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Harnack’s inequality for
solutions of some

degenerate elliptic equations

Ahmed Mohammed

Abstract

We prove a Harnack’s inequality for non-negative solutions

of some degenerate elliptic operators in divergence form with the

lower order term coefficients satisfying a Kato type condition.

1. Introduction.

In this paper, we study the behavior of solutions of certain degenerate
elliptic equations Lu = 0, where L is the operator

L := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

n∑
i=1

bi(x)
∂

∂xi
+ V (x) .

The coefficients aij are real-valued measurable functions whose coefficient
matrix A(x) := (aij(x)) is symmetric and satisfies

(1.1) ω(x) |ξ|2 ≤ 〈A(x) ξ, ξ〉 ≤ υ(x) |ξ|2 .

Here 〈·, ·〉 denotes the usual inner product on R
n, and υ, ω are non-negative

functions which will be described below.
Let us fix some notations that will be used throughout the paper. For

functions f and g, we shall write f � g to indicate that f ≤ Cg for some
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positive constant C. We write f ≈ g if f � g and g � f . We shall use
Bt(x) to denote a ball of radius t centered at x. Also, tB will stand for
the ball concentric with the ball B, but with radius t times as big. Given
a locally integrable function f , we let f(B) denote the Lebesgue integral
of f over the set B. If f ∈ Lloc(dµ), where dµ := γ(x) dx is a weighted
measure, then we denote by

−
∫

B

f(x)γ(x) dx :=
1

γ(B)

∫
B

f(x)γ(x) dx ,

the µ-average of f over B. This average shall also be denoted by fB , γ.
A non-negative locally integrable functions ω on R

n is said to be in
the class A2 if there is a constant C such that for all balls B,

(
−
∫

B

ω(x) dx
)(

−
∫

B

1
ω(x)

dx
)
≤ C .

A non-negative locally integrable functions υ on R
n is said to satisfy a

doubling condition if there is a constant C such that υ(2B) ≤ C υ(B) for
all balls B. Here C is independent of the center and radius of B. We
denote this by writing υ ∈ D∞. It is known that A2 ⊂ D∞.

It is also known (see [12]) that if υ satisfies a doubling condition, then
it satisfies

υ(tB) ≤ C1 tkυ(B) , and υ(B) ≤ C2 t−mυ(tB) , t > 1 ,

for some positive constants C1, C2, k, and m. The latter condition is called
a reverse doubling condition.

Throughout the paper, we will require that ω, and υ satisfy the as-
sumptions stipulated below.

ω and υ are non-negative locally integrable functions on R
n that sat-

isfy the following conditions.

ω ∈ A2 , υ ∈ D∞ .(1.2)

ω and υ are related by the existence of some q > 2 such that

s

t

(υ(Bs(x))
υ(Bt(x))

)1/q

≤ C
(ω(Bs(x))

ω(Bt(x))

)1/2

, 0 < s < t , x ∈ R
n ,

(1.3)

for some constant C independent of x, s and t.
We shall use the notation σ = q/2 so that σ > 1. Note that when υ

and ω are positive constants, as in the strongly elliptic case, the value of q
in (1.3) is q = 2n/(n − 2), so that σ = n/(n − 2).
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Let now L0 be the principal part of L; that is

L0 := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
,

and let B0 be a ball in R
n that will be fixed in the sequel. Under conditions

(1.2) and (1.3), S. Chanillo and R. Wheeden have established, in [4] the
existence and integrability properties of the Green function of L0. Among
several important properties, they have shown that if G(x, y) is the Green
function of L0 on 2B0, then for 0 < p < σ,

(1.4) sup
y∈B0

∫
2B0

G(x, y)p υ(x) dx < ∞ .

Let B ⊂ B0. In analogy with the way the usual Kato class is defined, we
introduce a class of functions Kn(B) as

Kn(B) := {h ∈ L1
loc(B) : lim

r→0+
η(h)(r) = 0} ,

where
η(h)(r) := sup

x∈B

∫
Br(x)∩B

G(y, x) |h(y)| dy .

If Lp
µ(B) denotes the usual Lp space with respect to a measure µ, and

B ⊂ B0, then
Lp

υ1−p(B) ⊂ Kn(B) ,

provided that p > σ/(σ − 1) (see [10]).
For notational simplicity, we shall use K for the function space Kn(B0).

Remark 1.1. We should remark that when υ and ω are identically equal
to positive constants, as in the strongly elliptic case, the class of functions
K coincides with the usual Kato class (see [5] for definition). Also, if υ
and ω are constant multiples of each other, then again K is the same as
the one introduced in [7].

We will make the following assumptions on the lower order coefficients
b = (b1, b2, . . . , bn), and V of the elliptic operator L.

(1.5) |b|2 ω−1 , V ∈ K .

In their celebrated work [1], M. Aizenman and B. Simon used probablis-
tic methods to prove that non-negative weak solutions of −∆u + V u = 0
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satisfy uniform Harnack’s inequality, where V is a potential from the clas-
sical Kato class, and ∆ is the Laplace operator. Later, F. Chiarenza,
E. Fabes and N. Garofalo developed in [5], a real variable technique to
prove Harnack’s inequality when the Laplace operator is replaced by a
uniformly elliptic operator in divergence form. Subsequently, these meth-
ods were used by several authors to derive Harnack’s inequality for more
general elliptic equations in divergence form. Using the techniques of [5],
K. Kurata proved in [8], Harnack’s inequality for non-negative solutions
of L0 u + b · ∇u + V u = 0, where L0 is a uniformly elliptic operator in
divergence form and |b|2, V belong to the classical Kato class. Harnack’s
inequality has also been derived for degenerate elliptic equations by several
authors. In the degenerate case, the following important works are worth
mentioning. In the absence of lower order terms and the case when υ and
ω are constant multiples of each other, Harnack’s inequality was derived
in [6]. In [3], where the unequal weights case was considered, the authors
obtain Harnack’s inequality for non-negative solutions of degenerate equa-
tions in divergence form without lower order terms. In [7], C. Gutierrez
considers the equal weights case with a potential V from the Kato class K.
In this paper, the author sucessfully applies the methods of [5] to derive
Harnack’s inequality in the degenerate case. See also [9] for related results.
Our work here is largely motivated by the papers [3], [4], and [7]. Our main
result in this paper is Theorem 4.1 which establishes Harnack’s inequality
for functions naturally associated with non-negative solutions of the oper-
ator L. As the work here uses results obtained in [10], we will state these
results for easy reference and the reader’s convenience. The results in [10]
were motivated by the important works of S. Chanillo and R. Wheeden in
their papers [2], [3] and [4]. In Section 3, we will prove some mean-value
inequalities involving weak solutions of the opeartor L. To obtain these
inequalities, we adapt a combination of the methods developed in [5], and
[3] (see also [11]). In Section 4, Harnack’s inequality is proved. Here we
follow the paper [3] closely.

2. Preliminaries and background.

Let Ω ⊂ R
n be a bounded open set. Using a standard notation, let

Lip(Ω) denote the class of Lipschitz continuous functions on the closure Ω.
We say that φ ∈ Lip0(Ω) if φ ∈ Lip(Ω) and φ has compact support con-
tained in Ω. The following two-weight Sobolev’s and Poincaré inequalities
have been proved in [2].

