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Abstract

We prove existence and uniqueness of solutions for the Dirich-
let problem for quasilinear parabolic equations in divergent form for
which the energy functional has linear growth. A typical example of
energy functional we consider is the one given by the nonparamet-
ric area integrand f(x, ξ) =

√
1 + ‖ξ‖2, which corresponds with the

time-dependent minimal surface equation. We also study the asymp-
totic behaviour of the solutions.

1. Introduction and preliminaries

Let Ω be a bounded set in R
N with Lipschitz continuous boundary ∂Ω. We

are interested in the problem

(1.1)




∂u

∂t
= div a(x,Du) in Q = (0,∞) × Ω ,

u(t, x) = ϕ(x) on S = (0,∞) × ∂Ω ,

u(0, x) = u0(x) in x ∈ Ω ,

where u0 ∈ L2(Ω) and a(x, ξ) = ∇ξf(x, ξ), f being a function with linear
growth as ‖ξ‖ → ∞.

A typical example of a function f(x, ξ) satisfying the conditions we need
is the nonparametric area integrand f(x, ξ) =

√
1 + ‖ξ‖2. Problem (1.1)

for this particular f , that is, the time-dependent minimal surface equation,
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has been studied in [12] and [17]. Another examples of problems of type
(1.1) included in our case, are the following: The evolution problem for
plastic antiplanar shear, studied in [21], which corresponds to the plasticity
functional f given by

f(ξ) =




1
2
‖ξ‖2 if ‖ξ‖ ≤ 1 ,

‖ξ‖ − 1
2

if ‖ξ‖ ≥ 1 ,

and the evolution problems associated with the Lagrangians:

f(x, ξ) =
√

1 + aij(x)ξiξj ,

where the functions aij are continuous and satisfy aij(x) = aji(x), ‖ξ‖2 ≤
aij(x)ξiξj ≤ C‖ξ‖2 for all ξ ∈ R

N ; and the Lagrangian

g(x, ξ) =
√

1 + x2 + ‖ξ‖2 ,

which was considered by S. Bernstein ([8]). On the other hand, problem
(1.1) is studied in [14] for some Lagrangians f , which do not include the
nonparametric area integrand, but instead include the plasticity functional
and the total variation flow, that is, the case f(ξ) = ‖ξ‖. Now, the concept of
solution given in [14] is the one obtained by considering the abstract Cauchy
problem in L2(Ω) associated to the relaxed energy, but the subdifferential
of the energy functional is not characterized. For the particular case of
the total variation flow, we give in [4] a different approach to the Dirichlet
problem. There, we studied the problem in the framework of the L1- theory,
and we characterized the subdifferential in L2(Ω) of its relaxed energy (we
refer also to [3] where we treated the L1-theory for the Neumann problem
for the total variational flow).

In general, problem (1.1) does not have a classical solution. The aim
of this paper is to introduce a concept of solution of the Dirichlet problem
(1.1), for which existence and uniqueness for initial data in L2(Ω) is proved.
To do that we characterize the subdifferential of the energy associated with
the problem and we use the nonlinear semigroup theory. In a forthcoming
paper we will study the same problem in the framework of the L1-theory, as
we did with the Dirichlet problem for the total variational flow ([4]).

In order to consider the relaxed energy we recall the definition of func-
tion of measure (see for instance, [6] or [12]). Let g : Ω × R

N → R be a
Carathéodory function such that

(1.2) |g(x, ξ)| ≤ M(1 + ‖ξ‖) ∀ (x, ξ) ∈ Ω × R
N ,
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for some constant M ≥ 0. Furthermore, we assume that g possesses an
asymptotic function, i.e. for almost all x ∈ Ω there exists the finite limit

(1.3) lim
t→0+

tg

(
x,

ξ

t

)
= g0(x, ξ).

It is clear that the function g0(x, ξ) is positively homogeneous of degree one
in ξ, i.e.

g0(x, sξ) = sg0(x, ξ) for all x, ξ and s > 0.

We denote by M(Ω, RN) the set of all R
N -valued bounded Radon measures

on Ω. Given µ ∈ M(Ω, RN), we consider its Lebesgue decomposition

µ = µa + µs,

where µa is the absolutely continuous part of µ with respect to the Lebesgue
measure λN of R

N , and µs is singular with respect to λN . We denote by
µa(x) the density of the measure µa with respect to λN and by (dµs/d|µ|s)(x)
the density of µs with respect to |µ|s.

Given µ ∈ M(Ω, RN), we define µ̃ ∈ M(Ω, RN+1) by

µ̃(B) :=
(
µ(B), λN(B)

)
,

for every Borel set B ⊂ R
N . Then, we have

µ̃ = µ̃a + µ̃s = µ̃a(x)λN + µ̃s = (µa(x),1)λN + (µs, 0).

Hence, we have

|µ̃s| = |µs|, dµ̃s

d|µ̃s| =

(
dµs

d|µs| , 0
)

|µs| − a.e.

For µ ∈ M(Ω, RN) and g satisfying the above conditions, we define the
measure g(x, µ) on Ω as

(1.4)

∫
B

g(x, µ) :=

∫
B

g(x, µa(x)) dx +

∫
B

g0

(
x,

dµs

d|µ|s (x)

)
d|µ|s

for all Borel set B ⊂ Ω. In formula (1.4) we may write (dµ/d|µ|)(x) instead
of (dµs/d|µ|s)(x), because the two functions are equal |µ|s-a.e.

Another way of writing the measure g(x, µ) is the following. Let us
consider the function g̃ : Ω × R

N × [0, +∞[−→ R defined as

(1.5) g̃(x, ξ, t) :=




g
(
x,

ξ

t

)
t if t > 0,

g0(x, ξ) if t = 0.
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As it is proved in [6], if g is a Carathéodory function satisfying (1.2), then
one has

(1.6)

∫
B

g(x, µ) =

∫
B

g̃

(
x,

dµ

dα
(x),

dλN

dα
(x)

)
dα ,

where α is any positive Borel measure such that |µ| + λN 
 α.

Due to the linear growth condition on the Lagrangian, the natural energy
space to study (1.1) is the space of functions of bounded variation. Let us
recall several facts concerning functions of bounded variation (for further
information concerning functions of bounded variation we refer to [13], [22]
or [2]).

A function u ∈ L1(Ω) whose partial derivatives in the sense of distri-
butions are measures with finite total variation in Ω is called a function of
bounded variation. The class of such functions will be denoted by BV (Ω).
Thus u ∈ BV (Ω) if and only if there are Radon measures µ1, . . . , µN defined
in Ω with finite total mass in Ω and

(1.7)

∫
Ω

uDiϕdx = −
∫

Ω

ϕdµi

for all ϕ ∈ C∞
0 (Ω), i = 1, . . . , N . Thus the gradient of u is a vector valued

measure with finite total variation
(1.8)

‖ Du ‖= sup
{∫

Ω

u div ϕ dx : ϕ ∈ C∞
0 (Ω, RN), |ϕ(x)| ≤ 1 for x ∈ Ω

}
.

The space BV (Ω) is endowed with the norm

(1.9) ‖ u ‖BV =‖ u ‖L1(Ω) + ‖ Du ‖ .

For u ∈ BV (Ω), the gradient Du is a Radon measure that decomposes into
its absolutely continuous and singular parts Du = Dau+Dsu. Then Dau =
∇u λN where ∇u is the Radon-Nikodym derivative of the measure Du with
respect to the Lebesgue measure λN . There is also the polar decomposition

Dsu =
−−→
Dsu|Dsu| where |Dsu| is the total variation measure of Dsu.

