζ−q

and hence upon letting

(2.11) τ = ηζ−1 and T = τ + ζ−1

we get

(2.12) T q − τ = 0.

Upon letting SF denote splitting field (in Ω), by (2.4), (2.6), (2.8), (2.10),
(2.11) and (2.12) we see that SF(F,K)=k(X, y, η, ζ, τ, T )=k(y, η, ζ, τ, T ) =
k(η, ζ, τ, T ) = k(ζ, τ, T ) = k(τ, T ) = k(T ) and hence

(2.13) SF(F,K) = k(T ).

By (2.4), (2.6), (2.8), (2.10), (2.11) and (2.12) we also see that

(2.14) ζ =
1

T − T q
and η =

T q

T − T q
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and

(2.15) y =
−ζq−1

1 + ζq−1
=

−1 − ηq

1 + η + ηq
=

−1

1 + (T − T q)q−1
.

By (2.7) to (2.10) we see that

E(Y ) =
∏

i∈GF(q)

(Y − η − iζ)

and hence upon letting

(2.16) zi = y +
y + 1

η + iζ
=

−(T + i)q(q−1)

1 + (T − T q)q−1
for all i ∈ GF(q)

and

(2.17) z = z0 = y +
y + 1

η
=

−T q(q−1)

1 + (T − T q)q−1

by (2.1) and (2.4) to (2.7) we see that

(2.18) F (Y ) = (Y − y)
∏

i∈GF(q)

(Y − zi) = (Y − y)(Y − z)
∏

0 �=i∈GF(q)

(Y − zi)

where, about the denominator in (2.15) to (2.17), we note that

(2.19) 1 + (T − T q)q−1 =
(T − T q) + (T − T q)q

T − T q
=

1 − T (q+1)(q−1)

1 − T q−1

and hence

(2.20) 1 + (T − T q)q−1 = 1 + T q−1 + T 2(q−1) + · · · + T q(q−1).

Remark (2.21). Let F = F (X,Y ) = F = Y 1+q + Y + X. Let E =
E(Y, Z) = (Y +1)Zq +Y Z +(Y +1) be obtained from E by changing (y, Y )

to (Y, Z) and multiplying by Y + 1. Let E
′
= E

′
(Y,W ) = (Y + 1)W q−1 + Y

be obtained from E ′ by changing (y, Y ) to (Y,W ) and multiplying by Y +1.
Then, geometrically speaking, the above calculations can be paraphrased by
saying that we have rationally parametrized first the plane curve F = 0 in
the (X,Y )-plane, then the space curve F = E = 0 given as an intersection of
two surfaces in the three-space of (X,Y, Z), and finally the curve F = E =

E
′

= 0 in the four-space of (X,Y, Z,W ) given as an intersection of three
solids. Details of this view point can be found in my 1990 AMS book [1] on
Algebraic Geometry for Scientists and Engineers.
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3. Characteristic Two

In the situation of Section 2, let us consider the case of q = p = 2. Since
1 = −1, signs do not matter. So this is the easiest case to calculate. Also it
is the case of coding theory and various other applications.

Upon letting x = z1, by (2.15) to (2.18) we now have

(3.1) F (Y ) = (Y − x)(Y − y)(Y − z)

with

(3.2) y =
1

1 + T + T 2
and z =

T 2

1 + T + T 2

and

(3.3) x = y + z =
1 + T 2

1 + T + T 2
.

For any ξ in {x, y, z} let

Fξ(Y ) = Φ̂(Y ) + ξ = Y 4 + Y 2 + XY + ξ.

Then for any r in {x, y, z}, upon letting

Gr(Y ) =
Y 2

1 + r2
+

rY

1 + r2

we have

Gr(Y )2 + Gr(Y ) +
ξ

1 + r4
=

Fξ(Y )

1 + r4

(where by (2.1) and (3.1) we know that r �= 0 �= 1 + r and 1 + r2 �= 0 �=
1 + r4) and hence, for any h(ξ) ∈ Ω with Fξ(h(ξ)) = 0, we have [k(T, h(ξ)) :
k(T,Gr(h(ξ)))] = 1 or 2, and [k(T,Gr(h(ξ))) : k(T )] = 1 or 2. We want to
determine these field degrees and to examine the linear disjointness of the
various fields. To do this, we shall tacitly use the following:

Standard Results from Chapter IX on Cyclic Fields of Albert’s 1937
book [7] entitled Modern Higher Algebra. For a moment let K be any field
of characteristic p > 0 and let K�� be the additive subgroup of K consisting
of elements of the form xp−x with x varying over K. Then Y p−Y −α with
α ∈ K is irreducible over K ⇔ α �∈ K�� ⇔ Y p − Y − α has no root in K,
and if that is so then Gal(Y p−Y −α,K) = Zp where by Zp we denote cyclic
group of order p. Conversely, if L is a p-cyclic extension of K (i.e., if L is a
Galois extension of K with Galois group Zp) then it is the splitting field (as
well as a root field) of an irreducible polynomial of the form Y p − Y − α.
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Finally, if β is a root of Y p − Y − α with α ∈ K \ K�� and β ′ ∈ K(β)
then: the minimal monic polynomial of β ′ over K is of the form Y p −Y −α′

with α′ ∈ K ⇔ β ′ = iβ + θ for some 0 �= i ∈ GF(p) and θ ∈ K.

Reverting to the assumption of K = k(T ) and q = p = 2, by (3.2) we get

(3.4)
y

1 + y4
=

(1 + T + T 2)3

T 4(1 + T )4

and

(3.5)
y

1 + z4
=

(1 + T + T 2)3

(1 + T )4

and by adding (3.4) and (3.5) we get

(3.6)
y

1 + y4
+

y

1 + z4
=

(1 + T + T 2)3

T 4

and by expanding the cube we get

(3.7) (1 + T + T 2)3 = 1 + T + T 3 + T 5 + T 6.

Now

Fy is irreducible over K

⇐⇒ the three fields k(T,Gr(h(y)))r∈{x,y,z} are exactly all the distinct

proper subfields of SF(Fy, k(T )) which properly contain k(T )

⇐⇒ k(T,Gy(h(y))) �= k(T ) �= k(T,Gz(h(y))) �= k(T,Gy(h(y)))

and in view of (3.4) and (3.7) we see that

k(T,Gy(h(y))) = k(T )

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + y4

⇐⇒ for Q = T 2 + T 4 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 3 + T 5 + T 6

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gy(h(y))) �= k(T ), and likewise in view of (3.5) and (3.7)
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we see that

k(T,Gz(h(y))) = k(T )

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + z4

⇐⇒ for Q = 1 + T 2 and some P ∈ k[T ] we have P 2 + PQ = (1+T +T 2)3

⇐⇒ (by T �→ 1 + T ) for Q = T 2 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 3 + T 5 + T 6

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gz(h(y))) �= k(T ), and similarly in view of (3.6) and (3.7)
we see that

k(T,Gy(h(y))) = k(T,Gz(h(y)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + y4
+

y

1 + z4

⇐⇒ for Q = T 2 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 3 + T 5 + T 6

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gz(h(y))) �= k(T,Gz(h(y))), and hence Fy is irreducible
over K. By symmetry it follows that Fz and Fx are also irreducible over K.

By (3.2) and (3.3) we get

(3.8)
y

1 + x4
=

(1 + T + T 2)3

T 4

and by adding (3.8) to T 2 times (3.8) we get

(3.9)
y

1 + x4
+

z

1 + x4
=

(1 + T + T 2)3(1 + T 2)

T 4

and by (3.7) we get

(3.10) (1 + T + T 2)3(1 + T 2) = 1 + T + T 2 + T 6 + T 7 + T 8
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and by (3.9) and (3.10) we see that

k(T,Gx(h(y))) = k(T,Gx(h(z)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + x4
+

z

1 + x4

⇐⇒ for Q = T 2 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 2 + T 6 + T 7 + T 8

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gx(h(y))) �= k(T,Gx(h(z))).

By adding (3.8) to T 2 times (3.4) we get

(3.11)
y

1 + x4
+

z

1 + y4
=

(1 + T + T 2)5

T 4(1 + T )4

and by (3.7) we get

(3.12) (1 + T + T 2)5 = 1 + T + T 2 + T 4 + T 5 + T 6 + T 8 + T 9 + T 10

and by (3.11) and (3.12) we see that

k(T,Gx(h(y))) = k(T,Gy(h(z)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + x4
+

z

1 + y4

⇐⇒ for Q = T 2 + T 4 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 2 + T 4 + T 5 + T 6 + T 8 + T 9 + T 10

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gx(h(y))) �= k(T,Gy(h(z))). Consequently by symmetry
we get k(T,Gz(h(y))) �= k(T,Gx(h(z))).

