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Size properties of wavelet packets
generated using finite filters

Morten Nielsen

Abstract

We show that asymptotic estimates for the growth in Lp(R)-
norm of a certain subsequence of the basic wavelet packets asso-

ciated with a finite filter can be obtained in terms of the spectral

radius of a subdivision operator associated with the filter. We

obtain lower bounds for this growth for p � 2 using finite dimen-

sional methods. We apply the method to get estimates for the

wavelet packets associated with the Daubechies, least asymmetric

Daubechies, and Coiflet filters. A consequence of the estimates

is that such basis wavelet packets cannot constitute a Schauder

basis for Lp(R) for p � 2. Finally, we show that the same type

of results are true for the associated periodic wavelet packets in

Lp[0, 1).

1. Introduction and main results.

Let {Vj} be a multiresolution analysis with associated scaling function
φ, wavelet ψ, and associated low-pass filters (m0, m1). The basic wavelet
packets {wn}∞n=0 are defined recursively by w0 = φ, w1 = ψ, and for n ∈ N

with binary expansion

n =
∑

k

εk 2k−1 ,
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we let

ŵn(ξ) =
∞∏

j=1

mεj

( ξ

2j

)
.

Such functions were introduced in [1], [2] to improve the frequency localiza-
tion of wavelets at high frequency. It was proved in [1] that the collection
{wn}n of basic wavelet packets associated with the Lemarié-Meyer mul-
tiresolution analysis are not uniformly bounded in Lp(R)-norm for p large.
The technique used was to show that the family {ŵn}n is not bounded
in L1-norm. This works because the Lemarié-Meyer low-pass filter m0 is
a nonnegative functions so each ŵn is just a modulation of a nonnega-
tive function. It is therefore possible to recover the L∞-norm of wn from
the L1-norm of ŵn. However, this technique fails in general since all fi-
nite filters associated with a multiresolution analysis are not nonnegative
functions (see [3]). The growth in L1-norm of the Fourier transform of
basic wavelet packets associated with finite filters was studied in detail by
É. Séré in [6], where he proves that the subsequence of the basic wavelet
packets with worst asymptotic growth is {w2n−1}∞n=0.

In the present paper we introduce a technique to estimate the Lp(R)-
norm of the subsequence {w2n−1}∞n=0 associated with finite filters (m0, m1).
The key is to study the subdivision operator S, associated with the finite
high-pass filter m1(ξ) =

∑
k∈Z

gk eikξ, defined by

(1) (Sc)i =
∑
j∈Z

gi−2j cj , i ∈ Z .

for c ∈ �p(Z), 1 ≤ p ≤ ∞. We let σp[S] denote the spectral radius of S on
�p(Z). The main observation of Section 2 is

Theorem 1.1. Let {wn}∞n=0 be the wavelet packets generated by the finite
filters (m0, m1) associated with a multiresolution analysis. Define σ̃p, 1 ≤
p ≤ ∞, by

σ̃p = lim
n→∞ ‖w2n−1‖1/n

p .

Then σ̃p exists and σ̃p = 21−1/pσp[S].

In Section 3 we derive numerical estimates using Theorem 1.1 for
the growth in Lp(R)-norm, p � 2, for a number of Daubechies, least
asymmetric Daubechies, and Coiflet filters. We find that such families
of wavelet packets all have a subsequence with growth in Lp(R)-norm of
order nα, with n denoting the frequency, for p � 2 and for some α > 0
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(depending on p). Moreover, our technique provides a lower bound for
the value of α and a surprising consequence of this is derived in Section
4, where we prove that such wavelet packets cannot constitute a Schauder
basis for Lp(R) for p � 2. This is in sharp contrast to the simplest wavelet
packet system, the Walsh system, that do constitute a Schauder basis for
Lp(R) for 1 < p < ∞. In Section 5 we consider the same but more difficult
question about growth in Lp[0, 1)-norm for the periodized wavelet packets
{w̃n}∞n=0 defined by

w̃n(x) =
∑
k∈Z

wn(x − k) .

The following theorem will be proved in Section 5.

Theorem 1.2. Let {wn}n be a wavelet packet basis associated with the
finite filters (m0, m1). Choose N such that diam supp (wn) ≤ 2N . Fix
L ∈ 2 Z+ + 1. If

(m−1
0 (0) ∪ m−1

1 (0)) ∩
( N⋃

k=1

2−k(2 Z + 1)π
)

= ∅

then there exist finite constants cp, Cp > 0 (depending on L) such that

cp ‖w2n−1‖p ≤ ‖ ˜w2n+N−L‖Lp[0,1) ≤ Cp ‖w2n−1‖p ,

for n � 2n+N − L ≥ 1.