Let ω, υ be non-negative locally integrable functions that satisfy (1.2),



Harnack’s inequality for solutions 329

(1.3), and q be the constant that appears in (1.3). Then, for a ball B,

(2.1)
(
−
∫

B

|f |q υ dx
)1/q

≤ C |B|1/n
(
−
∫

B

|∇f |2 ω dx
)1/2

, f ∈ Lip0(B)

and

(2.2)
(
−
∫

B

|f − fB,υ|q υ dx
)1/q

≤ C |B|1/n
(
−
∫

B

|∇f |2 ω dx
)1/2

,

f ∈ Lip(B).
In (2.1), and (2.2) the constant C is independent of both the ball B

and f .
Now let us consider the inner product

a(u, ϕ) :=
∫

Ω

〈A∇u,∇ϕ〉 +
∫

Ω

u ϕ υ , u, ϕ ∈ Lip(Ω) .

The completion of Lip(Ω) with respect to the norm ‖u‖ := a(u, u)1/2 is
denoted by H(Ω) . Thus H(Ω) is formed by adjoining to Lip(Ω) elements
{uk}, uk ∈ Lip(Ω) such that {uk} is a Cauchy sequence with respect to
the norm ‖ · ‖ on Lip0(B)Ω. If u, ϕ ∈ H(Ω), with u = {uk}, ϕ = {ϕk},
uk, ϕk ∈ Lip(Ω), then a(uk, ϕk) is convergent, and we define

a(u, ϕ) = lim
k

a0(uk, ϕk) .

This turns H(Ω) into a Hilbert space with inner product a(u, ϕ), and norm
‖u‖ := a(u, u)1/2. As a consequence of the inequality∫

Ω

|∇u|2ω +
∫

Ω

u2υ ≤ ‖u‖2 ,

we see that, if u := {uk} ∈ H(Ω), then {uk}, and {|∇uk|} are Cauchy
sequences in L2

υ(Ω), and L2
ω(Ω) respectively. Therefore uk −→ ũ in L2

υ(Ω),
and ∇uk −→ ∇ũ in L2

ω(Ω). We shall refer to ũ as the element in L2
υ(Ω)

associated with u ∈ H(Ω). (See [3], or [4] for details).
If a0(u, ϕ) is the inner product on Lip0(Ω) defined by

a0(u, ϕ) :=
∫

Ω

〈A∇u,∇ϕ〉 , u, ϕ ∈ Lip0(Ω) ,

then the completion of Lip0(Ω) under the induced norm is denoted by
H0(Ω), and the inner product a0(·, ·) extends to H0(Ω) by the same pro-
cedure used above to extend a(·, ·) to H(Ω). The space then becomes a
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Hilbert space under this inner product and the norm ‖u‖0 := a0(u, u)1/2,
u ∈ H0(Ω).

For future reference, we record the following inequality that can be
easily verified using the Cauchy-Schwartz inequality.

(2.3) ‖ϕφ‖0 � ‖ϕ‖∞ ‖φ‖0 + ‖φ‖∞ ‖ϕ‖0 , ϕ, φ ∈ Lip0(Ω) .

As a consequence of the Sobolev’s inequality (2.1), the Hilbert space H0(Ω)
is seen to be continuously embedded in H(Ω).

For u ∈ H(Ω) we say that u ≥ 0 on Ω, if uk ≥ 0 for all k and some
{uk} representing u. If u ≥ 0 on Ω, then ũ ≥ 0 almost everywhere on Ω.

We now recall some results that will be needed in this paper. The
reader can find proofs of these results in [10]. We will use the numbering
A.1, A.2, etc to label these results.

The first Lemma is a slight extension of Lemma (2.7) of [4], and we
will use it repeatedly.

Lemma A.1. Let u = {uk}, ϕ = {ϕk} be in H(Ω). If {ζk} is a bounded
sequence in L∞(Ω) that converges pointwise almost everywhere to ζ ∈
L∞(Ω), then

∫
Ω

〈A∇uk,∇ϕk〉 ζk −→
∫

Ω

〈A∇ũ,∇ϕ̃〉 ζ , as k −→ ∞ .

As a consequence of this Lemma, we see that

a0(u, ϕ) =
∫

Ω

〈A∇ũ,∇ϕ̃〉 , u, ϕ ∈ H0(Ω) .

The following embedding lemma is useful in the subsequent development
(see [10] for a proof).

Lemma A.2. If f ∈ K, and B ⊂⊂ B0 is a ball of radius r, then for any
u ∈ H0(B) the following holds.

∫
B

|f | ũ 2 dx � η(f)(3 r)
∫

B

〈A∇ũ,∇ũ〉 .

Let us now consider the general elliptic operator

Mu := −div(A(x)∇u + c(x)u) + b(x) · ∇u + V (x)u ,
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where, in addition to (1.5) we also assume that |c|2ω−1 ∈ K. With M ,
and its adjoint operator

M∗u := −div(A(x)∇u + b(x)u) + c(x) · ∇u + V (x)u ,

we associate the bilinear forms D(·, ·) and D∗(·, ·) as follows. Fix a ball
B ⊂⊂ B0 of radius r, and let us define

D(u, ϕ) :=
∫

B

〈A∇u,∇ϕ〉 + c(x) · ∇ϕu + b(x) · ∇u ϕ + V u ϕ ,

and D∗(u, ϕ) := D(ϕ, u) for all u, ϕ ∈ Lip0(B). Observe that by Hölder
inequality and Lemma A.2, it follows that

(2.4) |D(u, ϕ) − a0(u, ϕ)| � ϑ(r) ‖u‖0 ‖ϕ‖0 , ϕ, u ∈ Lip0(B) ,

where

ϑ(r) := (η (|c|2 ω−1)(3 r))1/2 + (η (|b|2 ω−1)(3 r))1/2 + η(V )(3 r) .

Therefore, we get

(2.5) |D(u, ϕ)| � (1 + ϑ(r)) ‖u‖0 ‖ϕ‖0 , ϕ, u ∈ Lip0(B) .

Thus if u = {uk}, ϕ = {ϕk}, uk, ϕk ∈ Lip0(B) are elements of H0(B)
then the above inequality shows that {D(uk, ϕk)} is a Cauchy sequence
and hence limk D(uk, ϕk) exists. Therefore we define

D(u, ϕ) := lim
k

D(uk, ϕk) .

Having defined D(u, ϕ) for u, ϕ ∈ H0(B), the inequality (2.5) still holds
for any u, ϕ ∈ H0(B). As a result of this inequality we see that for a fixed
u ∈ H0(B), the map ϕ �−→ D(u, ϕ) is a continuous linear functional on
H0(B).

By Lemma A.2, it can also be shown along similar lines that

|D(u, ϕ)| ≤ C ‖u‖ ‖ϕ‖0 ,

for any ϕ ∈ Lip0(B), and u ∈ Lip(B0). The constant C here depends on
the distance of ∂B to ∂B0. Consequently D(u, ϕ) can be defined as the
limit of D(uk, ϕk) whenever u = {uk} ∈ H(B0), and ϕ = {ϕk} ∈ H0(B).
Furthermore the inequality |D(u, ϕ)| ≤ C ‖u‖ ‖ϕ‖0 holds for u ∈ H(B0),
and ϕ ∈ H0(B).
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Using (2.4) one obtains (1 − C ϑ(r)) ‖u‖2
0 ≤ D(u, u) for u ∈ Lip0(B),

and some constant C. Therefore for sufficiently small r0, and all 0 < r ≤ r0

we have
‖u‖2

0 � D(u, u)u ∈ H0(B) ,

so that D(·, ·) is a coercive bilinear form on H0(B).
Given f ∈ K, we shall say that u = {uk} ∈ H(B0) is a weak solution

of Mu = f in B if

D(u, ϕ) =
∫

B

fϕ̃ , for all ϕ = {ϕk} ∈ H0(B) .

Similar statements and definitions hold for the adjoint operator M∗ and
the associated bilinear form D∗(·, ·).