By adding (3.8) to T 2 times (3.5) we get

(3.13)
y

1 + x4
+

z

1 + z4
=

(1 + T + T 2)3(1 + T 4 + T 6)

T 4(1 + T )4

and by (3.7) we get

(3.14) (1 + T + T 2)3(1 + T 4 + T 6) = 1 + T + T 3 + T 4 + T 10 + T 11 + T 12
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and by (3.13) and (3.14) we see that

k(T,Gx(h(y))) = k(T,Gz(h(z)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + y4
+

z

1 + y4

⇐⇒ for Q = T 2 + T 4 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 3 + T 4 + T 10 + T 11 + T 12

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gx(h(y))) �= k(T,Gz(h(z))). Consequently by symmetry
we get k(T,Gy(h(y))) �= k(T,Gx(h(z))).

By adding (3.4) to T 2 times (3.4) we get

(3.15)
y

1 + y4
+

z

1 + y4
=

(1 + T + T 2)3

T 4(1 + T )2

and by (3.7) and (3.15) we see that

k(T,Gy(h(y))) = k(T,Gy(h(z)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + y4
+

z

1 + y4

⇐⇒ for Q = T 2 + T 3 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 3 + T 5 + T 6

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gy(h(y))) �= k(T,Gy(h(z))). Consequently by symmetry
we get k(T,Gz(h(y))) �= k(T,Gz(h(z))).

By adding (3.4) to T 2 times (3.5) we get

(3.16)
y

1 + y4
+

z

1 + z4
=

(1 + T + T 2)5

T 4(1 + T )2
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and by (3.12) and (3.16) we see that

k(T,Gy(h(y))) = k(T,Gz(h(z)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

y

1 + y4
+

z

1 + z4

⇐⇒ for Q = T 2 + T 3 and some P ∈ k[T ] we have

P 2 + PQ = 1 + T + T 2 + T 4 + T 5 + T 6 + T 8 + T 9 + T 10

which is impossible because P 2 + PQ has no term in T

and therefore k(T,Gy(h(y))) �= k(T,Gz(h(z))).

By adding T 2 times (3.4) to (3.5) we get

(3.17)
z

1 + y4
+

y

1 + z4
=

(1 + T + T 2)3

T 2(1 + T )2

and by (3.7) and (3.17) we see that

k(T,Gy(h(z))) = k(T,Gz(h(y)))

⇐⇒ for some P ∈ k[T ] and monic Q ∈ k[T ] with GCD(P,Q) = 1

we have
P 2

Q2
+

P

Q
=

z

1 + y4
+

y

1 + z4

⇐⇒ for Q = T + T 2 and P = 1 + aT + bT 2 + T 3 with a, b in k

we have P 2 + PQ = 1 + T + T 3 + T 5 + T 6

⇐⇒ for some a, b in k we have

1 + T + (a2 + a + 1)T 2 + (a + b)T 3 + (b2 + b + 1)T 4 + T 5 + T 6

= 1 + T + T 3 + T 5 + T 6

⇐⇒ for some a, b in k we have

a2 + a + 1 = 0 = b2 + b + 1 and a + b = 1

which is possible exactly when {a, b} = GF(4) \ GF(2)

and therefore k(T,Gy(h(z))) = k(T,Gz(h(y))) ⇔ GF(4) ⊂ k. Thus

(3.18)

{
[SF(FxFy, k(T )) : k(T )] = 8 or 16

according as GF(4) ⊂ k or GF(4) �⊂ k.
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4. General Characteristic

To continue with the discussion of Section 2, in the case of general (p, q), we
take S ∈ Ω with

(4.1) Sq−1 + 1 + (T − T q)q−1 = 0

and we note that then by (2.13) to (2.18) we have

(4.2) SF(Φ̂,K) = k(S, T )

and we let

(4.3) v =
1

S
and w =

T q

S

and we note that then

(4.4) vq−1 = y and wq−1 = z

and we let

(4.5) wi = w + iv =
T q + i

S
for all i ∈ GF(q)

and we note that then

(4.6) wq−1
i = zi for all i ∈ GF(q)

and

(4.7) w = w0.

Now

(4.8) V = {iv + jw : (i, j) ∈ GF(q)2}
and we have

(4.9) Φ̂(Y ) =
∏
ξ∈V

(Y − ξ) =
∏

i∈GF(q)

∏
j∈GF(q)

(Y − iv − jw).

Moreover, upon letting

(4.10) W = {v} ∪ {wi : i ∈ GF(q)} and V ∗ = V \ {0}
we see that

(4.11) V ∗ = {cξ : ξ ∈ W and c ∈ GF(q)∗}
and

(4.12) ξ �→ ξq−1 gives a bijection W → P(V ) = {y} ∪ {zi : i ∈ GF(q)∗}
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and we have

(4.13) F (Y ) =
∏

x∈P(V )

(Y − x) =
∏
ξ∈W

(Y − ξq−1).