This theorem is then applied to the periodized versions of the wavelet
packets mentioned above. The conclusion is that they all have a sub-
sequence with growth in Lp[0, 1)-norm of order nα, α > 0, for p � 2.
Moreover, we prove that such periodic wavelet packets cannot constitute
a Schauder basis for Lp[0, 1) for large p.

2. L
p-norms of wavelet packets.

In this section we some fundamental results about multiresolution
analyses and scaling functions to calculate the Lp(R)-norm of wavelet
packets associated with finite filters. We will assume that {Vj} be a mul-
tiresolution analysis with associated scaling function φ satisfying |φ(x)| ≤
C (1 + |x|)−1−ε for some ε > 0, and associated low-pass filters (m0, m1).
In [5] one can find the following lemma,



252 M. Nielsen

Lemma 2.1. There exist finite constants cp, Cp > 0 such that for every
finite sequence {ck}k∈Z ⊂ C we have

cp ‖{ck}‖�p(Z) ≤
∥∥∥ ∑

k∈Z

ck φ(x − k)
∥∥∥

p
≤ Cp ‖{ck}‖�p(Z) ,

which gives us a sharp estimate of the Lp(R) norm of a wavelet packet
associated with a multiresolution analysis.

Lemma 2.2. There exist finite positive constants cp and Cp such that the
Lp(R)-norm, 1 ≤ p ≤ ∞, of the wavelet packet wn, defined by

ŵn(ξ) =
( N∏

j=1

mεj

( ξ

2j

))
φ̂
( ξ

2N

)
,

is bounded by

cp 2N 2−N/p ‖{ck}‖�p(Z) ≤ ‖wn‖p ≤ Cp 2N 2−N/p ‖{ck}‖�p(Z) ,

where
mεN

(ξ)mεN−1(2 ξ) · · ·mε1(2
N−1ξ) =

∑
k∈Z

ck eikξ .

Proof. We have

ŵn(ξ) =
( N∏

j=1

mεj

( ξ

2j

))
φ̂
( ξ

2N

)
,

so

ŵn(2Nξ) =
( N−1∏

j=0

mεN−j
(2j ξ)

)
φ̂(ξ) .

Taking the inverse Fourier Transform of (2) shows that 2−Nwn(2−Nx) is
a linear combination of the functions {φ(x − k)}k and that the expansion
coefficients are given by the coefficients of the Fourier series

mεN
(ξ)mεN−1(2 ξ) · · ·mε1(2

N−1ξ) =
∑
k∈Z

ck eikξ .

Note that ‖2−Nwn(2−N ·)‖p = 2−N2N/p‖wn‖p for 1 ≤ p ≤ ∞. It now
follows from Lemma 2.2 that there exist constants cp and Cp (independent
of n) such that

cp 2N2−N/p ‖{ck}‖�p(Z) ≤ ‖wn‖p ≤ Cp 2N2−N/p ‖{ck}‖�p(Z) .
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In what follows, we will restrict our attention to subsequences of the
form {w2n−1}n. The main reason is that the binary expansion of 2n − 1
consists of n−1 1’s and nothing else which simplifies the estimates given by
Lemma 2.2. The key to getting good estimates is to consider the operator S
defined by (1) on �p(Z), 1 ≤ p ≤ ∞. S is called the (stationary) subdivision
operator associated with the filter m1. Note that S is just the bi-infinite
matrix (gi−2j)ij considered as a bounded operator on �p(Z). It is also easy
to check that S can be represented (formally) as the multiplication operator

Sf(ξ) = m1(ξ) f(2 ξ) ,

for f(ξ) =
∑

k∈Z
ck eikξ.

We are interested in calculating the spectral radius σp[S] of S on �p(Z).
The multiplicative representation of S suggests that the product

m1(ξ)m1(2 ξ) · · ·m1(2n−1ξ)

might be useful for that purpose. Indeed, the following result can be found
in [4]:

Theorem 2.1. Let m1 be a finite high-pass filter, and let S be defined by
(1). Define the sequence {gn

k }k by

∑
k∈Z

gn
k einξ = m1(ξ)m1(2 ξ) · · ·m1(2n−1ξ) .

Then
σp[S] = lim

n→∞ ‖{gn
k }k‖1/n

�p(Z) .