The following two Remarks will be useful at several stages in our
subsequent proofs.

Remark 2.1. If f ∈ K, and B ⊂⊂ B0 is a ball, then by Lemma A.2, the
map

ϕ �−→
∫

B

fϕ̃

is a continuous linear functional on H0(B). Therefore, by the Lax-Milgram
theorem there is a unique element u ∈ H0(B) such that

D(u, ϕ) =
∫

B

fϕ̃ , ϕ ∈ H0(B) .

The same remark holds for the bilinear form D∗(·, ·).

Remark 2.2. Let f ∈ K, and u = {uk} ∈ H(B0) be a weak solution of
Mu = f in B. If {vk} is a bounded, weakly convergent sequence in H0(B),
then

lim
k→∞

(
D(uk, vk) −

∫
B

f ṽk

)
= 0 .

To see this, suppose that v ∈ H0(B) is the weak limit of {vk} in H0(B).
From the inequality |D(uk − u, vk)| ≤ C ‖uk − u‖ ‖vk‖0, we observe that

lim
k

D(uk, vk) = lim
k

(D(uk − u, vk) + D(u, vk)) = lim
k

D(u, vk) .

Thus the assertion follows from this limit, and the fact that the linear
functionals

ϕ �−→ D(u, ϕ) , and ϕ �−→
∫

B

f ϕ̃
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are continuous on H0(B).

Henceforth, when we consider the bilinear forms D(, ·), and D∗(·, ·),
we will assume that c ≡ 0.

Remark 2.3. Remark 2.1 shows that given y ∈ B, and a ball Bρ(y) ⊂ B
there is a unique Gρ ∈ H0(B) such that

D∗(Gρ, ϕ) = −
∫

Bρ(y)

ϕ̃ υ , ϕ ∈ H0(B) .

The associated function G̃ρ in L2
υ(B) is called the approximate Green func-

tion of L on B with pole y. It was shown in [10, Lemma 3.5, Lemma
3.6] that Gρ is non-negative, and that Gρ has a representative Gρ =
{Gρ

k}, Gρ
k ∈ Lip0(B) such that 0 ≤ Gρ

k ≤ C for some constant C inde-
pendent of k.

The following two results about the approximate Green function G̃ρ

of L were proved in [10]. To obtain these results, in addition to conditions
(1.5), the following was also assumed on the coefficient b = (b1, b2, . . . , bn)
of L.

(2.6) divb ∈ K .

Conditions (1.5) and (2.6) were used in [8] to derive a reverse Hölder in-
equality for the Green function of L in the uniformly elliptic case.

Lemma A.3. Let B be a ball of radius r with 2B ⊂ B0, and G̃ρ be the
approximate Green function of L on B. If the coefficients of L satisfy the
conditions (1.5), and (2.6), then there is a constant C, independent of ρ
and the pole of Gρ such that

∫
B

(|b|2ω−1 + |V |) G̃ρ ≤ C η (|b|2ω−1 + |V |)(2 r) ,

for sufficiently small r.

The following Theorem on the uniform integrability of the approxi-
mate Green functions of L will be useful in obtaining mean-value inequal-
ities for weak solutions of L.
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Theorem A.1. Let B be a ball of radius r with 2B ⊂ B0. Suppose G̃ρ

is the approximate Green function of L on B, where we assume that the
coefficients of L satisfy the conditions (1.5) and (2.6). Then for 1 < p < σ
there is a positive constant C, independent of ρ and the pole, such that

(
−
∫

B

(G̃ρ)pυ
)1/p

≤ C
r2

ω(B)
,

when r is sufficiently small.

3. Mean-value inequalities.

We start this section by deriving a Caccioppoli-type estimate. To this
end we need to consider a twice continuously differentiable function h such
that

(3.1)

h(τ)h′′(τ) ≥ 0 ,

|τ2h′′(τ)| � |τh′(τ)| � |h(τ)| ,
and |h′′(τ)| + |h′(τ)| + |h(τ)| � 1 .

Lemma 3.1 (Caccioppoli-Type Estimate). Let h be a twice continuously
differentiable function that satisfies (3.1). Let B ⊂⊂ B0 be a ball of radius
r, and suppose u ∈ H(B0) is a weak solution of Mu = 0 in B which has a
representative u = {uk} such that h(uk), h′(uk), and h′′(uk) are all defined
for all k. Then, given 0 < s < t < 1 there is a constant C > 0 such that

∫
sB

〈A∇h(ũ),∇h(ũ)〉 ≤ C

r2 (t − s)2

∫
tB

h(ũ)2 υ ,

provided that r is sufficiently small.

Proof. Take ϕ ∈ C∞
c (tB) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on sB and

‖∇ϕ‖∞ � ((t − s) r)−1. For each k, let ψk := h′(uk)h(uk)ϕ2. Then ψk ∈
Lip0(B), and because of conditions (3.1), one can use (2.3) to show that
{ψk} is bounded in H0(B). We thus pick a subsequence, still denoted by
{ψk} that converges weakly in H0(B). By taking a further subsequence if
necessary, we can assume that uk −→ ũ pointwise almost everywhere on
B. Recalling (3.1), we have the following
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〈A∇h(uk),∇h(uk)〉ϕ2

= 〈A∇h(uk),∇(h(uk)ϕ2)〉 − 2 〈A∇h(uk),∇ϕ〉h(uk)ϕ

≤ 〈A∇uk,∇ψk〉 − 〈A∇uk,∇uk〉h′′(uk)h(uk)ϕ2

+
1
4
〈A∇h(uk),∇h(uk)〉ϕ2 + 4 〈A∇ϕ,∇ϕ〉h2(uk)(3.2)

≤ Tk − c · ∇ψk uk − b · ∇uk ψk − V uk ψk

+ 4 〈A∇ϕ,∇ϕ〉h2(uk) +
1
4
〈A∇h(uk),∇h(uk)〉ϕ2 ,

where

Tk = 〈A∇uk,∇ψk〉 + c · ∇ψk uk + b · ∇uk ψk + V uk ψk .

Again taking (3.1) into account, and using the Cauchy-Schwartz inequality
we can estimate

|c| |∇ψk| |uk| + |b| |∇uk| |ψk| + |V | |uk ψk|

≤ 1
4
〈A∇h(uk),∇h(uk)〉ϕ2

+ C1 (|c|2ω−1 + |b|2ω−1 + |V |) (h(uk)ϕ)2 + C2 〈A∇ϕ,∇ϕ〉h2(uk) ,

for some constants C1, and C2. Using this last inequality in (3.2), and
integrating over tB we obtain

∫
tB

〈A∇h(uk),∇h(uk)〉ϕ2

≤ 2 δk + C3

∫
tB

(|c|2ω−1 + |b|2ω−1 + |V |) (h(uk)ϕ)2

+ C4

∫
tB

〈A∇ϕ,∇ϕ〉h2(uk) ,

where δk := D(uk, ψk), and C3, C4 are some positive constants. Thus by
Lemma A.2, and noting that ϕ ≡ 1 on sB we see that for sufficiently small
r, ∫

sB

〈A∇h(uk),∇h(uk)〉ϕ2 � δk +
∫

tB

〈A∇ϕ,∇ϕ〉h2(uk) .
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By Remark 2.2, we note that δk −→ 0 as k −→ ∞. We now let k −→ ∞.
By the continuity of h′, we notice that (h′(uk))2 −→ (h′(ũ))2 pointwise
almost everywhere on B. Furthermore, the sequence h(uk) converges to
h(ũ) in L2

υ(B) as a result of the inequality |h(t)−h(s)| � |t−s|. Therefore,
by (1.1), Lemma A.1, and these observations we get the desired result
provided the radius of B is sufficiently small.