Before proceeding further with this, we shall discuss general vectorial
polynomials.

5. General Vectorial Polynomials

Let Φ̂(Y ) be any monic separable vectorial q-polynomial of q-degree m ≥ 0

in Y over K, let V be the set of all roots of Φ̂ in an algebraically closed
overfield Ω of K, and note that then V is an m-dimensional GF(q)-vector-
subspace of Ω. Let I(V ) be the image of the injective homomorphism of
(the additive group of) V into AutΩ(Ω(Y )) which sends every t ∈ V to the
Ω-automorphism of Ω(Y ) given by Y �→ Y − t. Now

Φ̂(Y ) =
∏
t∈V

(Y − t)

and hence
Φ̂(Y ) = NI(V )(Y )

where, for any finite group I of automorphisms of any field M , the I-norm
of any µ ∈ M may be defined by

NI(µ) =
∏
σ∈I

µσ.

Note that then M is a finite Galois extension of the fixed field M I = {ν ∈
M : νσ = ν for all σ ∈ I} and we have

NI(µ) = NM/MI (µ)

where NM/MI is the norm in the usual field theory sense. Conversely, for
any finite dimensional GF(q)-vector-subspace V of Ω, let us put

ΦV (Y ) = NI(V )(Y ).

Then by the Converse of Linearity proved in (3.9) of my paper [5] on the
Galois Theory of Semilinear Transformations, we see that ΦV (Y ) is a monic

separable vectorial q-polynomial of q-degree dim V over Ω. Thus Φ̂(Y ) �→ V
gives a bijection of the set of all separable monic vectorial q-polynomials
over Ω, and the inverse bijection is given by V �→ ΦV .
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We now proceed to show that in this correspondence, composition of
vectorial polynomials corresponds to the transitivity of norm which says
that “the norm of a norm is a norm”, i.e., for any finite algebraic field
extensions M∗ ⊂ M ′ ⊂ M and any µ ∈ M we have

NM/M∗(µ) = NM ′/M∗(NM/M ′(µ)).

To illustrate this principle, first note that, in conformity with Lüroth’s The-
orem, we have

Ω(Y )I(V ) = Ω(ΦV (Y )).

As a generalization of I(V ), for any GF(q)-vector-subspace U of V , let
I(V, U) be the image of the homomorphism of V into AutΩ(Ω(Y )) which
sends every t ∈ V to the Ω-automorphism of Ω(Y ) given by Y �→ Y −ΦU(t);
note that the kernel of this homomorphism is U and so we could have denote
the image by I(V/U) rather than by I(V, U) but then a comma is a frequent
substitute for a solidus; at any rate, if V = U ⊕U ′ then I(V, U) is the image
of the injective homomorphism of U ′ into AutΩ(Ω(Y )) which sends every
t ∈ U ′ to the Ω-automorphism of Ω(Y ) given by Y �→ Y −ΦU(t). Let us put

ΦV,U(Y ) = NI(V,U)(Y ).

Then by taking M = Ω(Y ) and M ′ = ΩI(U) = Ω(ΦU(Y )) and M∗ = ΩI(V ) =
Ω(ΦV (Y )) in the transitivity of norms, we have ΦV (Y ) = NM ′/M∗(ΦU (Y )),
and clearly the RHS equals

∏
t∈U ′ ΦU(Y −t) which by the additivity of ΦU(Y )

equals
∏

t∈U ′[ΦU (Y ) − ΦU(t)] which in turn obviously equals ΦV,U(ΦU (Y )),
and thus we get

(∗) ΦV (Y ) = ΦV,U (ΦU(Y )).

Concerning the definition of I(V ) and ΦV (Y ), for any subfield L of Ω, let
I∗(L, V ) be the group of all L(V )-automorphisms of L(V )(Y ) of the form
Y �→ Y − t with t ∈ V , and note that then for any µ ∈ L(V )(Y ) we have
NI(V )(µ) = NI∗(L,V )(µ) and hence

ΦV (Y ) = NI∗(L,V )(Y )

and so in particular
ΦV (Y ) = NI∗(GF(p),V )(Y )

and also note that if V �= {0} then GF(q) ⊂ GF(p)(V ).

For any ξ ∈ Ω, consider the affine q-polynomial

(5.1) Fξ(Y ) = Φ̂(Y ) − ξ
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and let h(ξ) ∈ Ω be such that

(5.2) Fξ(h(ξ)) = 0.