We now combine Theorem 2.1 and Lemma 2.2 to get the proof of
Theorem 1.1.

Proof of Theorem 1.1. We have, using the same notation as in Lemma
2.2,

cp 2n 2−n/p ‖{cn
k}‖�p(Z) ≤ ‖w2n−1‖p ≤ Cp 2n 2−n/p ‖{cn

k}‖�p(Z) .

The result then follows from Theorem 2.1 by taking the n’th root of the
above inequalities and letting n −→ ∞.
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2.1. Estimates for σp[S ].

We want to find the asymptotic behavior of the subsequence
{w2n−1}n in Lp(R). By Theorem 1.1 this reduces to calculating the spec-
tral radius σp[S]. Unfortunately, there is no general method available to
calculate σp[S]. However, the following lemma shows that we only have
worry about σ∞[S] to estimate σp[S] for p large. Note that the lemma is
a Bernstein type inequality.

Lemma 2.3. Let {wn} be a wavelet packet system associated with a mul-
tiresolution analysis {Vj} with scaling function φ. Let n > 0, 2j−1 ≤
n < 2j . Then there is a finite constant Cp, independent of j, such that for
p ∈ [1,∞]

‖wn‖∞ ≤ Cp 2j/p ‖wn‖p .

Proof. We have wn ∈ Vj so

wn(x) =
∑
k∈Z

ck φj,k ,

for some finite sequence {ck}. Then, using Lemma 2.1,

‖wn‖∞ ≤ C∞ 2j/2 ‖{ck}‖�∞(Z)

≤ C∞ 2j/2 ‖{ck}‖�p(Z)

= C∞ 2j/p (2j/2−j/p‖{ck}‖�p(Z))

≤ Cp 2j/p ‖wn‖p .

And we have

Corollary 2.1. Let {wn} be a wavelet packet system associated a mul-
tiresolution analysis. Then

σ̃p ≥ 2−1/p σ̃∞ .
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2.2. Lower bounds for σ∞.

We are left with the following problem; how do we obtain a lower
bound for σ∞[S]? It turns out that the calculation of σ∞[S] can be reduced
to a finite dimensional problem. We need the following definition and
theorem

Definition 2.1. Let A0 and A1 be two n × n-matrices. The joint spectral
radius of A0 and A1 is given by

ρ(A0, A1) = lim sup
r→∞

max
ε∈{0,1}r

‖Aε1Aε2 · · ·Aεr
‖1/r ,

where ‖ · ‖ is any (matrix) norm on Rn×n.

The following general theorem about subdivision operators is proved
in [4].

Theorem 2.2. Let m1(ξ) =
∑N

n=−1 gn einξ be a high-pass filter associated
with a multiresolution analysis. Form the two matrices

A0 = (g−i+2j)N−1
i,j=−1 , A1 = (g1−i+2j)N−1

i,j=−1 .

Then
σ∞[S] = ρ(A0, A1) .

It is, in general, difficult to calculate the joint spectral radius of the
matrices A0, A1 introduced in Theorem 2.2. However, we just want a lower
bound for σ∞ so for our purpose it suffices to notice that ρ(A0, A1) ≥
ρ(A0). Hence, the spectral radius of the matrix A0 gives us a lower bound
on σ∞, i.e., we have reduced the problem to a finite dimensional eigenvalue
problem that can be solved (numerically, at least) for any finite filter.

3. Growth in L
p-norm of some familiar wavelet pack-

ets.

We now apply this method to some much used filters. We have calcu-
lated lower bounds for σ̃∞ for some of the standard Daubechies filters, least
asymmetric Daubechies filters, and Coiflet filters (see [3] for definitions).
The estimates, which were calculated using Matlab and verified using the
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power method, appear in Tables 1, 2, and 3, respectively. The columns
related to “σ̃1” and “p0” will be explained in Section 4. It is interesting
to note the difference in the estimates obtained for the Daubechies filter
and the least asymmetric Daubechies filter of the same length since their
transfer functions agree in absolute value. It suggests that the phase of
the transfer function does influence the behavior of the associated wavelet
packets in Lp(R).
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Daubechies filters (with filter length from 4 to 40).
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for the least asymmetric Daubechies filters of length 8 to 20.
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Coi�etN Lower bounds for
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Lower bounds for σ̃1, σ̃∞, and p0

for the “Coiflet” filters with filter length 6 to 30.

The following result generalizes the results obtained in [1] for the
Meyer wavelets.