We will need the following technical Lemma in some of our proofs.
As the statement is a slight generalization of a known Lemma, we have
included the short proof for completeness.

Lemma 3.2. Let ϑ, � be functions such that ϑ is bounded on every closed
subinterval of (a, b), and � is an almost increasing function ; that is �(s) ≤
C �(t) for some positive constant C and all a < s < t < b. Suppose there
is 0 < ε < 1 and a non-negative function γ defined on (0,∞) such that

ϑ(s) ≤ ε ϑ(t) + γ(t − s) �(t) ,

for all a < s < t < b. We assume that γ satisfies either of the following
conditions for x, y ∈ (0,∞).

γ(x y) ≤ γ(x) γ(y), and ε γ(τ) < 1 for some 0 < τ < 1 .(3.3)

γ(x y) ≤ γ(x) + γ(y) .(3.4)

Then,

(1) ϑ(s) ≤ C
γ(1 − τ)
1 − ε γ(τ)

γ(t − s) �(t) , if γ satisfies (3.3) ,

and

(2) ϑ(s) ≤ C
1

1 − ε

(
γ(t − s) +

γ(1/2)
1 − ε

)
�(t) , if γ satisfies (3.4) .

Proof. Let s0 = s, sk+1 = sk + (1 − λ)λk(t − s), k = 0, 1, 2, . . . , where
0 < λ < 1 will be specified later. Then for any m = 1, 2, 3, . . . ,

sm+1 − s =
m∑

k=0

(sk+1 − sk) = (t − s) (1 − λ)
m∑

k=0

λk .
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From this we conclude that s < sk < t, and sm −→ t as m −→ ∞. By
iteration, and the monotonicity of �, we have

(3.5)

ϑ(s) ≤ εm ϑ(sm) +
m−1∑
k=0

εk�(sk+1) γ(sk+1 − sk)

≤ εmϑ(sm) + C�(t)
m−1∑
k=0

εkγ((1 − λ) (t − s)λk) .

If γ satisfies (3.3), and we choose λ = τ , then the above inequality becomes

ϑ(s) ≤ εmϑ(sm) + C�(t) γ(1 − τ) γ(t − s)
m−1∑
k=0

(ε γ(τ))k .

If γ satisfies (3.4), and we choose λ = 1/2, then inequality (3.5) becomes

ϑ(s) ≤ εmϑ(sm) + C�(t)
m−1∑
k=0

εk
(
(k + 1) γ

(1
2

)
+ γ(t − s)

)
.

We now let m −→ ∞. In both cases, we obtain the result as a consequence
of the boundedness of ϑ and the sums

∞∑
k=0

δk =
1

1 − δ
, and

∞∑
k=0

(k + 1) δk =
1

(1 − δ)2
, for 0 < δ < 1 .

Given 0 < s < t, let us make the following convention. Let

(3.6)
s(j) := 2−j ((2j − 1) s + t) ,

and t(j) := 2−j (s + (2j − 1) t) , j = 1, 2, 3 ,

so that for j, k = 1, 2, 3, we have s < s(j +1) < s(j) < t(k) < t(k +1) < t,
and t(k + 1) − t(k) = s(k) − s(k + 1) = 2k+1 (t − s)−1. We shall also use
µ(B) to denote the following

µ(B) :=
(υ(B)

ω(B)

)1/2

.

This last notation and the one introduced in (3.6) above will be used for
the rest of our discussion without further comment.
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Lemma 3.3. Let h be a twice continuously differentiable function that
satisfies (3.1). Let B ⊂⊂ B0 be a ball, and u ∈ H(B0) be a weak solution
of Mu = 0 on B which has a representative u = {uk} such that h(uk),
h′(uk), and h′′(uk) are all defined for all k. Suppose that (1.5) holds and
that |c|2ω−1 ∈ K. Given 0 < s < t ≤ 1, with t/s � 1, there are positive
constants C, and κ such that

(
−
∫

sB

h2(ũ) υ
)1/2

≤ C
(µ(B)

t − s

)κ

−
∫

tB

|h(ũ)| υ ,

provided that the radius of B is sufficiently small.

Proof. For 0 < s < 1, let

I(s) :=
(
−
∫

sB

h2(ũ) υ
)1/2

.

Given 0 < s < t ≤ 1, we can assume without loss of generality, that the
υ average of |h(ũ)| over B is 1. Fix ϕ ∈ C∞

c (t(1)B) such that ϕ ≡ 1 on
sB and ‖∇ϕ‖∞ � ((t− s) r)−1, where r is the radius of B. Let 0 < ϑ < 1
such that (2 − ϑ)/(1 − ϑ) = q, where q is the exponent in the Sobolev’s
inequality (2.1). Then, for each k, by the Sobolev’s inequality (2.1)

(
−
∫

sB

h2(uk)υ
)1/2

=
(
−
∫

sB

|h(uk)|2−ϑ |h(uk)|ϑυ
)1/2

≤
(
−
∫

sB

|h(uk)|(2−ϑ)/(1−ϑ) υ
)(1−ϑ)/2

≤
(
−
∫

t(1)B

|h(uk)ϕ|(2−ϑ)/(1−ϑ) υ
)(1−ϑ)/2

≤ (C r (s + t))2τ
(
−
∫

t(1)B

|∇(h(uk)ϕ)|2 ω
)τ

,

where τ := (1 − ϑ) q/4.
In the second inequality we have used, as a result of the assumption

t/s � 1, the fact that υ(tB)/υ(sB) � 1. Consequently, using (1.1) we have

(
−
∫

sB

h2(uk) υ
)1/2

≤
( C r2

ω(t(1)B)

)τ(∫
〈A∇h(uk),∇h(uk)〉 +

∫
|∇ϕ|2h2(uk)ω

)τ

,
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where the last two integrals are over the ball t(1)B. We now pick a subse-
quence {uk} such that uk −→ ũ pointwise almost everywhere on B. After
using the fact that ω ≤ υ, we take the limit as k −→ ∞, and argue as in
the proof of Lemma 3.1 to obtain the following

(
−
∫

sB

h2(ũ) υ
)1/2

≤
( C r2

ω(t(1)B)

)τ(∫
〈A∇h(ũ),∇h(ũ)〉 +

∫
|∇ϕ|2h2(ũ) υ

)τ

.

Here again, the last two integrals are over the ball t(1)B. By Lemma 3.1,
and the fact that µ(t(1)B) � t−dµ(B) for some d > 0, we obtain

I(s) ≤ C
(µ(B)

t − s

)β(
−
∫

tB

h2(ũ) υ
)τ

,

for some positive β. Taking logarithms in the last inequality, and noting
that 0 < 2 τ < 1 we obtain

log I(s) ≤ 2 τ log I(t) + β log
(Cµ(B)

t − s

)
, for

1
2
≤ s < t ≤ 1 .

We now apply Lemma 3.2, with ϑ(x) = log I(x), �(x) = 1, γ(x) =
log (Cµ(B)/x), and ε = 2 τ to obtain

I(s) ≤ C
(µ(B)

t − s

)κ

,

for some constants C, and κ. On recalling that the υ average of |h(ũ)| over
tB is 1, we get the result.

For the remainder of our discussion, we will assume that the lower
order coefficients b and V of L satisfy both the conditions (1.5) and (2.6).

Perhaps we should remark here that condition (2.6) is not needed in
obtaining Harnack’s inequality in the uniformly elliptic case. We refer the
reader to the paper [8] for a proof.

Using the notation given in (3.6), we state the following.