We shall need several results from [5] (see also [16]). Following [5], let

(1.10) X(Ω) = {z ∈ L∞(Ω, RN) : div(z) ∈ L1(Ω)}.
If z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω) we define the functional (z,Dw) :
C∞

0 (Ω) → R by the formula

(1.11) < (z,Dw), ϕ >= −
∫

Ω

w ϕdiv(z) dx −
∫

Ω

w z · ∇ϕdx.
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Then (z,Dw) is a Radon measure in Ω,

(1.12)

∫
Ω

(z,Dw) =

∫
Ω

z · ∇w dx ∀ w ∈ W 1,1(Ω) ∩ L∞(Ω)

and

(1.13)

∣∣∣∣
∫

B

(z,Dw)

∣∣∣∣ ≤
∫

B

|(z,Dw)| ≤ ‖z‖∞
∫

B

‖Dw‖

for any Borel set B ⊆ Ω. Moreover, (z,Dw) is absolutely continuous with
respect to ‖Dw‖ with Radon-Nikodym derivative θ(z,Dw, x) which is a
‖Dw‖ measurable function from Ω to R such that

(1.14)

∫
B

(z,Dw) =

∫
B

θ(z,Dw, x)‖Dw‖

for any Borel set B ⊆ Ω. We also have that

(1.15) ‖θ(z,Dw, .)‖L∞(Ω,‖Dw‖) ≤ ‖z‖L∞(Ω,RN ).

By writing
z · Dsu := (z,Du) − (z · ∇u) dλN ,

we see that z · Dsu is a bounded measure. Furthermore, in [16] it is proved
that z · Dsu is absolutely continuous with respect to |Dsu| (and, thus, it is
a singular measure with respect to λN), and

(1.16) |z · Dsu| ≤ ‖z‖∞|Dsu|.
As a consequence of Theorem 2.4 of [5], we have:

(1.17) If z ∈ X(Ω) ∩ C(Ω, RN), then z · Dsu = (z · −−→Dsu) d|Dsu|.

In [5], a weak trace on ∂Ω of the normal component of z ∈ X(Ω) is
defined. Concretely, it is proved that there exists a linear operator γ :
X(Ω) → L∞(∂Ω) such that

‖γ(z)‖∞ ≤ ‖z‖∞
γ(z)(x) = z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1(Ω, RN).

We shall denote γ(z)(x) by [z, ν](x). Moreover, the following Green’s for-
mula, relating the function [z, ν] and the measure (z,Dw), for z ∈ X(Ω)
and w ∈ BV (Ω) ∩ L∞(Ω), is established:

(1.18)

∫
Ω

w div(z) dx +

∫
Ω

(z,Dw) =

∫
∂Ω

[z, ν]w dHN−1.
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Let g be a function satisfying (1.2). Then for every u ∈ BV (Ω) we have
the measure g(x,Du) defined by∫

B

g(x,Du) =

∫
B

g(x,∇u(x)) dx +

∫
B

g0(x,
−−→
Dsu(x)) d|Dsu|

for all Borel set B ⊂ Ω. If we assume that Ω has a Lipschitz boundary, and
that g(x, ξ) is defined also for x ∈ ∂Ω, we may consider the functional G in
BV (Ω) defined by

(1.19) G(u) :=

∫
Ω

g(x,Du) +

∫
∂Ω

g0
(
x, ν(x)[ϕ(x) − u(x)]

)
dHN−1,

where ϕ ∈ L1(∂Ω) is a given function and ν is the outer unit normal to ∂Ω.
It is proved in [6] that, if g̃(x, ξ, t) is continuous on Ω × R

N × [0, +∞[ and
convex in (ξ, t) for each fixed x ∈ Ω, then G is the greatest functional on
BV (Ω) which is lower-semicontinuous with respect to the L1(Ω)-convergence
and satisfies

G(u) ≤
∫

Ω

g(x,∇u(x)) dx

for all functions u ∈ C1(Ω) ∩ W 1,1(Ω) with u = ϕ on ∂Ω.

The paper is organized as follows: in Section 2 we give the definition of
solution for the Dirichlet problem and we state the existence and uniqueness
result for this type of solutions. Section 3 is devoted to prove the existence
and uniqueness result. To do that, we study the problem from the point
of view of nonlinear semigroup theory. We characterize the subdifferential
in L2(Ω) of the relaxed energy functional associated with the problem. In
Section 4 we give a weakened form of the maximum principle and we study
the asymptotic behaviour of solutions proving that they stabilize as t→∞ by
converging to a solution of the steady-state problem. Finally, the Appendix
contains the proof of the approximation Lemma stated in Section 3.

2. The existence and uniqueness result

In this section we define the concept of solution for the Dirichlet problem
(1.1) and we state the existence and uniqueness result for this type of solu-
tions when the initial data are in L2(Ω).

Here we assume that Ω is an open bounded set in R
N , N ≥ 2, with

boundary ∂Ω of class C1, and the Lagrangian f : Ω × R
N → R satisfies the

following assumptions, which we shall refer collectively as (H):
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(H1) f is continuous on Ω × R
N and is a convex diffentiable function of ξ

with continuous gradient for each fixed x ∈ Ω. Further we require f
to satisfy the linear growth condition

(2.1) C0‖ξ‖ − C1 ≤ f(x, ξ) ≤ M(‖ξ‖ + C2).

for some positive constants C0, C1, C2. Moreover, f 0 exists and
f 0(x,−ξ) = f 0(x, ξ) for all ξ ∈ R

N and all x ∈ Ω.

(H2) f̃(x, ξ, t) is continuous on Ω × R
N × [0, +∞[ and convex in (ξ, t) for

each fixed x ∈ Ω.

We consider the function a(x, ξ) = ∇ξf(x, ξ) associated to the Lagrangian
f . By the convexity of f

(2.2) a(x, ξ) · (η − ξ) ≤ f(x, η) − f(x, ξ),

and the following monotonicity condition is satisfied

(2.3) (a(x, η) − a(x, ξ)) · (η − ξ) ≥ 0.

Moreover, it is easy to see that

(2.4) |a(x, ξ)| ≤ M ∀ (x, ξ) ∈ Ω × R
N .

We consider the function h : Ω × R
N → R defined by

h(x, ξ) := a(x, ξ) · ξ.
From (2.2) and (2.1), it follows that

(2.5) C0‖ξ‖ − D1 ≤ h(x, ξ) ≤ M‖ξ‖
for some positive constant D1.

We assume that

(H3) h(x, ξ) ≥ 0 for all x ∈ Ω and ξ ∈ R
N , h0 exists and the function h̃ is

continuous on Ω × R
N × [0, +∞[.

We need to consider the mapping a∞ defined by

a∞(x, ξ) := lim
t→+∞

a(x, tξ).

Observe that

h0(x, ξ) = a∞(x, ξ) · ξ and C0‖ξ‖ ≤ h0(x, ξ) ≤ M‖ξ‖.
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(H4) a∞(x, ξ) = ∇ξf
0(x, ξ) for all ξ = 0 and all x ∈ Ω.

In particular, as a consequence of Euler’s Theorem, we have

f 0(x, ξ) = a∞(x, ξ) · ξ = h0(x, ξ),

for all ξ ∈ R
N and all x ∈ Ω.

(H5) a(x, ξ) · η ≤ h0(x, η) for all ξ, η ∈ R
N , and all x ∈ Ω.