Note that then

(5.3) Fξ(Y ) =
∏
t∈V

(Y − h(ξ) − t)

and hence

(5.4) K(V ) = SF(Φ̂,K) ⊂ SF(Fξ,K(ξ)) = K(V )(h(ξ)).

It follows that, for any subspace U of V , upon letting

Fξ,U (Y ) = ΦV,U (Y ) − ξ

we get

Fξ,U (ΦU(h(ξ))) = 0 with ΦU(h(ξ)) ∈ SF(Fξ,K(ξ))

and this gives a way of exhibiting several fields between K(ξ) and
SF(Fξ,K(ξ)).

In particular, if dim U = m − 1 then for any s ∈ V \ U we have

Fξ,U (Y ) = Y q − ΦU(s)q−1Y − ξ with ΦU(s) �= 0

and upon letting

Fξ,U,s(Y ) = Y q − Y − ξ

ΦU(s)q
and GU,s(Y ) =

ΦU(Y )

ΦU(s)

we get

Fξ,U,s(GU,s(h(ξ))) = 0 with GU,s(h(ξ)) ∈ SF(Fξ,K(ξ)).

On the other hand, if dim U = 1 then for any 0 �= r ∈ U , upon letting

Φr(Y ) = ΦU(Y )

we have

(5.5) Φr(Y ) = Y q − rq−1Y

and if actually dim U = m− 1 = 1 then for any s ∈ V \U , i.e., for any basis
(r, s) of V , we have

(5.6) Φr(s) �= 0

and upon letting

Fξ,r,s(Y ) = Fξ,U,s(Y ) and Gr,s(Y ) = GU,s(Y )
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we get

(5.7) Fξ,r,s(Y ) = Y q − Y − ξ

Φr(s)q
and Gr,s(Y ) =

Φr(Y )

Φr(s)

and

(5.8) Fξ,r,s(Gr,s(h(ξ))) = 0 with Gr,s(h(ξ)) ∈ SF(Fξ,K(ξ))

and by (5.3) we see that

(5.9) Fξ(Y ) =
∏

(i,j)∈GF(q)2

(Y − h(ξ) − ir − js).

6. Again Degree Two

Let us revert to the situation of Sections 2 and 4, i.e., assume m = 2 and let
Φ̂(Y ) = Y q2

+Y q+XY . For any ξ ∈ Ω, let Fξ(Y ) ∈ K(ξ)[Y ] and h(ξ) ∈ Ω be
as in (5.1) and (5.2), and note that then we have (5.3) and (5.4). Let B(V )
be the set of all bases (r, s) of V over GF(q). For any r ∈ Ω, let Φr(Y ) be
as in (5.5), and note that then for any (r, s) ∈ B(V ) we have (5.6). For any
(r, s) ∈ B(V ), let Fξ,r,s(Y ) and Gr,s(Y ) be as in (5.7), and note that then
we have (5.8). Finally, for any (r, s) ∈ B(V ) we have (5.9).

7. Iterated Vectorial Polynomials

Again let Φ̂(Y ) be any monic separable vectorial q-polynomial of q-degree

m ≥ 0 over K, let V be the GF(q)-vector space of all roots of Φ̂(Y )
in Ω, and for any integer n ≥ 0, let V [n] be the set of all roots of its
n-th iterate Φ̂[[n]] in Ω. Note that then Φ̂[[n]] is a monic separable vecto-
rial q-polynomial of q-degree mn in Y over K and hence V [n] is an (mn)-
dimensional GF(q)-vector-subspace of Ω, with V [1] = V . We get a GF(q)-

linear epimorphism Φ̃ : Ω → Ω given by z �→ Φ̂(z). For its n-th power

Φ̃n : Ω → Ω we have Φ̃n(z) = Φ̂[[n]](z) for all z ∈ Ω. For every n′ < n

we clearly have V [n′] ⊂ V [n] and φ̃n′
(V [n]) = V [n−n′], and moreover Φ̃n′|V [n]

gives a GF(q)-linear epimorphism V [n] → V [n−n′] with kernel V [n′]. Let
GF(q, n) = GF(q)[T ]/T n where T is an indeterminate, and let T be the im-
age of T under the canonical epimorphism of GF(q)[T ] onto GF(q, n). For