Lemma 3.4. Let B be a ball of radius r with 2B ⊂ B0, and let G̃ρ be the
approximate Green’s function of L on B with pole x0. Let 1/2 ≤ s < t < 1.
If x0 ∈ sB, then for sufficiently small ρ, we have

(1)
(∫

t(2)B�s(1)B

〈A∇G̃ρ,∇G̃ρ〉
)1/2

≤ C
r

ω(B)

√
υ(B)

(µ(B)
t − s

)β

,
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and

(2)
(∫

t(2)B�s(1)B

(G̃ρ)2υ
)1/2

≤ C
r2

ω(B)

√
υ(B)

(µ(B)
t − s

)α

,

where α, β are constants that depend on σ and the dimension n.

Proof. We follow the idea used in the proof of [7, Theorem 3.8] Let us
suppose that B is centered at x1 and has radius r > 0. We cover the
annulus t(2)B � s(1)B with k balls Bi that are centered at zi, and each of
radius (t− s) r/4. We pick the zi on the sphere |z −x1| = (s(1)+ t(2)) r/2
such that for some 0 < δ < 1, {δBi}k

i=1 is a pairwise disjoint collection
with δBi ⊂ t(2)B � s(1)B for i = 1, 2, . . . , k. Consequently, we note that
k ≤ C (t − s)1−n for some constant C. Since sB and the (9/4)Bi are
disjoint, let us note that Gρ is a solution of L∗Gρ = 0 on (9/4)Bi for i =
1, 2, . . . , k. Furthermore, since B ⊂ 8 (t− s)−1Bi, and ω is doubling we see
that µ(2Bi) � (t− s)−κ1µ(B) for some constant κ1, and all i = 1, 2, . . . , k.
Taking note of this, by Lemma 3.1, and Lemma 3.3 (with h(τ) = τ) we
get the estimations

(3.7)

∫
t(2)B�s(1)B

〈A∇G̃ρ,∇G̃ρ〉

≤
k∑

i=1

∫
Bi

〈A∇G̃ρ,∇G̃ρ〉

≤ C

r2 (t − s)2

k∑
i=1

∫
(4/3)Bi

(G̃ρ)2υ

≤ C υ(B)
r2 (t − s)2

k∑
i=1

−
∫

(4/3)Bi

(G̃ρ)2υ

≤ C υ(B)
r2 (t − s)2

k∑
i=1

(µ(2Bi)
t − s

)2κ0( −
∫

2Bi

G̃ρυ
)2

≤ C υ(B)
r2

(µ(B)
t − s

)2κ0(κ1+1)(
−
∫

B

G̃ρυ
)2 k∑

i=1

υ(B)
υ(2Bi)

.

Since υ is doubling, we also have υ(B)/υ(2Bi) � (t − s)−κ2 for some κ2.
Using this estimation, and applying Theorem A.1 (take a p with 1 < p < σ)
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in (3.7) above leads to

∫
t(2)B�s(1)B

〈A∇G̃ρ,∇G̃ρ〉

≤ C k υ(B)
r2

(µ(B)
t − s

)2κ0(κ1+1)+κ2
(
−
∫

B

(G̃ρ)pυ
)2/p

≤ C k
(µ(B)

t − s

)d

υ(B)
( r

ω(B)

)2

≤ C
(µ(B)

t − s

)κ

υ(B)
( r

ω(B)

)2

.

The proof for the second statement is similar. In fact, it is included in the
above proof.

We now state and prove mean-value inequalities for weak solutions.
In the theorems that follow all constants will depend only on the parame-
ters occuring in the conditions (1.2), (1.3), and the functions η(|b|2ω−1),
η(divb) and η(V ).

Theorem 3.1. Let B be a ball of radius r with 2B ⊂ B0, and u ∈ H(B0)
be a weak solution of Lu = 0 on B. Let ũ be the function in L2

υ associated
with u. Then ũ is locally bounded on B. If u is non-negative, 0 ≤ ε ≤ 1,
and 1/σ2 ≤ p ≤ 2, then there exist constants C, κ, and r0, all independent
of u, p, and ε such that for 1/2 ≤ s < t < 1,

sup
sB

(ũ + ε)p ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ + ε)p υ
)

,

whenever 0 < r ≤ r0.

Proof. Let B = B(x1) and 1/2 ≤ s < t ≤ 1. Take x0 ∈ sB, and let
G̃ρ be the approximate Green function of L on B with pole at x0. Pick
ϕ ∈ C∞

c (t(2)B) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on s(1)B and ‖∇ϕ‖∞ �
((t − s) r)−1. Let ε > 0, and let u = {uk}, Gρ = {Gρ

k}, with uk ∈ Lip(B),
and Gρ

k ∈ Lip0(B). By Remark 2.3, we can assume that 0 ≤ Gρ
k ≤ C

for some constant C independent of k. Since {ϕ(uk + ε)} and {ϕGρ
k} are

bounded in H0(B) we can select appropriate subsequences that converge
weakly in H0(B). By taking a further subsequence if necessary, we can
assume that Gρ

k −→ G̃ρ pointwise almost everywhere on B. Taking such
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weakly convergent subsequences, we have

γk + −
∫

Bρ

(ũ + ε)ϕυ

=
∫

t(2)B

(〈A∇Gρ
k,∇(ϕ(uk+ε))〉 + b · ∇(ϕ(uk + ε))Gρ

k + V ϕ(uk + ε)Gρ
k)

= δk +
∫

t(2)B

(〈A∇Gρ
k,∇ϕ〉 (uk + ε) + b · ∇ϕ(uk + ε)Gρ

k + ε V ϕGρ
k)

−
∫

t(2)B

〈A∇uk,∇ϕ〉Gρ
k ,

where the sequences {γk}, and {δk} are given by

γk := D∗(G
ρ
k, ϕ(uk + ε)) −−

∫
Bρ

(ũ + ε)ϕυ , and δk := D(uk, ϕ Gρ
k) .

Therefore, by Cauchy-Schwartz inequality, (1.1), and noting that ω ≤ υ,
we obtain∣∣∣ −∫

Bρ

(ũ + ε)ϕυ
∣∣∣

≤
( ∫

t(2)B�s(1)B

〈A∇Gρ
k,∇Gρ

k〉
)1/2(∫

t(2)B

|∇ϕ|2 (uk + ε)2 υ
)1/2

+
(∫

t(2)B

〈A∇uk,∇uk〉
)1/2(∫

t(2)B�s(1)B

|∇ϕ|2 (Gρ
k)2 υ

)1/2

(3.7)

+
(∫

t(3)B

|b|2ω−1(ψ(uk + ε))2
)1/2(∫

t(2)B�s(1)B

|∇ϕ|2 (Gρ
k)2 υ

)1/2

+ |δk| + |γk| + ε

∫
t(2)B

|V |ϕGρ
k ,

where ψ ∈ C∞
c (t(3)B) is chosen such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on supp (|∇ϕ|)

and ‖∇ψ‖∞ � ((t−s) r)−1. By Lemma A.2, we observe that for sufficiently
small r∫

t(3)B

|b|2ω−1(ψ(uk + ε))2

�
∫

t(3)B

(uk + ε)2 |∇ψ|2 υ +
∫

t(3)B

〈A∇uk,∇uk〉ψ2 .
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After using this estimate in (3.7), we take the limit as k −→ ∞. To this
end, we first observe that (uk + ε)2 ζ −→ (ũ + ε)2 ζ in L1

υ(B) whenever
ζ ∈ L∞(B), and also by Remark 2.2 we note that limk γk = 0 = limk δk =
0. If we now use these observations together with Lemma A.1, and the
Lebesgue dominated convergence theorem, we obtain∣∣∣ −∫

Bρ

(ũ + ε)ϕυ
∣∣∣

≤
(∫

t(2)B�s(1)B

〈A∇G̃ρ,∇G̃ρ〉
)1/2(∫

t(2)B

|∇ϕ|2 (ũ + ε)2 υ
)1/2

+
(∫

t(2)B

〈A∇ũ,∇ũ〉
)1/2(∫

t(2)B�s(1)B

|∇ϕ|2 (G̃ρ)2 υ
)1/2

+ C
(∫

t(3)B

(ũ + ε)2 |∇ψ|2 υ +
∫

t(3)B

〈A∇ũ,∇ũ〉ψ2
)1/2

·
(∫

t(2)B�s(1)B

|∇ϕ|2 (G̃ρ)2 υ
)1/2

+ ε

∫
t(2)B

|V |ϕ G̃ρ .