Corollary 3.1. For each wavelet packet system associated with one of the
filters listed in Tables 1, 2, and 3 there is a p0 > 2 such that for p ≥ p0 we
have a constant rp > 1 such that ‖w2n−1‖p ≥ Cp rn

p .

We would like to know if the previous theorem is sharp in the sense
that there is a p, 2 < p < p0, such that supn ‖w2n−1‖p < ∞. The answer
is, in general, negative as the following result shows.

Theorem 3.1. Let m0 be the Daubechies filter of length 4 and let {wn}
be the associated wavelet packets. Then

‖w2n−1‖p
n→∞−→ ∞ ,

for every p > 2.

Proof. If we can prove that ‖w2n−1‖1
n→∞−→ 0 then the result will follow by

Hölder’s inequality since ‖w2n−1‖2 = 1. It suffices to show that σ1[S] < 1.
Note that if we can find an N such that

∑
k |cN

k | = α < 1, where

m1(ξ) · · ·m1(2N−1ξ) =
∑
k∈Z

cN
k eikξ ,

then σ1[S] ≤ α1/N < 1. But one can check that

∑
k∈Z

|c7
k| =

9517 + 13043
√

3
32768

< 0.98 .
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4. Failure of some wavelet packet systems to be a basis
for L

p(R).

It is well known that the simplest example of a wavelet packet system,
the Walsh system, do form a Schauder basis for Lp(R), 1 < p < ∞, so one
might conjecture that such a result holds for any reasonable wavelet packet
system. However, it turns out that the assertion is not true for many nice
finite filters such as the Daubechies, least asymmetric Daubechies, and
Coiflet filters. They all fail because of the following result:

Lemma 4.1. If {wn(x−k)}k,n is a Schauder basis for Lp(R), 1 < p < ∞,
then there exists a finite constant Cp such that

‖wn‖p ‖wn‖p′ ≤ Cp , n = 0, 1, . . .

Proof. It is a well known result (see [7]) that a Schauder basis {en} in a
Banach space B with associated coefficient functionals {fn} satisfies

sup
n

‖en‖B ‖fn‖B∗ < +∞ .

So it suffices to show that wn ∈ Lp′
(R) is the coefficient functional of

wn ∈ Lp(R). However, this follows easily using that {wn(x − k)}n,k is an
orthonormal system in L2(R) and the fact that bi-orthogonal sequences
for Schauder bases are unique [7].

The idea is to find a subsequence of a given wavelet packet system for
which (4.1) fails. We have the following useful result.

Lemma 4.2. If
σ̃1[S] σ̃∞[S] = α > 1 ,

then the associated wavelet packet system {wn(· − k)}n,k (in any ordering)
fails to be a Schauder basis for Lp(R) for p > p0, where p0 = 1/ log2(α).

Proof. Since the functions {wn} all have support contained in some fixed
finite interval, we have ‖wn‖1 ≤ Cp‖wn‖p. Thus, for p > 2,

‖w2n−1‖p′ ‖w2n−1‖p ≥ Cp ‖w2n−1‖1 ‖w2n−1‖p

≥ C̃p 2−n/p ‖w2n−1‖1 ‖w2n−1‖∞ ,
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where we have used Lemma 2.3. Note that

2−n/p ‖w2n−1‖1 ‖w2n−1‖∞ n→∞−→ ∞

for p > p0, and from Lemma 4.1 it follows that {wn(x − k)}n,k fails to be
a Schauder basis for such Lp(R).

Remark. Notice that the negative result of Lemma 4.2 is independent of
the ordering of the system {wn}. Thus, whenever a wavelet packet system
fails to be a Schauder basis due to this result we can be sure that the
reason is not that we have chosen the “wrong” ordering of the system.
Lemma 4.2 is coarse in the sense that it does not take into account the
interaction between different wavelet packets, and all we can say in the
case where α = 1 is such a wavelet packet system might be a Schauder
basis for Lp(R). One such example is the Walsh system.

We already have estimates of σ∞[S]. The following result takes care
of σ1[S],

Lemma 4.3. Let m1(ξ) be a finite high-pass filter with real coefficients
associated with a multiresolution analysis. Then

σ1[S] ≥
∣∣∣m1

(2π
3

)∣∣∣ .

Proof. Note that the set {−2π/3, 2π/3} is invariant under the transfor-
mation ξ −→ 2 ξ (mod 2π). Also,

∣∣∣m1

(2π
3

)∣∣∣ =
∣∣∣m1

(
− 2π

3

)∣∣∣
since m1 has real coefficients. Thus,

∣∣∣m1

(2π
3

)
· · ·m1

(
2n−1 2π

3

)∣∣∣ =
∣∣∣m1

(2π
3

)∣∣∣n .