every r =
∑n−1

i=0 riT
i ∈ GF(q, n) with ri ∈ GF(q) and every z ∈ Ω we define

rz ∈ Ω by putting rz =
∑n−1

i=0 riΦ̃
i(z), and we note that this makes V [n] a

GF(q, n)-module, and then, for every r ∈ GF(q, n) and z ∈ V [n] we have



Galois theory of special trinomials 281

σ(rz) = rσ(z) for every K-automorphism σ of Ω. It follows that, in a nat-

ural manner, Gal(Φ̂[[n]],K) is a subgroup of the group of all GF(q, n)-linear
automorphisms of the module V [n]. By taking any elements u1, . . . , um of
V [n] such that Φ̃n−1(u1), . . . , Φ̃

n−1(um) is a free GF(q)-basis of V , we see that
u1, . . . , um is a free GF(q, n)-basis of V [n], and hence V [n] is a free GF(q, n)-
module of rank m. So we may identify the group of all GF(q, n)-linear
automorphisms of the module V [n] with GL(m, q, n) = GL(m, GF(q, n)).

To generalize this, for every r = r(T ) =
∑

riT
i ∈ GF(q)[T ] with ri ∈

GF(q) (and ri = 0 for all except finitely many i) we put Φ̂[r] = Φ̂[r](Y ) =∑
riΦ̂

[i](Y ) and for every z ∈ Ω we define rz ∈ Ω by putting rz = Φ̂r(z)
and we note that this makes Ω a GF(q)[T ]-module. Actually, for all r, s

in GF(q)[T ] and a, b in GF(q), we have Φ̂[ar+bs](Y ) = aΦ̂[r](Y ) + bΦ̂[s](Y )

and Φ̂[rs] = Φ̂[r](Φ̂[s](Y )) = Φ̂[s](Φ̂r](Y )), and hence this puts a GF(q)[T ]-
module structure on a certain commutative subring of the noncommutative
ring (under composition) of all vectoral q-polynomials in Y with coefficients

in Ω (namely, the subring “generated” by Φ̂). At any rate, for every r ∈
GF(q)[T ], this makes the set V (Φ̂[r]) of all roots of Φ̂[r] in Ω a (GF(q)[T ]/r)-
module since these roots are “killed” by r. In case r �= 0, this module
structure commutes with the action of Gal(Φ̂[r],K) making this Galois group

a subgroup of the GL of the module V (Φ̂[r]); note that the coefficient of Y

in Φ̂[r](Y ) is r and hence Φ̂[r](Y ) is separable. This is what is known as the
Drinfeld module. The above case corresponds to r(T ) = T n.

Going back to the case of Φ̂[[n]] with n > 0 we may think of GL(m, q, n)
as consisting of m × m matrices A(T ) = (Aij(T )) whose entries Aij(T ) are
polynomials of degree ≤ n − 1 over GF(q) and whose determinant, as a
polynomial in T , has a nonzero constant term. Now A(T ) �→ A(0) gives an
epimorphism θ : GL(m, q, n) → GL(m, q). Clearly |ker(θ)| = q(n−1)m2

and
hence

|GL(m, q, n)| = q(n−1)m2|GL(m, q)|.
Assuming n>1, let K ′ = SF(Φ̂,K) = K(V ) and K ′′ = SF(Φ̂[[n]],K)K(V [n]),
and identify Gal(Φ,K) and Gal(Φ[[n]],K) with corresponding subgroups of
GL(m, q) and GL(m, q, n) respectively. For any ξ ∈ Ω upon letting

Ψξ(Y ) = Φ[[n−1]](Y ) − ξ and R(ξ) = {η ∈ Ω : Ψξ(η) = 0}
we have

Ψξ =
∏

η∈R(ξ)

(Y − η) and |R(ξ)| = q(n−1)m

and, fixing any h(ξ) ∈ R(ξ), by the vectoriality of Ψ[[n−1]] we see that

SF(Ψξ,K
′) = K ′(h(ξ)).
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Now
Φ(Y ) =

∏
t∈V

(Y − t) and Φ[[n]](Y ) = Φ(Φ[[n−1]](Y ))

and hence
Φ[[n]](Y ) =

∏
t∈V

∏
t∈V

Ψt(Y )

and therefore, for any basis t1, . . . , tm of V , by the vectoriality of Φ[[n−1]] we
see that

(7.1) K ′′ = SF(Φ[[n]],K ′) = SF(
∏

1≤i≤m

Ψti,K
′) = K ′(h(t1), . . . , h(tm)).

It follows that
(7.2)

Gal(Φ[[n]],K) = GL(m, q, n) ⇐⇒
{

Gal(Φ,K) = GL(m, q) and

[K ′(h(t1), . . . , h(tm)) : K ′] = qn−1m2.