An application of Lemma 3.1 (where we take h(τ) = τ), and Lemma 3.4
leads to the estimation∣∣∣ −∫

Bρ

(ũ + ε)ϕυ
∣∣∣ ≤ C

(µ(B)
t − s

)κ((
−
∫

tB

(ũ + ε)2 υ
)1/2

+
(
−
∫

tB

ũ2 υ
)1/2)

+ ε

∫
t(2)B

|V |ϕ G̃ρ ,(3.8)

for some positive constants κ, and C that might change from time to time.
If ε = 0, we take the limit as ρ −→ 0. Recalling that ϕ ≡ 1 on sB and
that x0 ∈ sB is arbitrary, we obtain

sup
sB

|ũ| ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

ũ 2 υ
)1/2

,

showing that ũ is locally bounded on B. Suppose now 0 < ε ≤ 1, and
u ≥ 0. Then ε ≤ ũ + ε, and 0 ≤ ũ ≤ ũ + ε almost everywhere on B. Using
these facts and Lemma A.3, the inequality (3.8) becomes

−
∫

Bρ

(ũ + ε)ϕυ

≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ+ε)2υ
)1/2

+C η(|b|2ω−1 +V )(2 r) sup
tB

((ũ+ε)ϕ) .
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We take the limit as ρ −→ 0 to conclude that

sup
sB

(ϕ(ũ + ε))

≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ+ε)2 υ
)1/2

+C η(|b|2ω−1+V )(2 r) sup
tB

((ũ+ε)ϕ) .

We now wish to apply Lemma 3.2 with the functions

ϑ(s) = sup
sB

(ũ+ε)ϕ , �(t) = C
(
−
∫

tB

(ũ+ε)2 υ
)1/2

, and γ(s)=
(µ(B)

s

)κ

.

Since υ is doubling, we see that � is almost increasing on (1/2, 1). We
now choose r0 such that Cµ(B)κ η(|b|2ω−1 + V )(2 r0) < 1, where C is the
constant appearing on the second term of the right-hand side of the last
inequality above. Then with the choice of ε := C η(|b|2ω−1 + V )(2 r0), for
0 < r ≤ r0, Lemma 3.2 is applicable and we obtain

(3.9) sup
sB

(ũ + ε) ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ + ε)2υ
)1/2

,
1
2
≤ s < t < 1 .

That ϕ ≡ 1 on sB has been used in the above inequality.
Now suppose that 0 < p < 2, and let

I(s) := C
(
−
∫

sB

(ũ + ε)2 υ
)1/2

.

Without loss of generality, assume that the υ-average of (ũ + ε)p over the
ball B is 1. Using the doubling condition of υ, and (3.9), it is easy to see
that

I(s) ≤ (
sup
sB

(ũ + ε)
)θ ≤

(µ(B)
t − s

)κ

θ I(t)θ ,

where θ := (2 − p)/2. From this we obtain, noting that 0 < θ < 1,

log I(s) ≤ κ log
( Cµ(B)

(t − s)τ

)
+ θ log I(t) ,

1
2
≤ s < t < 1 .

We now let ϑ(s) = log I(s), γ(s) = log (Cµ(B) s−τ ), �(s) = κ, and apply
Lemma 3.2 again to get

I(s) ≤ C
(µ(B)

t − s

)κ/p

, for
1
σ2

≤ p < 2 ,
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and for some positive constants C, and κ, independent of p. Therefore,
recalling that the υ-average of (ũ + ε)p over B is 1, we obtain the result
for all 1/σ2 ≤ p ≤ 2.

Remark 3.1. By Hölder inequality, Theorem 3.1 also holds for p > 2 with
C, and κ replaced by Cp, and p κ, respectively.

Theorem 3.2. Let B be a ball of radius r with 2B ⊂ B0, and u ∈ H(B0)
be a non-negative weak solution of Lu = 0 on B. Let ũ be the function
in L2

υ associated with u, and 0 < ε ≤ 1. If −1 ≤ p ≤ 1/σ2, then there
exist constants C, κ, and r0, all independent of u, p, and ε such that for
1/2 ≤ s < t < 1

sup
sB

(ũ + ε)p ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ + ε)p υ
)

,

whenever 0 < r ≤ r0.

Proof. Let us first consider the case 0 < p ≤ 1/σ2. Let u := {uk} be a
non-negative solution so that uk ≥ 0 for k = 1, 2, 3, . . . For each k, and
some ε > 0, let zk := uk + ε. Now for −1 < β ≤ 1/σ − 1, let us define
ψk := ϕ2 zβ

k , where ϕ is as in the proof Theorem 3.1 above. Then ‖ψk‖0 is
bounded in k, and hence we can pick a subsequence, still denoted by {ψk}
such that ψk converges weakly in H0(B).

Let us first notice that

∇ψk = β ϕ2 zβ−1
k ∇uk + 2ϕzβ

k ∇ϕ , ∇(z(β+1)/2
k ) =

β + 1
2

z
(β−1)/2
k ∇uk .

Therefore, using these we can write

〈A∇uk,∇ψk〉 =
4β

(β + 1)2
〈A∇(z(β+1)/2

k ),∇(z(β+1)/2
k )〉ϕ2

+
4

β + 1
〈A∇(z(β+1)/2

k ),∇ϕ〉 z
(β+1)/2
k ϕ .

From this and noting that 0 < β + 1 ≤ (σ − 1)−1 |β|, one readily obtains

(σ − 1)
∫

B

〈A∇(z(β+1)/2
k ),∇(z(β+1)/2

k )〉ϕ2

≤
∫

B

|b| |∇(z(β+1)/2
k )| z(β+1)/2

k ϕ2 +
∫

B

|V | (z(β+1)/2
k ϕ)2

+
∫

B

|〈A∇(z(β+1)/2
k ),∇ϕ〉| z(β+1)/2

k ϕ + |δk| ,
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where δk := D(uk, ψk).
Let r0 be chosen such that η(|b|2ω−1 + V )(2 r0) ≤ (σ − 1)2/32. After

use of the Cauchy-Schwartz inequality and Lemma A.2, and then collecting
terms we obtain, for 0 < r ≤ r0,∫

B

〈A∇(z(β+1)/2
k ),∇(z(β+1)/2

k )〉ϕ2 ≤ C
(∫

B

〈A∇ϕ,∇ϕ〉 zβ+1
k + |δk|

)
,

where C is a positive constant independent of β. If we recall that ϕ ≡ 1
on sB and that ‖∇ϕ‖∞ ≤ C ((t − s) r)−1, we see that by (1.1)∫

sB

|∇(z(β+1)/2
k )|2 ω ≤ C

( 1
r2 (t − s)2

∫
tB

zβ+1
k υ + |δk|

)
.