Let ∑
k∈Z

cn
k eikξ = m1(ξ)m1(2 ξ) · · ·m1(2n−1 ξ) .

Then
∣∣∣m1

(2π
3

)∣∣∣n ≤ ‖m1(ξ) · · ·m1(2n−1 ξ)‖L∞[0,2π) ≤
∑
k∈Z

|cn
k | ,
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and the results follows from Lemma 2.1.

We have the following unfortunate result about the basic wavelet pack-
ets associated with one of the filters listed in Tables 1, 2, and 3,

Corollary 4.1. For each wavelet packet system {wn} associated with one
of the filters listed in Tables 1, 2, and 3 there exists a (finite) p0 > 2 such
that for p > p0, the system {wn(· − k)}n,k (in any ordering) fails to be a
Schauder basis of Lp(R).

Lower bounds for p0 can be found in Tables 1, 2, and 3.

5. Periodic wavelet packets.

We want to calculate the growth in Lp[0, 1)-norm of the periodic
wavelet packets associated with wavelet packet systems generated using
finite filters. The main result is Theorem 1.2 below, which we will prove
using the next lemma.

Lemma 5.1. Let {mk}k∈Z be a 2N -periodic sequence with

α = inf
k
|mk| > 0 .

Then the operator T , defined on L2[0, 1) by

T
( ∑

k∈Z

ake2πikx
)

=
∑
k∈Z

mk ak e2πikx ,

extends to an isomorphism on Lp[0, 1), 1 < p < ∞.

Proof. Define the operator AN : Lp[0, 1) −→ Lp[0, 1) by

AN (g)(x) :=
1

2N

2N−1∑
�=0

g
(
x − �

2N

)
,

where g is considered a 1-periodic function. It is clear that AN is bounded
on Lp[0, 1). We claim that T has the representation

Tf(x) =
2N−1∑
k=0

mk AN (fe−2πik·) e2πikx ,
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for every trigonometric polynomial f =
∑

n∈Z
an e2πinx. To see this we

notice that

AN (fe−2πk ·)(x) =
1

2N

2N−1∑
�=0

∑
n∈Z

an e2πi(n−k)x e−2πi(n−k)�/2N

=
∑
n∈Z

an e2πi(n−k)x
( 1

2N

2N−1∑
�=0

e−2πi(n−k)�/2N
)

=
∑

n∈k+2N Z

an e2πi(n−k)x ,

from which the claim follows at once. Hence, T is bounded on Lp[0, 1),
1 < p < ∞, and applying the same argument to the multiplier sequence
λk = 1/mk we get that T extends to an isomorphism on Lp[0, 1).

We can now prove Theorem 1.2.

Proof of Theorem 1.2. We have, using that m1(k π)=−(k mod 2),

˜w2n+N−L(x) =
∑
k∈Z

ŵ2N+n−L(2πk) e2πikx

=
∑
k∈Z

m1(πk)mε2

(πk

2

)
· · ·mεJ

( πk

2N

)
ŵ2n−1

(πk

2N

)
e2πikx

= −
∑
�∈Z

mε2

( (2 � + 1)π

2

)
· · ·mεJ

( (2 � + 1)π

2N

)

· ŵ2n−1

( (2� + 1)π

2N

)
e2πi2�x e2πix ,

where ε1, ε2, . . . , εJ are the first J bits of the binary expansion of 2n+N −L.
Note that ε1 = 1 since L is odd and ε2, . . . , εJ do not depend on n, only
on L. Thus,

‖ ˜w2n+N−L‖Lp[0,1)

=
∥∥∥∑

�∈Z

mε2

( (2 � + 1)π

2

)
· · ·mεJ

( (2 � + 1)π

2N

)

· ŵ2n−1

( (2 � + 1)π

2N

)
e2πi2�xe2πix

∥∥∥
Lp[0,1)
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=
∥∥∥∑

�∈Z

mε2

( (2 � + 1)π

2
) · · ·mεJ

( (2 � + 1)π

2N

)

· ŵ2n−1

( (2 � + 1)π

2N

)
e2πi2�x

∥∥∥
Lp[0,1)

=
∥∥∥∑

�∈Z

mε2

( (2 � + 1)π

2

)
· · ·mεJ

( (2 � + 1)π

2N

)

· ŵ2n−1

( (2 � + 1)π

2N

)
e2πi�x

∥∥∥
Lp[0,1)

.