Either from (H4) or (H5) it follows that a∞(x, ξ) · η ≤ h0(x, η) for all ξ, η ∈
R

N , ξ = 0, and all x ∈ Ω. Indeed, it suffices to replace ξ by tξ in (H5) and
let t → +∞.

Definition 2.1 Let ϕ ∈ L1(∂Ω) and u0 ∈ L2(Ω). A measurable function u :
(0, T )×Ω → R is a solution of (1.1) in QT = (0, T )×Ω if u ∈ C([0, T ], L2(Ω)),
u(0) = u0, u′(t) ∈ L2(Ω), u(t) ∈ BV (Ω) ∩ L2(Ω), a(x,∇u(t)) ∈ X(Ω) a.e.
t ∈ [0, T ], and for almost all t ∈ [0, T ] u(t) satisfies:

(2.6) u′(t) = div(a(x,∇u(t)) in D′(Ω)

(2.7) a(x,∇u(t)) · Dsu(t) = f 0(x,Dsu(t))

(2.8) [a(x,∇u(t)), ν] ∈ sign(ϕ − u(t))f 0(x, ν(x)) HN−1 − a.e. on ∂Ω.

Our main result is the following:

Theorem 2.2 Let ϕ ∈ L1(∂Ω) and assume we are under assumptions (H).
Given u0 ∈ L2(Ω), there exists a unique solution u of (1.1) in QT for every
T > 0 such that u(0) = u0.

3. Strong solution for data in L2(Ω)

To prove Theorem 2.2 we shall use the nonlinear semigroup theory ([9]). For
ϕ ∈ L1(∂Ω) we define the energy functional associated with the problem
(1.1) Φϕ : L2(Ω) → [0, +∞] by

Φϕ(u) :=

∫
Ω

f(x,Du) +

∫
∂Ω

f 0(x, ν(x)[ϕ − u]) dHN−1

if u ∈ BV (Ω) ∩ L2(Ω) and

Φϕ(u) := +∞ if u ∈ L2(Ω) \ BV (Ω).
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Note that, on the boundary, the integrand can be written in the form

f 0(x, ν(x)[ϕ − u]) = |ϕ − u|f 0(x, ν(x)).

Functional Φϕ is clearly convex and has the form given in (1.19). Then,
as a consequence of the Anzellotti’s result ([6]) we have that Φϕ is lower-
semicontinuous. Therefore, the subdifferential ∂Φϕ of Φϕ, i.e. the operator
in L2(Ω) defined by

v ∈ ∂Φϕ(u) ⇐⇒ Φϕ(w) − Φϕ(u) ≥
∫

Ω

v(w − u) dx, ∀ w ∈ L2(Ω)

is a maximal monotone operator in L2(Ω). Consequently, the existence and
uniqueness of a solution of the abstract Cauchy problem

(3.1)

{
u′(t) + ∂Φϕ(u(t)) � 0 t ∈]0,∞[

u(0) = u0 u0 ∈ L2(Ω)

follows immediately from the nonlinear semigroup theory (see [9]). Now, to
get the full strength of the abstract result derived from semigroup theory
we need to characterize ∂Φϕ. To get this characterization, we introduce the
following operator Bϕ in L2(Ω). (u, v) ∈ Bϕ ⇐⇒ u ∈ BV (Ω) ∩ L2(Ω),
v ∈ L2(Ω) and a(x,∇u) ∈ X(Ω) satisfies:

(3.2) −v = div a(x,∇u) in D′(Ω)

(3.3) a(x,∇u) · Dsu = f 0(x,Dsu) = f 0(x,
−−→
Dsu)|Dsu|,

(3.4) [a(x,∇u), ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e..

Let (u, v) ∈ Bϕ, and w ∈ BV (Ω) ∩ L2(Ω). Multiplying (3.2) by w − u,
and using Green’s formula (1.18), we obtain∫

Ω

(w − u)vdx = −
∫

Ω

(w − u) div a(x,∇u) dx =

∫
Ω

(a(x,∇u), Dw − Du) −
∫

∂Ω

[a(x,∇u), ν](w − u) dHN−1 =

=

∫
Ω

(a(x,∇u), Dw) −
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

(a(x,∇u), Du) −
∫

∂Ω

[a(x,∇u), ν](ϕ − u) dHN−1 =
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=

∫
Ω

(a(x,∇u), Dw) −
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

a(x,∇u) ·∇u dx−
∫

Ω

a(x,∇u) ·Dsu−
∫

∂Ω

|ϕ−u|f 0(x, ν(x)) dHN−1 =

=

∫
Ω

(a(x,∇u), Dw) −
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

h(x,Du) −
∫

∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1.

Therefore, if (u, v) ∈ Bϕ, we have that

(3.5)∫
Ω

(w−u)v dx =

∫
Ω

(a(x,∇u), Dw) −
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1

−
∫

Ω

h(x,Du) −
∫

∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1,

for all w ∈ BV (Ω) ∩ L2(Ω).

Theorem 3.1 Let ϕ ∈ L1(∂Ω). Assume we are under assumptions (H),
then the operator ∂Φϕ has dense domain in L2(Ω) and

∂Φϕ = Bϕ.

We note that, in the particular case of the nonparametric area integrand
f(x, ξ) =

√
1 + ‖ξ‖2, the characterization of the subdifferential of Φϕ given

in Theorem 3.1 coincides with the one given by F. Demengel and R. Temam
in [12], Theorem 3.1, where they used a different approach. More precisely,
they characterized the subdifferential by means of the duality method of con-
vex optimization introduced by R. T. Rockafellar in [19]. To prove Theorem
3.1 we need the following proposition.

Proposition 3.2 Let ϕ ∈ L1(∂Ω). Assume we are under assumptions (H),
then L∞(Ω) ⊂ R(I + Bϕ) and D(Bϕ) is dense in L2(Ω).

We need to introduce the following sequence of auxiliar operators. For
ϕ ∈ W

1
2
,2(Ω), let

W 1,2
ϕ (Ω) := {u ∈ W 1,2(Ω) : u|∂Ω = ϕ HN−1 − a.e.}.

For every n ∈ N, consider an(x, ξ) := a(x, ξ) + ξ/n. We define the operator
An,ϕ in L2(Ω):

(u, v) ∈ An,ϕ ⇐⇒ u ∈ W 1,2
ϕ (Ω) ∩ L∞(Ω), v ∈ L2(Ω), and
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∫
Ω

(w − u)v dx ≤
∫

Ω

an(x,∇u) · ∇(w − u) dx ∀ w ∈ W 1,2
ϕ (Ω).

A similar proof to the one given in Proposition 1 of [4] give us the following
result.

Lemma 3.3 Let ϕ ∈ W
1
2
,2(∂Ω) ∩ L∞(∂Ω). Then for every n ∈ N the

operator An,ϕ satisfies

L∞(Ω) ⊂ R(I + An,ϕ).

We also need an approximation lemma similar to the one given by Anzellotti
in [7]. The proof of this lemma will be given in the Appendix.