We now apply the Poincarè Inequality (2.2), and arguing as in [4] (note
that s (t − s)−1 ≥ 1, and µ(B) ≥ 1) we obtain

(
−
∫

sB

z
((β+1)/2)q
k υ

)1/q

≤ C
( s

t − s
µ(B)

)(
−
∫

tB

zβ+1
k υ

)1/2

+ C s r
( |δk|

ω(sB)

)1/2

.

Now let us take the limit as k −→ ∞ in the above inequality. Let us first
observe, by Remark 2.2 that δk −→ 0, and that zk −→ ũ + ε in Lβ+1

υ (as
zk −→ ũ + ε in L2

υ). Thus letting k −→ ∞, and m = β + 1, the above
inequality reduces to

(3.10)

(
−
∫

sB

(ũ + ε)σm υ
)1/(σm)

≤ C2/m
( s

t − s
µ(B)

)2/m(
−
∫

tB

(ũ + ε)m υ
)1/m

,

for 0 < m ≤ 1/σ and 1/2 ≤ s < t < 1. Here we have used that q = 2σ.
We now wish to iterate this inequality by taking the starting value of m
as any fixed p with 0 < p ≤ 1/σ2. Let j be the positive integer such that
1/σ2 ≤ σj p < 1/σ. Since σkp < 1/σ for k = 0, 1, 2 . . . , j, we iterate the
inequality (3.10) j times for successive entries of t and s in the sequence
sk = s + (t − s)/(k + 1), k = 0, 1, 2 . . . , and successive entries of m and
σ m in the sequence {σkp}j

k=0. We obtain

(
−
∫

sjB

(ũ + ε)σjp υ
)1/σjp

≤
j−1∏
k=0

(C ak µ(B))1/σkp
(
−
∫

B

(ũ + ε)p υ
)1/p

,
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where ak := sk+1/(sk − sk+1). Noting that 1/σ2 ≤ σjp < 1/σ, we can
apply Theorem 3.1 to obtain

sup
sj+1B

(ũ + ε) ≤ C1/σjp
(µ(B) aj

sj+1

)κ/σjp(
−
∫

sjB

(ũ + ε)σjp υ
)1/σjp

≤
j∏

k=0

(Cakµ(B))θ/σkp
(
−
∫

B

(ũ + ε)p υ
)1/p

,

for some θ > 0. We have used 1/2 ≤ sj+1 in obtaining the last inequality.
If we now observe that s < sj+1, and

∞∏
k=0

(C ak µ(B))θ/σkp ≤
(Cµ(B)

t − s

)κ/p

,

for some constants C, and κ that depend on σ, we obtain

sup
sB

(ũ + ε) ≤ C1/p
(Cµ(B)

t − s

)κ/p(
−
∫

B

(ũ + ε)p υ
)1/p

,

which is the desired result when 0 < p ≤ 1/σ2.
We now take up the remaining case −1 ≤ p < 0.
For −1 ≤ β < 0, let G̃ρ be the approximate Green function of L0 +

b · ∇ + β V , and Dβ be the bilinear form associated with this operator.
As a consequence of Remark 2.3, we choose a representative Gρ = {Gρ

k}
such that 0 ≤ Gρ

k ≤ C for some positive constant C, independent of k.
Therefore, {ϕzβ

k }, and {ϕzβ−1
k Gρ

k}, are bounded in H0(B), and we take
subsequences that are weakly convergent H0(B). By considering further
subsequences if necessary, we assume that uk −→ ũ, and Gρ

k −→ G̃ρ

pointwise almost everywhere on B. For such sequences, let us now notice
that

〈A∇Gρ
k,∇(ϕzβ

k )〉 + b · ∇(ϕzβ
k )Gρ

k + β V ϕ zβ
k Gρ

k

= 〈A∇Gρ
k,∇ϕ〉 zβ

k

+ β 〈A∇Gρ
k,∇uk〉ϕzβ−1

k + b · ∇uk(β ϕ zβ−1
k Gρ

k) + b · ∇ϕ(zβ
k Gρ

k)

+ V uk(β ϕ zβ−1
k Gρ

k) + εV (β ϕ zβ−1Gρ
k)

= 〈A∇Gρ
k,∇ϕ〉 zβ

k + 〈A∇uk,∇(β ϕ zβ−1
k Gρ

k)〉
− 〈A∇uk,∇(β ϕ zβ−1

k )〉Gρ
k + b · ∇uk(β ϕuβ−1 Gρ

k)

+ b · ∇ϕ(zβ
k Gρ

k) + V uk(β ϕ zβ−1
k Gρ

k) + ε V (β ϕ zβ−1
k Gρ

k) .
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Observing that

〈A∇uk,∇(β ϕ zβ−1
k )〉Gρ

k

= β (β − 1) 〈A∇uk,∇uk〉ϕzβ−2
k Gρ

k + 〈A∇uk,∇ϕ〉 (β zβ−1
k Gρ

k) ,

and that the first term on the right-hand side of the equation is positive,
we conclude

γk+ −
∫

Bρ

ϕzβ
k υ

=
∫

(〈A∇Gρ
k,∇(ϕzβ

k )〉 + b · ∇(ϕzβ
k )Gρ

k + β V ϕ zβ
k Gρ

k)

≤
∫

(〈A∇Gρ
k,∇ϕ〉 zβ

k + b · ∇ϕ(zβ
k Gρ

k) − β 〈A∇uk,∇ϕ〉 (zβ−1
k Gρ

k))

+ δk +
∫

ε V (β ϕ zβ−1
k Gρ

k) ,

where the integrals on the right are carried over the ball tB, and

δk := Dβ(uk, β ϕ zβ−1
k Gρ

k) , and γk := Dβ
∗ (Gρ

k, ϕ zβ
k ) −−

∫
Bρ

ϕzβ
k υ .

By Remark 2.2, we notice that δk −→ 0, and γk −→ 0, as k −→ ∞. So
taking the limit in k, we invoke Lemma A.1, and the Lebesgue dominated
convergence theorem to obtain the inequality

−
∫

Bρ

(ũ + ε)β ϕυ ≤
∫

tB

〈A∇G̃ρ,∇ϕ〉 (ũ + ε)β + b · ∇ϕ((ũ + ε)β G̃ρ)

−
∫

tB

β 〈A∇ũ,∇ϕ〉 (ũβ−1 G̃ρ)+
∫

tB

|V | (εϕ (ũ + ε)β) G̃ρ .

Now, if we recall that −1 ≤ β < 0, and 0 < ε ≤ 1, then by Lemma A.3,
the last integral is not bigger than η(|b|2ω−1 + V )(2 r) suptB ((ũ + ε)β ϕ).
This last observation together with an application of the Cauchy-Schwartz
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inequality, and (1.1) leads to (recall that ω ≤ υ)

−
∫

Bρ

(ũ + ε)β ϕυ

≤
(∫

t(2)B�s(1)B

〈A∇G̃ρ,∇G̃ρ〉
)1/2( ∫

t(2)B

|∇ϕ|2 (ũ + ε)2β υ
)1/2

+
(∫

B

|b|2ω−1(ψ(ũ + ε)β)2
)1/2(∫

t(2)B�s(1)B

|∇ϕ|2 (G̃ρ)2 υ
)1/2

+
(∫

t(2)B

〈A∇(ũ + ε)β ,∇(ũ + ε)β〉
)1/2( ∫

t(2)B�s(1)B

|∇ϕ|2 (G̃ρ)2 υ
)1/2

+ η(|b|2ω−1 + V )(2 r) sup
tB

((ũ + ε)β ϕ) .