Note that
{

mε2

( (2 � + 1)π

2

)
· · ·mεJ

( (2 � + 1)π

2N

))}
�∈Z

is a 2N -periodic sequence. Moreover, the sequence is non-vanishing (by
assumption). Hence, by Lemma 5.1 for 1 < p < ∞,

‖ ˜w2n+N−L‖p
Lp[0,1) 

∥∥∥ ∑
�∈Z

ŵ2n−1

( (2 � + 1)π

2N

)
e2πi�x

∥∥∥p

Lp[0,1)

= 2−N
∥∥∥ ∑

�∈Z

ŵ2n−1

(2 � π

2N
+

π

2N

)
e2πi2−N �x

∥∥∥p

Lp[0,2N )
.

However,

2−N
∑
�∈Z

ŵ2n−1

(2 � π

2N
+

π

2N

)
e2πi2−N �x

is just the Fourier series on [0, 2N ) of the function

g(x) =
∑
k∈Z

f(x − 2Nk) ,

where f(x) = w2n−1(x) e−i 2−N πx. Also, ‖g‖Lp[0,2N ) = ‖w2n−1‖Lp(R) since
diam supp (w2n−1) ≤ 2N . So we conclude that for 1 < p < ∞

‖ ˜w2n+N−L‖Lp[0,1)  ‖w2n−1‖Lp(R) ,

for n sufficiently large.

We now apply Theorem 1.2 to the wavelet packets of Section 3 to get
the following result.
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Corollary 5.1. Let {wn}n be a wavelet packet system generated using one
of the filters listed in Tables 1, 2, and 3. Fix L ∈ 2 Z+ + 1. Then there is
a p0 > 2 such that for p ≥ p0 there is a constant rp > 1 (depending on L)
such that

‖w̃2n−L‖Lp[0,1) ≥ Cp rn
p ,

for n large.

Proof. Follows at once from Corollary 3.1 and Theorem 1.2, since the
combined zero-set of the filters m0 and m1 is π Z, and (2 � + 1)/2j �∈ Z for
j ≥ 1.

Corollary 5.1 can also be used to extend Corollary 3.1 to a larger
index set. The following result emphasizes that it is the high-pass filter
(m1) that causes the growth in Lp-norm of the wavelet packets.

Corollary 5.2. Let {wn}n be a wavelet packet system generated using one
of the filters listed in Tables 1, 2, and 3. Fix L ∈ 2 Z+ + 1. Then there is
a p0 > 2 such that for p ≥ p0 there is a constant rp > 1 (depending on L)
such that

‖w2n−L‖Lp(R) ≥ Cp rn
p ,

for n large.

Proof. Follows at once from Corollary 5.1, Minkowski’s inequality, and
the fact that the wavelet packets all have support contained in some fixed
interval.

We proved in the previous section that compactly supported wave-
let packets may fail to be Schauder bases for the Lp(R)-spaces. We show
in this section that a similar (unfortunate) result holds true for periodic
wavelet packets. The failure is due to the following analog of Lemma 4.1.

Lemma 5.2. If {w̃n}∞n=0 is a Schauder basis for Lp[0, 1), 1 < p < ∞,
then there exists a finite constant Cp such that

(4) ‖w̃n‖Lp[0,1) ‖w̃n‖Lp′
[0,1) ≤ Cp , n = 0, 1, . . .

Proof. Same as for Lemma 4.1.

We now use Theorem 1.2 and Lemma 5.2 to obtain the following result.
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Corollary 5.3. Let {wn}n be a wavelet packet system generated using one
of the filters listed in Tables 1, 2, and 3. Then there is a p0 > 2 such that
for p ≥ p0 the periodic wavelet packet system {w̃n}n (in any ordering) fails
to be a Schauder basis for Lp[0, 1).

Proof. Choose p0 such that

sup
n

‖w2n−1‖p′ ‖w2n−1‖p = ∞ ,

for each p ≥ p0. Fix p ≥ p0. By Theorem 1.2, there is a constant cp ∈
(0,∞) and an integer N such that

‖ ˜w2n+N−1‖Lp′ [0,1) ‖ ˜w2n+N−1‖Lp[0,1) ≥ cp‖w2n−1‖p′ ‖w2n−1‖p .

Hence,
sup

j
‖w̃2j−1‖Lp′ [0,1) ‖w̃2j−1‖Lp[0,1) = ∞ .

The result then follows from Lemma 5.2.
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