Lemma 3.4 Let Ω be an open bounded set in R
N , N ≥ 2, and assume that

∂Ω is of class C1. If v, u ∈ BV (Ω) and g ∈ L1(∂Ω), then there exists a
sequence of functions vj ∈ C1(Ω) such that

vj → g in L1(∂Ω),(3.6)

vj → v in LN/(N−1)(Ω),(3.7)∫
Ω

√
1 + |∇vj(x)|2dx →

∫
Ω

√
1 + |Dv(x)|2dx +

∫
∂Ω

|g − v|dHN−1 ,(3.8)

∇vj(x) → ∇v(x) λN -a.e. in Ω ,(3.9)

|∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
Dv(x)

|Dv(x)| |Dv|s a.e. in Ω,(3.10)

|∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
Du(x)

|Du(x)| |Du|ss a.e. in Ω,(3.11)

where |Du|ss denotes the part of the singular measure |Du|s which is singular
with respect to |Dv|s,

(3.12) |∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
g(x) − v(x)

|g(x) − v(x)|ν(x)

HN−1 a.e. in {x ∈ Ω : g(x) = v(x)}

(3.13) |∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
v(x) − u(x)

|v(x) − u(x)|ν(x)

HN−1 a.e. in {x ∈ Ω : g(x) = v(x), u(x) = v(x)}
The next Lemmas will be used to prove Theorem 3.1 and Proposition 3.2.
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Lemma 3.5 Let ϕ, ϕn ∈ L1(∂Ω), ϕn → ϕ in L1(∂Ω). Let un, u ∈ BV (Ω)
and z ∈ X(Ω) with div(z) ∈ L2(Ω). We assume that

Φϕ(un) → Φϕ(u),(3.14)

a(x,∇un) ⇀ z weakly∗ in L∞(Ω),(3.15)

|[z, ν(x)]| ≤ f 0(x, ν(x)) a.e. in ∂Ω,(3.16)

|z · Dsu| ≤ f 0(x,Dsu) as measures in Ω,(3.17)

lim
n→∞

∫
Ω

h(x,Dun) +

∫
∂Ω

|un − ϕn|f 0(x, ν(x)) dHN−1 =

=

∫
Ω

h(x,Du) +

∫
∂Ω

|u − ϕ| f 0(x, ν(x)) dHN−1.
(3.18)

∫
Ω

h(x,Du) +

∫
∂Ω

|u − ϕ| f 0(x, ν(x)) dHN−1

≤
∫

Ω

(z,Du) +

∫
∂Ω

[z, ν](ϕ − u) dHN−1.

(3.19)

Then ∫
Ω

z · ∇u dx =

∫
Ω

h(x,∇u) dx =

∫
Ω

a(x,∇u) · ∇u dx ,(3.20)

z · Dsu = f 0(x,Dsu) ,(3.21)

[z, ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e.(3.22)

Proof. By the convexity of f , we have∫
Ω

a(x,∇un) · ∇u dx ≤

≤
∫

Ω

a(x,∇un) · ∇un dx +

∫
Ω

f(x,∇u) dx −
∫

Ω

f(x,∇un) dx

≤
∫

Ω

a(x,∇un) · ∇un dx +

∫
Ω

f 0(x,Dsun) +

∫
∂Ω

|un − ϕn|f 0(x, ν(x))dHN−1

+

∫
∂Ω

|ϕn − ϕ|f 0(x, ν(x)) dHN−1 +

∫
Ω

f(x,∇u) dx

−
( ∫

Ω

f(x,∇un) dx +

∫
Ω

f 0(x,Dsun) +

∫
∂Ω

|un − ϕ|f 0(x, ν(x))

)

=

∫
Ω

h(x,Dun) dx +

∫
∂Ω

|un − ϕn|f 0(x, ν(x)) dHN−1

+

∫
∂Ω

|ϕn − ϕ|f 0(x, ν(x)) dHN−1 +

∫
Ω

f(x,∇u) dx − Φϕ(un).
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Letting n → ∞, and using (3.14), (3.15) and (3.18), we obtain∫
Ω

z · ∇u dx ≤

≤
∫

Ω

h(x,Du) +

∫
∂Ω

|u − ϕ|f 0(x, ν(x))dHN−1 +

∫
Ω

f(x,∇u)dx −Φϕ(u)

=

∫
Ω

a(x,∇u) · ∇u dx.

Now, since, using (3.16) and (3.17), we have

|[z, ν](ϕ − u)| ≤ |u − ϕ|f 0(x, ν(x)),

and
|z · Dsu| ≤ f 0(x,Dsu).

Hence from (3.19), we obtain (3.20), (3.21) and (3.22). �

Lemma 3.6 i) Let un ∈ BV (Ω) ∩ L2(Ω) and z ∈ X(Ω). Suppose that

(3.23) a(x,∇un) ⇀ z weakly∗ in L∞(Ω, RN)

and

(3.24) div (a(x,∇un)) ⇀ div z weakly in L2(Ω).

Then

(3.25) [a(x,∇un), ν(x)] ⇀ [z, ν(x)] weakly in L2(∂Ω) and

(3.26) |z(x) · ν(x)| ≤ f 0(x, ν(x)) a.e. in ∂Ω.

ii) Let un ∈ W 1,2(Ω). Let an(x, ξ) = a(x, ξ) + ξ/n. Suppose that

(3.27) ‖un‖2 is bounded in L2(Ω),

(3.28)
1

n
|∇un| → 0 in L2(Ω),

(3.29) an(x,∇un) ⇀ z weakly in L2(Ω, RN)

and

(3.30) div (an(x,∇un)) ⇀ div z weakly in L2(Ω).

Then

(3.31) [an(x,∇un), ν(x)] ⇀ [z, ν(x)] weakly in W 1/2,2(∂Ω)∗ and

(3.32) |[z(x), ν(x)]| ≤ f 0(x, ν(x)) a.e. in ∂Ω.
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Proof. Since both proofs are based on similar arguments, we shall only
prove ii). Observe that, if σ ∈ L2(Ω, RN) and div(σ) ∈ L2(Ω), we can define
[σ, ν] using the integration by parts formula

(3.33)

∫
∂Ω

[σ, ν]ψ =

∫
Ω

div(σ)ψ +

∫
Ω

σ · ∇ψ.

for all ψ ∈ W 1,2(Ω). This is consistent with the classical notion of trace at
the boundary and it defines [σ, ν] as an element of W 1/2,2(∂Ω)∗. According
to the assumptions (3.29), (3.30) we have that [an(x,∇un), ν(x)] → [z, ν(x)]
weakly in W 1/2,2(∂Ω)∗. In i), the analogous conclusion (3.25) follows from
the results in [5] and the fact that a(x,∇un) is uniformly bounded in L∞(Ω).
In this case, the traces [a(x,∇un), ν(x)] are in L∞(∂Ω).

To prove (3.32), again, we observe that [16] if σ ∈ L2(Ω, RN) and
div(σ) ∈ L2(Ω), then there is a sequence σk ∈ C∞(Ω, RN) satisfying

σk → σ in L2(Ω, RN),(3.34)

div σk → div σ in L2(Ω).(3.35)

We recall the construction in [16]. We use a partition of unity θj, j =
1, 2, ...p, in Ω with 0 ≤ θj ≤ 1, θj ∈ C∞

0 (RN), such that if the support of
θj intersects ∂Ω, then for some bounded open cone Kj with vertex 0, every
x ∈ ∂Ω ∩ supp(θj) satisfies (x + Kj) ∩ Ω = ∅, and for some r > 0, every
x ∈ ∂Ω ∩ (supp(θj) + B(0, r)) satisfies (x − Kj) ⊂ Ω. For each j, we choose
ρj ∈ C∞

0 (RN), 0 ≤ ρj ≤ 1, with
∫

RN ρj dx = 1, and let ρj,k(x) = kNρj(kx).
If j is such that the support of θj intersects ∂Ω, we choose ρj such that
supp(ρj) ⊆ Kj. Then we define

σk =

p∑
j=1

ρj,k ∗ (θj σ χΩ).