Remark on the Trinomial Case. In view of (7.1) and (7.2), by (3.18) we
conclude that

(7.3) [GL(2, 2, 2) : Gal(Φ̂
[[2]]
2,2 , k(X))] = 2 ⇐⇒ GF(4) ⊂ k

and

(7.4) Gal(Φ̂
[[2]]
2,2 , k(X)) = GL(2, 2, 2) ⇐⇒ GF(4) �⊂ k.

8. Regular Local Domains

Let S be an m-dimensional regular local domain where m > 0 is any integer,
let (Z1, . . . , Zm) be a basis of the maximal ideal M(S) of S, let L be the
quotient field of S, and let Ω be an algebraically closed overfield of L; (the
characteristic of S may or may not be zero, and could be different from the
characteristic of its residue field). For example S could be the ring of (formal
or convergent) power series in Z1, . . . , Zm with coefficients in a field k, where
in the convergent case we require k to be equipped with a metric (such as
the real or the complex or the p-adic field); or S could the polynomial ring
k[Z1, . . . , Zm] localized at the origin Z1 = · · · = Zm = 0, i.e., localized at the
prime ideal generated by Z1, . . . , Zm; or S could be any ring “between” the
said localized ring and the power series ring. For m = 2 think of the origin
in the plane, and for m = 3 think of the corner of the room. The passage
from the polynomial case to the regular local case, i.e., effectively to the
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power series case, gives us greater versatility of parametrization. This was
exhibited in Proposition (5.3) of my Projective Polynomials paper [3]. In
the proof of the said Proposition, the following easy-to-prove fact was called:

GEC (= Generalized Eisenstein Criterion) Let R be a local domain
dominated by S. Let F (Y ) = Y d+

∑d
l=1 AlY

d−l with Al ∈ M(R) for 1 ≤ l <
d and Ad ∈ M(R)2 where d > 0 is any integer. Then F (Y )−Z1 is irreducible
in L[Y ] and, upon taking Z∗ ∈ Ω with F (Z∗) = Z1 and upon letting S∗ = the
integral closure of S in L(Z∗), we have that S∗ is an m-dimensional regular
local domain dominating S such that S∗ is residually rational over S, the
quotient field of S∗ is L(Z∗), and M(S∗) = (Z∗, Z2, . . . , Zm)S∗.

An obvious double induction applied to GEC immediately yields the
following:

Corollary. Let R be a local domain dominated by S. Let n ≥ 0 be
an integer and for 1 ≤ i ≤ m and 1 ≤ j ≤ n let Fi,j(Y ) = Y d(i,j) +∑d(i,j)

l=1 Ai,jlY
d(i,j)−l with Ai,j,l ∈ M(R) for 1 ≤ l < d(i, j) and Ai,j,d(i,j) ∈

M(R)2 where d(i, j) > 0 is an integer. For 1 ≤ i ≤ m let Zi,0 = Zi, and
for 1 ≤ i ≤ m and 1 ≤ j ≤ n let Zi,j ∈ Ω with Fi,j(Zi,j) = Zi,j−1. Let
S0 = S and L0 = L, and for 1 ≤ j ≤ n let Lj = L(Z1,j , . . . , Zm,j) and
Sj = the integral closure of R in Lj . Then for 1 ≤ j ≤ n, the polynomials
F1,j(Y ) − Z1,j−1, . . . , Fm,j(Y ) − Zm,j−1 are irreducible in Lj−1[Y ], the field
Lj−1 is a subfield of the field Lj with [Lj : Lj−1] = d(1, j) . . . d(m, j), the
ring Sj is an m-dimensional regular local domain dominating Sj−1 such
that Sj is residually rational over Sj−1, the quotient field of Sj is Lj, and
M(Sj) = (Z1,j , . . . , Zm,j)Sj .

Remark on the Generic Case. To apply this Corollary, recall that q > 1
is any power of any prime p. Consider the generic vectorial q-polynomial
Φ̂(Y ) = Y qm

+X1Y
q−1

+ · · ·+XmY where X1, . . . , Xm, Y are indeterminates
over a field k with GF(q) ⊂ k, let R be the localization of k[X1, . . . , Xm]
at the prime ideal generated by (X1, . . . , Xm), and let K = k(X1, . . . , Xm).

Then SF(Φ̂, k(X1, . . . , Xm)) = k(Z1, . . . , Zm) = L = the quotient field of the
m-dimensional regular local domain S obtained by localizing k[Z1, . . . , Zm]
at the ideal generated by (Z1, . . . , Zm), and we have

Φ̂(Y ) =
∏

(a1,...,am)∈GF(q)m

(Y − a1Z1 − · · · − amZm) .