Here ψ ∈ C∞
c (t(3)B) is chosen such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on supp (|∇ϕ|),

and ‖∇ψ‖∞ ≤ C ((t−s) r)−1. We now proceed as in the proof of Theorem
3.1, to estimate the integrals on the right. We point out that in applying
the Caccioppoli estimate, we use the function h(τ) := (τ + ε)β in Lemma
3.1. Therefore,

sup
sB

((ũ + ε)β ϕ) ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ + ε)2β υ
)1/2

+ η(|b|2ω−1 + V )(2 r) sup
tB

((ũ + ε)β ϕ) ,

for −1 ≤ β < 0.
We now appeal to Lemma 3.2 to conclude that, for sufficiently small

r,

sup
sB

((ũ + ε)β ϕ) ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ + ε)2β υ
)1/2

,

for some positive constants C, and κ. Finally, we invoke Lemma 3.3 (with
h(τ) := (τ + ε)β again) to obtain

sup
sB

((ũ + ε)β ϕ) ≤ C
(µ(B)

t − s

)κ(
−
∫

tB

(ũ + ε)β υ
)

,

for some constants C, and κ.
Noting that ϕ ≡ 1 on sB, we obtain the claimed inequality for −1 ≤

p < 0.
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Remark 3.2. By Hölder inequality, Theorem 3.2 continues to hold for
p < −1 with C, and κ replaced by C−p, and −p κ, respectively.

4. Harnack’s inequality.

Theorem 3.2 does not provide anything new when p = 0. As a re-
placement, we have an estimate provided by the following Lemma.

Lemma 4.1. Let B ⊂⊂ B0 be a ball of radius r, and let u ∈ H(B0) be a
non-negative weak solution of Lu = 0 in B. For ε > 0, and 1/2 ≤ s < 1
define N := N(ε, s, ũ) by

log N := −
∫

sB

log (ũ + ε) υ .

Then for λ > 0, and 1/2 ≤ s < 1, we have

υ
({

x ∈ sB :
∣∣∣ log

( ũ + ε

N

)∣∣∣ > λ
})

≤ Cµ(B)
λ (1 − s)

υ(sB) ,

for some constant C, whenever r is sufficiently small.

Proof. Let ϕ ∈ C∞
c (tB) satisfy ϕ ≡ 1 on sB, 0 ≤ ϕ ≤ 1, and ‖∇ϕ‖∞ �

((1 − s) r)−1. Let u = {uk}, uk ∈ Lip(B0), uk ≥ 0, and for each k, define
ψk := ϕ2 (uk + ε)−1. Then

∇ψk = −ϕ2 (uk + ε)−2 ∇uk + 2ϕ (uk + ε)−1 ∇ϕ ,

and ‖ψk‖0 is bounded in H0(B). Therefore, we pick a weakly convergent
subsequence still denoted by {ψk}. With this sequence, we have

〈A∇uk,∇uk〉ϕ2(uk + ε)−2

= −Tk + b · ∇uk(uk + ε)−1 ϕ2 + V uk (uk + ε)−1 ϕ2(4.1)

+ 2 〈A∇uk,∇ϕ〉ϕ(uk + ε)−1 ,

where
Tk = 〈A∇uk,∇ψk〉 + b · ∇uk ψk + V uk ψk .

Integrating (4.1) over B, and using Hölder inequality followed by Cauchy-
Schwartz inequality (and also using the fact that uk (uk + ε)−1 ≤ 1), we
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obtain∫
B

〈A∇ log (uk + ε),∇ log (uk + ε)〉ϕ2

= δk +
∫

B

(b · ∇uk (uk + ε)−1 ϕ2 + V uk (uk + ε)−1 ϕ2)

+
∫

B

2 〈A∇uk,∇ϕ〉ϕ(uk + ε)−1

≤ |δk| +
∫

B

(|b|2ω−1 + |V |)ϕ2 + 4
∫

B

〈A∇ϕ,∇ϕ〉

+
1
2

∫
B

〈A∇uk,∇uk〉 (uk + ε)−2 ϕ2 ,

where δk = −D(uk ψk). Therefore, by Lemma 3.1, and (1.1) we have∫
B

〈A∇ log (uk + ε),∇ log (uk + ε)〉ϕ2

≤ (2 η(|b|2ω−1 + |V |)(3 r) + 8)
∫

B

|∇ϕ|2 υ + 2 |δk| .

Since ϕ ≡ 1 on sB, on taking note of (1.1) again we have, for small r∫
sB

|∇ log (uk + ε)|2 ω ≤ Cυ(B)
r2 (t − s)2

+ 2 |δk| .

By Poincaré Lemma (2.2), we have

−
∫

sB

∣∣∣ log (uk + ε) − (log (uk + ε))sB,υ

∣∣∣2 υ ≤ C υ(B)
(t − s)2

+
C r2

ω(B)
|δk| .

We now take the limit as k −→ ∞. Note that log (uk + ε) −→ log (ũ + ε)
in L2

υ(B), and hence also

(log (uk + ε))sB,υ = −
∫

sB

log (uk + ε) υ −→ −
∫

sB

log (ũ + ε) υ := log N .

After taking the limit as k −→ ∞, we use Chebyshev’s inequality followed
by Hölder inequality to obtain

υ
({

x ∈ α B :
∣∣∣ log

( ũ + ε

N

)∣∣∣ > λ
})

≤ 1
λ

∫
sB

| log (ũ + ε) − log N | υ

≤ Cµ(B)
λ (t − s)

υ(sB) ,
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as desired.

The following real-variable fact is the final ingredient needed to obtain
the Harnack inequality. It is proved in the same way as [11, Lemma 3] (see
the comment following [3, Lemma (3.14)]).

Bombieri’s Lemma. Let µ > 0, and υ be a doubling measure. Let f be
a non-negative bounded function on a ball B. Suppose there are positive
constants C, d such that

sup
sB

(fp) ≤ C

(t − s)d
−
∫

tB

fp υ , 0 < p <
1
µ

,
1
2
≤ s < t ≤ 1 ,(1)

υ({x ∈ B : log f(x) > λ}) ≤ Cµ

λ
υ(B) , λ > 0 .(2)

Then there are constants γ and δ so that for all 0 < α < 1, we have

sup
αB

f ≤ exp
( γµ

(1 − α)δ

)
.

We can now state the Harnack’s inequality

Theorem 4.1 (Harnack’s inequality). Let B be a ball of radius r with
4B ⊂ B0. Suppose u ∈ H(B0) is a non-negative weak solution of Lu = 0
on B, and let ũ be the function in L2

υ(B0) associated with u. There are
constants C and r0 depending only on the parameters in (1.2), (1.3), (1.5)
and (2.6) such that

sup
B

ũ ≤ exp
(
C

υ(B)
ω(B)

)
inf
B

ũ ,

whenever 0 < r ≤ r0.

Proof. The proof relies on Theorems 3.1, 3.2, and Lemma 4.1 together
with Bombieri’s Lemma. Since u is non-negative, we recall that ũ ≥ 0.
Given 0 < ε ≤ 1, we apply Bombieri’s Lemma to the functions (ũ + ε)/N ,
and N/(ũ + ε). with N defined by

N = −
∫

(3/2)B

log (ũ + ε) υ .
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The parameters α, B, and µ are taken to be 2/3, (3/2)B, and µ(2B),
respectively. Following the arguments detailed in [3], one obtains the in-
equality

sup
B

(ũ + ε) ≤ exp
(
C

υ(B)
ω(B)

)
inf
B

(ũ + ε) ,

We now let ε −→ 0 to get the desired Harnack’s inequality stated in
Theorem 4.1.
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