As it was proved in [16], σk satisfies (3.34) and (3.35). As in the first part
of the proof, we have that∫

∂Ω

[σk, ν]ψ →
∫

∂Ω

[σ, ν]ψ

for all ψ ∈ W 1,2(Ω). We shall use this observation for σ = an(x,∇un).
Previously, we extend un as a function in W 1,2(RN) such that ‖un‖W 1,2(RN ) ≤
C‖un‖W 1,2(Ω) for some constant C > 0 depending only on Ω ([1]). Then we
define

an,k(x,∇un) =

p∑
j=1

ρj,k ∗
(
θja(x,∇un)χΩ + θj

∇un

n

)
.
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Now, since an,k(x,∇un) ∈ C∞(Ω), [an,k(x,∇un), ν(x)] can be understood in
a classical sense. Let ψ ∈ W 1/2,2(∂Ω). We may write

∫
∂Ω

[an,k(x,∇un), ν(x)]ψ =

p∑
j=1

∫
∂Ω

[ρj,k ∗ (θja(x,∇un)χΩ), ν(x)]ψ(x)+

+

p∑
j=1

1

n

∫
∂Ω

[ρj,k ∗ (θj∇un), ν(x)]ψ(x).

By taking k sufficiently large, we may assume that all θj used in the above
expression are such that supp(θj) intersects ∂Ω. We observe that∫

∂Ω

|[ρj,k ∗ (θja(x,∇un)χΩ), ν(x)]||ψ(x)| ≤

≤
∫

∂Ω

∫
Ω

ρj,k(x − y) θj(y)
∣∣a(y,∇un(y)) · ν(x)

∣∣ |ψ(x)| dy dx

≤
∫

∂Ω

∫
Ω

ρj,k(x − y) θj(y) f 0(y, ν(x)) |ψ(x)| dy dx.

Since

∇unθj = ∇(unθj) − un∇θj,

we may write∫
∂Ω

[ρj,k ∗ (θj∇un), ν(x)]ψ(x) =

=

∫
∂Ω

[∇ρj,k ∗ (θjun), ν(x)]ψ(x) −
∫

∂Ω

[ρj,k ∗ (∇θjun), ν(x)]ψ(x).

We estimate both integrals in the right hand side of the above expression.
First,∣∣∣∣

∫
∂Ω

[∇ρj,k ∗ (θjun), ν(x)]ψ(x)

∣∣∣∣ ≤
≤

∥∥∥∥ ∂

∂ν

(
ρj,k ∗ (unθj)

) ∥∥∥∥
W 1/2,2(∂Ω)∗

‖ψ‖W 1/2,2(∂Ω)

≤C‖ρj,k ∗ (unθj)‖W 1,2(Ω) ‖ψ‖W 1/2,2(∂Ω)

≤C‖ρj,k ∗ (unθj)‖W 1,2(RN )‖ψ‖W 1/2,2(∂Ω)

≤C‖unθj‖W 1,2(RN )‖ψ‖W 1/2,2(∂Ω) ≤ C‖un‖W 1,2(RN )‖ψ‖W 1/2,2(∂Ω)

≤C‖un‖W 1,2(Ω)‖ψ‖W 1,2(Ω)
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for some constant C > 0 (which may change from line to line). A similar
analysis proves that∣∣∣∣

∫
∂Ω

[ρj,k ∗ (∇θjun), ν(x)]ψ(x)

∣∣∣∣ ≤ C‖un‖W 1,2(Ω)‖ψ‖W 1,2(Ω)

for some constant C > 0. Taking all the above into account, we obtain∣∣∣∣
∫

∂Ω

[an,k(x,∇un), ν(x)] ψ

∣∣∣∣ ≤
≤

p∑
j=1

∫
∂Ω

∫
Ω

ρj,k(x − y) θj(y) f 0(y, ν(x)) |ψ(x)| dy dx

+
C

n
‖un‖W 1,2(Ω) ‖ψ‖W 1,2(Ω).

Letting k → ∞, and taking into account the fact that θj is a partition of
unity in Ω and our assumptions on θj and Kj, we obtain

∣∣∣∣
∫

∂Ω

[an(x,∇un), ν(x)] ψ

∣∣∣∣ ≤
∫

∂Ω

f 0(x, ν(x)) |ψ(x)| dx+
C

n
‖un‖W 1,2(Ω) ‖ψ‖W 1,2(Ω)

Now, letting n → ∞, and using (3.27), (3.28), we obtain

(3.36)

∣∣∣∣
∫

∂Ω

[z, ν(x)] ψ

∣∣∣∣ ≤
∫

∂Ω

f 0(x, ν(x)) |ψ(x)| dx,

for all ψ ∈ W 1,2(Ω). Now, since z ∈ L∞(Ω) and div(z) ∈ L2(Ω), [z, ν]
coincides with the trace given in the sense of Anzellotti ([5]), and, therefore,
[z, ν] ∈ L∞(∂Ω). Hence, from (3.36), we conclude that |[z(x), ν(x)]| ≤
f 0(x, ν(x)). �

Lemma 3.7 Suppose that any of the assumptions of Lemma 3.6 hold. More-
over we assume that

un → u in L2(Ω), ‖un‖BV is bounded

and a(x,∇un) · Dsun = f 0(x,Dsun)
(3.37)

Then

(3.38) z(x) = a(x,∇u(x)) a.e. x ∈ Ω.
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Proof. Again, since both proofs are based on similar arguments, we shall
only prove (3.38) under the assumptions given in i) of Lemma 3.6. Let
0 ≤ φ ∈ C1

0(Ω) and g ∈ C1(Ω). We observe that∫
Ω

φ[(a(x,∇un), D(un − g)) − a(x,∇g)D(un − g)] =

=

∫
Ω

φ[a(x,∇un) − a(x,∇g)) · ∇(un − g)] dx

+

∫
Ω

φ[a(x,∇un) − a(x,∇g)] · Ds(un − g)).

Since both terms at the right hand side of the above expression are positive,
we have ∫

Ω

φ[(a(x,∇un), D(un − g)) − a(x,∇g)D(un − g)] ≥ 0.

Since∫
Ω

φ(a(x,∇un), D(un − g)) =

= −
∫

Ω

div(a(x,∇un))φ(un − g) dx −
∫

Ω

(un − g)a(x,∇un) · ∇φ dx,

we get

lim
n→∞

∫
Ω

φ(a(x,∇un), D(un − g)) =

= −
∫

Ω

div(z)φ(u − g) dx −
∫

Ω

(u − g)z · ∇φ dx =

∫
Ω

φ(z,D(u − g)).

On the other hand,

lim
n→∞

∫
Ω

φ a(x,∇g)D(un − g) =

∫
Ω

φ a(x,∇g)D(u − g).

Consequently, we obtain∫
Ω

φ[(z,D(u − g)) − a(x,∇g)D(u − g)] ≥ 0, ∀ 0 ≤ φ ∈ C1
0(Ω).