Clearly S dominates R and the elements X1, . . . , Xm belong to M(R),

and therefore by taking Fij = Φ̂ for all i, j in the Corollary we see that for

the n-th iterate Φ̂[[n]] of Φ̂ we have Gal(Φ̂(n),K) = GL(m, q, n). For further
details about the generic case see Section 3 of my paper [5] on the Galois
Theory of Semilinear Transformations.
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9. General Degree Two

To generalize the parametrization given in Section 2, let F,Φ, Φ̂ be obtained
by putting (2, A,B) for (m, 1, X) in Fm,q,Φm,q, Φ̂m,q respectively, where A �=
0 �= B are elements in an overfield K of k with

GF(q) ⊂ k ⊂ K = k(A,B).

Note that now

F = F (Y ) = Y 1+q + AY + B ,(9.1)

Φ = Φ(Y ) = F (Y q−1) = Y q2−1 + AY q−1 + B ,(9.2)

Φ̂ = Φ̂(Y ) = Y Φ(Y ) = Y q2

+ AY q + BY.(9.3)

Let F ′(Y ) be the twisted derivative of F (Y ) at a root y of F (Y ) in the
algebraic closure Ω of K, i.e., let

(9.4) y1+q + Ay + B = 0

and

(9.5) F ′(Y ) = Y −1[F (Y + y) − F (y)] = Y q + yY q−1 + yq−1Y + (yq + A).

Let E(Y ) be obtained by reciprocating F ′(Y ), i.e.,

E(Y ) = (yq + A)−1Y qF ′(Y −1) = Y q + (yq + A)−1Y + (yq + A)−1.

To simplify notation, let

(9.6) ξ = −(yq + A)−1

and note that then

(9.7) E(Y ) = −ξY qF ′(Y −1) = Y q − ξY − ξ.

Let E ′(Y ) be the twisted derivative of E(Y ) at a root η of E(Y ) in Ω, i.e., let

ηq − ξη − ξ = 0(9.8)

E′(Y ) = Y −1[E(Y + η) − E(η)] = Y q−1 − ξ.(9.9)

Let ζ be a root of E′(Y ) in Ω and note that then

(9.10) ζq−1 − ξ = 0.

By (9.8) and (9.10) we see that

0 = ζ−q(ηq − ζq−1η − ζq−1) = (ηζ−1)q − (ηζ−1) − ζ−1

and hence upon letting

(9.11) τ = η ζ−1

we get

(9.12) τ q − τ − ζ−1 = 0.
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By (9.4), (9.6), (9.8), (9.10), (9.11) and (9.12) we get

SF(F,K) = k(A,B, y, ξ, η, ζ, τ) = k(A, y, ξ, η, ζ, τ) = k(A, ξ, η, ζ, τ, y)

= k(A, η, ζ, τ, y) = k(A, ζ, τ, y) = k(A, τ, y)

and hence

(9.13) SF(F,K) = k(A, τ, y).

By (9.4), (9.6), (9.8), (9.10), (9.11) and (9.12) we also see that

ζ =
1

τ q − τ
,(9.14)

η = τζ =
1

τ q−1 − 1
,(9.15)

ξ = ζq−1 =
ηq

η + 1
=

1

(τ q − τ)q−1
(9.16)

and

(9.17) yq = −A − (τ q − τ)q−1.

By (9.7) to (9.10) we see that

E(Y ) =
∏

j∈GF(q)

(Y − η − jζ)

and hence upon letting

(9.18) z = y + η−1

by (9.1) and (9.4) to (9.7) we see that

(9.19)

F (Y ) = (Y − y)
∏

j∈GF(q)

(
Y − y − 1

η + jζ

)

= (Y − y)(Y − z)
∏

0 �=j∈GF(q)

(
Y − y − 1

η + jζ

)
.

To reproduce some of the results of Section 2, now assume that

(9.20) (A,B) = (1, X).

Then by (9.1) we see that F is irreducible over K and, upon letting T =
τ 1/q ∈ Ω, by (9.13) and (9.17) we see that

K = k(X) and SF(F,K) = k(T ) ,(9.21)

T q = τ(9.22)

y = −1 − (T q − T )q−1.(9.23)
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In view of (9.22), by (9.14) to (9.18) we get

ζ =
1

(T q − T )q
,(9.24)

η = T qζ =
1

(T q−1 − 1)q
,(9.25)

ξ = ζq−1 =
ηq

η + 1
=

1

(T q − T )q(q−1)
,(9.26)

y = −1 − (T q − T )q−1(9.27)

z = −1 − (T q − T )q−1 + (T q−1 − 1)q.(9.28)
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