Thus the measure (z,D(u−g))−a(x,∇g)D(u−g) ≥ 0. Then its absolutely
continuous part

(z − a(x,∇g)) · ∇(u − g) ≥ 0 a.e. in Ω.
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Since we may take a countable set dense in C1(Ω) we have that the above
inequality holds for all x ∈ Ω̃, where Ω̃ ⊂ Ω is such that λN(Ω \ Ω̃) = 0,
and all g ∈ C1(Ω). Now, fixed x ∈ Ω̃ and given ξ ∈ R

N , there is g ∈ C1(Ω)
such that ∇g(x) = ξ. Then

(z(x) − a(x, ξ)) · (∇u(x) − ξ) ≥ 0, ∀ ξ ∈ RN .

These inequalities imply (3.38) by an application of Minty-Browder’s me-
thod in R

N . �

Proof of Proposition 3.2 We divide the proof in three steps.

Step 1. Suppose first that ϕ ∈ C1(Ω). Let v ∈ L∞(Ω). We shall find u ∈
BV (Ω)∩L2(Ω) such that (u, v−u) ∈ Bϕ. That is, there is a(x,∇u) ∈ X(Ω)
satisfying

(3.39) (v − u) = −div a(x,∇u), in D′(Ω),

(3.40) a(x,∇u) · Dsu = f 0(x,Dsu), and

(3.41) [a(x,∇u), ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e.

By Lemma 3.3, we know that for any n ∈ N there exists un ∈ W 1,2
ϕ (Ω) ∩

L∞(Ω) such that (un, v − un) ∈ An,ϕ. Hence

(3.42)

∫
Ω

(w − un)(v − un) dx ≤
∫

Ω

an(x,∇un) · ∇(w − un) dx

for all w ∈ W 1,2
ϕ (Ω).

Let M1 := sup{‖ϕ‖∞, ‖v‖∞}. Then, taking w = un − (un − M1)
+ as

test function in (3.42), we obtain∫
Ω

(un − M1)
+(un − v) dx ≤ 0.

Hence, ∫
{un>M1}

(un − M1)
2 dx ≤

∫
{un>M1}

(un − M1)(un − v) dx

=

∫
Ω

(un − M1)
+(un − v) dx ≤ 0.

Consequently, un ≤ M1 a.e. in Ω. Analogously, taking w = un +(un +M1)
−

as test function, we get −M1 ≤ un a.e. in Ω. Therefore,

(3.43) ‖un‖∞ ≤ M1 for all n ∈ N.
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Taking w = w0 ∈ W 1,2
ϕ (Ω) ∩ L∞(Ω) in (3.42), applying Young’s inequality

and using (3.43) we get∫
Ω

a(x,∇un) · ∇un dx +
1

n

∫
Ω

|∇un|2 dx ≤

≤
∫

Ω

a(x,∇un) · ∇w0 dx +
1

n

∫
Ω

∇un · ∇w0 dx +

∫
Ω

(w0−un)(un−v) dx

≤ M2

( ∫
Ω

|∇w0|2 dx

) 1
2

+
1

2n

∫
Ω

|∇un|2 dx +
1

2n

∫
Ω

|∇w0|2 dx + M3

≤ M4 +
1

2n

∫
Ω

|∇un|2 dx.

Hence, by (2.5), we obtain

(3.44)

∫
Ω

|∇un| dx ≤ M5 ∀ n ∈ N

and

(3.45)
1

n

∫
Ω

|∇un|2 dx ≤ M6 ∀n ∈ N.

Thus, {un : n ∈ N} is bounded in W 1,1(Ω) and, by extracting a subsequence
if is necessary, we may assume that un converges in L1(Ω) and converges
almost everywhere to some u ∈ L1(Ω) as n → +∞. Now, by (3.43) and
(3.44), we have that un → u in L2(Ω) and u ∈ BV (Ω) ∩ L∞(Ω).

Observe that by (2.4) and (3.45), {an(x,∇un) : n ∈ N} is bounded in
L2(Ω, RN). Consequently we may assume that

(3.46) an(x,∇un) ⇀ z as n → ∞, weakly in L2(Ω, RN).

Given ψ ∈ C∞
0 (Ω), taking w = un ± ψ in (3.42) we obtain∫

Ω

ψ(v − un) dx =

∫
Ω

an(x,∇un) · ∇ψ dx.

Letting n → +∞, we obtain∫
Ω

(v − u)ψ dx =

∫
Ω

z · ∇ψ dx,

that is,

(3.47) v − u = −div(z), in D′(Ω)
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and

(3.48) div an(x,∇un) ⇀ div(z) weakly in L2(Ω).

Since, by (3.45),

(3.49)
1

n
|∇un| → 0 in L2(Ω),

as a consequence of (3.46), it follows that

(3.50) a(x,∇un) ⇀ z as n → ∞, weakly in L2(Ω, RN).

Moreover, by (2.4) we may assume that

(3.51) a(x,∇un) ⇀ z as n → ∞, weakly∗ in L∞(Ω, RN).

Let us prove that

(3.52) lim
n→∞

∫
Ω

a(x,∇un) · ∇un dx =

∫
Ω

(z,Du) −
∫

∂Ω

[z, ν](u − ϕ) dHN−1.

By (3.42), we have∫
Ω

(w − un)(v − un) dx +

∫
Ω

a(x,∇un) · ∇un dx ≤

≤
∫

Ω

a(x,∇un) · ∇w dx +
1

n

∫
Ω

∇un · ∇w dx

(3.53)

for all w ∈ W 1,2
ϕ (Ω). By Lemma 3.4, there exists vj ∈ C1(Ω) such that

vj |∂Ω = ϕ, vj → u in L1(Ω). If we set w = vj in (3.53), taking the upper
limit when n → ∞, we get

(3.54)

∫
Ω

(vj −u)(v−u) dx+lim sup
n→∞

∫
Ω

a(x,∇un) ·∇un dx ≤
∫

Ω

z ·∇vj dx.

Now, by Green’s formula we have∫
Ω

z · ∇vj dx = −
∫

Ω

div(z)vj dx +

∫
∂Ω

[z, ν]ϕ dHN−1

=

∫
Ω

(v − u)vj dx +

∫
∂Ω

[z, ν]ϕ dHN−1.

Hence, taking limit as j → ∞ and applying again the Green’s formula we
obtain that

(3.55) lim
j→∞

∫
Ω

z · ∇vj dx =

∫
Ω

(z,Du) −
∫

∂Ω

[z, ν](u − ϕ) dHN−1.
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Letting j → ∞ in (3.54) , we have

(3.56) lim sup
n→∞

∫
Ω

a(x,∇un) ·∇un dx ≤
∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u−ϕ) dHN−1.

On the other hand,∫
Ω

a(x,∇un) · ∇un dx =

∫
Ω

(
a(x,∇un) − a(x,∇vj)

) · ∇(un − vj) dx+

+

∫
Ω

(
a(x,∇un) − a(x,∇vj)

) · ∇vj dx +

∫
Ω

a(x,∇vj) · ∇un dx ≥

≥
∫

Ω

(
a(x,∇un) − a(x,∇vj)

) · ∇vj dx +

∫
Ω

a(x,∇vj) · ∇un dx.

Hence

lim inf
n→∞

∫
Ω

a(x,∇un) · ∇un dx ≥ lim
n→∞

( ∫
Ω

a(x,∇un) · ∇vj dx

−
∫

Ω

a(x,∇vj) · ∇vj dx +

∫
Ω

a(x,∇vj) · ∇un dx

)
.

If we consider the R
N -valued measures µn, µ on Ω which are defined as

µn(B) :=

∫
B∩Ω

∇un dx

µ(B) :=

∫
B∩Ω

Du +

∫
B∩∂Ω

(ϕ − u)ν dHN−1

for all Borel sets B ⊂ Ω, we have

µn ⇀ µ weakly as measures in Ω.

Then, since a(x,∇vj(x)) ∈ C(Ω, RN), we have

lim
n→∞

∫
Ω

a(x,∇vj) · ∇un dx =

=

∫
Ω

a(x,∇vj) dDu +

∫
∂Ω

a(x,∇vj) · ν(ϕ − u) dHN−1.

Therefore, we have

lim inf
n→∞

∫
Ω

a(x,∇un) · ∇un dx ≥
∫

Ω

z · ∇vj dx −
∫

Ω

a(x,∇vj) · ∇vj dx

+

∫
Ω

a(x,∇vj) dDu +

∫
∂Ω

a(x,∇vj) · ν(ϕ − u) dHN−1.
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Now, by Theorem 7.4 of [7], we have

lim
j→∞

∫
Ω

a(x,∇vj) · ∇vj dx =

=

∫
Ω

a(x,∇u) · ∇u dx +

∫
Ω

a∞(x,
−−→
Dsu) · Dsu

+

∫
∂Ω

a∞(x, (ϕ − u)ν) · ν(ϕ − u) dHN−1.

On the other hand, as a consequence of Lemma 3.4, we have

lim
j→∞

∫
Ω

a(x,∇vj) dDu =

= lim
j→∞

( ∫
Ω

a(x,∇vj) · ∇u dx +

∫
Ω

a(x,∇vj)dDsu

)

=

∫
Ω

a(x,∇u) · ∇u dx +

∫
Ω

a∞(x,
−−→
Dsu) · Dsu

and

lim
j→∞

∫
∂Ω

a(x,∇vj) · ν(ϕ − u) dHN−1

=

∫
∂Ω

a∞
(

x,
ϕ − u

|ϕ − u|ν
)
· ν(ϕ − u) dHN−1 =

=

∫
∂Ω

a∞(
x, (ϕ − u)ν

) · ν(ϕ − u) dHN−1.

Collecting all these facts, we obtain

lim inf
n→∞

∫
Ω

a(x,∇un) · ∇un dx ≥ lim
j→∞

∫
Ω

z · ∇vj dx

=

∫
Ω

(z,Du) −
∫

∂Ω

[z, ν](u − ϕ) dHN−1.

Combining this inequality with (3.56), we obtain (3.52).

Our next purpose will be to show that∫
Ω

h(x,Du) +

∫
∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1

=

∫
Ω

(z,Du) −
∫

∂Ω

[z, ν](u − ϕ) dHN−1.

(3.57)

According to [6], there exists a sequence {wj} ⊂ C1(Ω) ∩ BV (Ω) such that
wj |∂Ω = ϕ,

wj → u in L1(Ω), and Φϕ(wj) → Φϕ(u).
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Now, by the convexity of f , we have∫
Ω

f(x,∇un) dx ≤
∫

Ω

a(x,∇un) · ∇un dx

−
∫

Ω

a(x,∇un) · ∇wj dx +

∫
Ω

f(x,∇wj) dx.

Thus,

Φϕ(un) ≤
∫

Ω

a(x,∇un) · ∇un dx −
∫

Ω

a(x,∇un) · ∇wj dx + Φϕ(wj).

Using (3.52), it follows that

lim sup
n→∞

Φϕ(un) ≤

≤
∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u−ϕ) dHN−1− lim
n→∞

∫
Ω

a(x,∇un) ·∇wj dx+Φϕ(wj)

=

∫
Ω

(z,Du) −
∫

∂Ω

[z, ν](u − ϕ) dHN−1 −
∫

Ω

z · ∇wj dx + Φϕ(wj).

Since

lim
j→∞

∫
Ω

z · ∇wj dx = lim
j→∞

(
−

∫
Ω

div(z)wj dx +

∫
∂Ω

[z, ν]ϕ dHN−1

)
=

=−
∫

Ω

div(z)u dx +

∫
∂Ω

[z, ν]ϕ dHN−1 =

∫
Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1,

letting j → ∞ in the above inequality, we obtain

lim sup
n→∞

Φϕ(un) ≤ lim
j→∞

Φϕ(wj) = Φϕ(u).

Thus, by the lower-semicontinuity of Φϕ, we get

(3.58) Φϕ(u) = lim
n→∞

Φϕ(un).

Now,

Φϕ(u) =

∫
Ω

f̃(x, µ̃) and Φϕ(un) =

∫
Ω

f̃(x, µ̃n).

Hence, (3.58) yields

lim
n→∞

∫
Ω

f̃(x, µ̃n) =

∫
Ω

f̃(x, µ̃).
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Then, applying Theorem 3 of [18], it follows that

(3.59)

∫
Ω

h̃(x, µ̃) = lim
n→∞

∫
Ω

h̃(x, µ̃n) = lim
n→∞

∫
Ω

a(x,∇un) · ∇un.

Since ∫
Ω

h̃(x, µ̃) =

∫
Ω

h̃(x, µ̃a(x)) dx +

∫
Ω

h̃
(
x,

dµ̃s

d|µ̃s|(x)
)

d|µ̃s|

=

∫
Ω

h̃(x, µa(x), 1) dx +

∫
Ω

h̃
(
x,

dµs

d|µs|(x), 0
)

d|µs|

=

∫
Ω

h(x, µa(x)) dx +

∫
Ω

h0
(
x,

dµs

d|µs|(x)
)

d|µs|

=

∫
Ω

h(x,∇u(x)) dx +

∫
Ω

h0
(
x,
−−→
Dsu(x)) d|Dsu|

+

∫
∂Ω

h0

(
x,

(ϕ − u) · ν
|(ϕ − u) · ν|

)
dHN−1

=

∫
Ω

h(x,Du) +

∫
∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1,

(3.57) follows from (3.52) and (3.59).

By (3.49), (3.50) and (3.48), applying Lemma 3.6 (ii), we get

(3.60) |[z(x), ν(x)]| ≤ f 0(x, ν(x)) a.e. in ∂Ω.

Let vj ∈ C1(Ω) be a sequence such that vj → u in L2(Ω) and
∫
Ω
|∇vj| →

‖Du‖. According to (H5), we have

| a(x,∇un) · ∇vj| ≤ f 0(x,∇vj).

Then, if ψ, φ ∈ C1(Ω), with 0 ≤ ψ ≤ φ, we have∣∣∣∣
∫

Ω

a(x,∇un) · ∇vj ψ dx

∣∣∣∣ ≤
∫

Ω

f 0(x,∇vj)ψ dx,

and, letting n → ∞, we get∣∣∣∣
∫

Ω

z · ∇vj ψ dx

∣∣∣∣ ≤
∫

Ω

f 0(x,∇vj)ψ dx.

Now, since∣∣∣∣
∫

Ω

z · ∇vj ψ dx

∣∣∣∣ =

∣∣∣∣ −
∫

Ω

div(z)vjψ dx −
∫

Ω

vjz · ∇ψ dx

∣∣∣∣,
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letting j → ∞ we obtain that

|〈(z,Du), ψ〉| =

∣∣∣∣ −
∫

Ω

div(z)uψ dx −
∫

Ω

uz · ∇ψ dx

∣∣∣∣
≤

∫
Ω

ψf 0(x,Du) ≤
∫

Ω

φf0(x,Du).

Hence

〈|(z,Du)|, φ〉 ≤
∫

Ω

φf0(x,Du).

Thus, we have

|(z,Du)| ≤ f 0(x,Du) as measures in Ω.

Then, the singular parts also satisfy a similar inequality,

(3.61) |z · Dsu| ≤ f 0(x,Dsu) as measures in Ω.

Now, by (3.58), (3.51), (3.60) and (3.61), the assumptions of Lemma 3.5
are satisfied, and we have∫

Ω

z · ∇u dx =

∫
Ω

h(x,∇u) dx =

∫
Ω

a(x,∇u) · ∇u dx,(3.62)

z · Dsu = f 0(x,Dsu),(3.63)

[z, ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e.(3.64)

Moreover, since the assumptions of Lemma 3.7 hold, we have that

(3.65) z(x) = a(x,∇u(x)) a.e. x ∈ Ω.

Observe that (3.39) follows from (3.47) and (3.65); (3.40) is a consequence
of (3.62), (3.63) and (3.65); and (3.41) follows from (3.64) and (3.65). This
concludes the proof in the case ϕ ∈ C1(Ω).

Step 2. Suppose now we are in the general case, that is, ϕ ∈ L1(∂Ω). Take
ϕj ∈ C1(Ω) such that ϕj → ϕ in L1(∂Ω). Given v ∈ L∞(Ω), from the Step
1, there exists uj ∈ D(Bϕj

) such that (uj, v − uj) ∈ Bϕj
. Hence, we have

−div(a(x,∇uj)) = v − uj, in D′(Ω),(3.66)

a(x,∇uj) · Dsuj = f 0(x,Dsuj),(3.67)

[a(x,∇uj), ν] ∈ sign(ϕj − uj)f
0(x, ν(x)) HN−1 − a.e.(3.68)



160 F. Andreu, V. Caselles and J. M. Mazón

By (3.66), (3.67) and (3.68), we get∫
Ω

a(x,∇uj) · ∇uj dx +

∫
Ω

f 0(x,Dsuj)

+

∫
∂Ω

|ϕj − uj|f 0(x, ν(x)) dHN−1 +

∫
Ω

u2
j dx

=

∫
Ω

ujv dx +

∫
∂Ω

(
a(x,∇uj) · ν

)
ϕj dHN−1.

(3.69)

From (3.69), using Young’s inequality and (2.5), we obtain that

C0‖Duj‖ + C0

∫
∂Ω

|ϕj − uj|f 0(x, ν(x)) dHN−1 +
1

2

∫
Ω

u2
j dx ≤ C ∀ j ∈ N,

for some constant C > 0. It follows that there exists u ∈ BV (Ω) ∩ L2(Ω),
such that

uj ⇀ u weakly in L2(Ω),

uj → u in Lq(Ω) for all 1 ≤ q <
N

N − 1
.

(3.70)

Hence,

(3.71)

∫
Ω

u2 dx ≤ lim sup
j→∞

∫
Ω

u2
j dx.

After passing to a subsequence, if necessary, we may assume that

(3.72) a(x,∇uj) ⇀ z as j → ∞, weakly∗ in L∞(Ω, RN)

and

(3.73) −div(z) = v − u in D′(Ω).

According to [6], Fact 3.3, there exists a sequence {wk} ⊂ C1(Ω) ∩ BV (Ω)
such that wk|∂Ω = ϕ,

(3.74) wk → u in L2(Ω) and Φϕ(wk) → Φϕ(u).

Now, by the convexity of f we have∫
Ω

f(x,∇uj) dx ≤
∫

Ω

a(x,∇uj) · ∇uj dx −
∫

Ω

a(x,∇uj) · ∇wk dx

+

∫
Ω

f(x,∇wk) dx.
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Thus, having in mind (3.66), (3.67) and (3.68), we get

Φϕj
(uj) =

∫
Ω

f(x,∇uj) dx +

∫
Ω

f 0(x,Dsuj) +

∫
∂Ω

|uj − ϕj|f 0(x, ν(x)) dHN−1

≤
∫

Ω

f(x,∇wk) dx +

∫
Ω

a(x,∇uj) · ∇uj dx +

∫
Ω

f 0(x,Dsuj)+

+

∫
∂Ω

|uj − ϕj|f 0(x, ν(x)) dHN−1 −
∫

Ω

a(x,∇uj) · ∇wk dx

≤
∫

Ω

f(x,∇wk) dx +

∫
Ω

(v − uj)uj dx

+

∫
∂Ω

[a(x,∇uj), ν]ϕj dHN−1 −
∫

Ω

a(x,∇uj) · ∇wk dx.

Using (3.71) and (3.72), it follows that

lim sup
j→∞

Φϕ(uj) = lim sup
j→∞

Φϕj
(uj) ≤

≤
∫

Ω

f(x,∇wk) dx+

∫
Ω

uv dx−
∫

Ω

u2 dx+

∫
∂Ω

[z, ν]ϕ dHN−1−
∫

Ω

z ·∇wk dx

≤
∫

Ω

f(x,∇wk) dx +

∫
Ω

(v − u)u dx +

∫
Ω

div(z)wk dx.

Hence, by (3.73), letting k → ∞, we arrive to

lim sup
j→∞

Φϕ(uj) ≤ lim
k→∞

Φϕ(wk) = Φϕ(u).

Thus, by the lower-semicontinuity of Φϕ, we get

(3.75) Φϕ(u) = lim
j→∞

Φϕ(uj).

Applying Theorem 3 of [18] as in the Step 1, it follows that

lim
j→∞

∫
Ω

h(x,Duj) +

∫
∂Ω

|uj − ϕj|f 0(x, ν(x)) dHN−1

=

∫
Ω

h(x,Du) +

∫
∂Ω

|u − ϕ|f 0(x, ν(x)) dHN−1.

(3.76)

On the other hand, by Green’s formula, (3.66), (3.67) and (3.68), we have∫
Ω

h(x,Duj) +

∫
∂Ω

|uj − ϕj|f 0(x, ν(x)) dHN−1

=

∫
Ω

(
a(x,∇uj), Duj

)
+

∫
∂Ω

[a(x,∇uj), ν](ϕj − uj) dHN−1

=

∫
Ω

uj(v − uj) dx +

∫
∂Ω

[a(x,∇uj), ν]ϕj dHN−1.
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Since [a(x,∇uj), ν] ⇀ [z, ν] weakly∗ in L∞(∂Ω), letting j → +∞, and using
(3.76), it follows that∫

Ω

h(x,Du)+

∫
∂Ω

|u − ϕ|f 0(x, ν(x)) dHN−1

≤
∫

Ω

u(v − u) dx +

∫
∂Ω

[z, ν]ϕ dHN−1

=

∫
Ω

(z,Du) +

∫
∂Ω

[z, ν](ϕ − u) dHN−1.

Now, by Lemma 3.6 (i), we have

|[z(x), ν(x)]| ≤ f 0(x, ν(x)) HN−1 − a.e in ∂Ω.

Moreover, as in the Step 1, we get

|z · Dsu| ≤ f 0(x,Dsu) as measures in Ω.

With this and using Lemma 3.5, we obtain∫
Ω

z · ∇u dx =

∫
Ω

h(x,∇u) dx =

∫
Ω

a(x,∇u) · ∇u dx,(3.77)

z · Dsu = f 0(x,Dsu),(3.78)

[z, ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e.(3.79)

As in the Step 1, to get that (u, v − u) ∈ Bϕ, we only need to prove that

(3.80) div z = div a(x,∇u), in D′(Ω),

and

(3.81) [z, ν] = [a(x,∇u), ν] HN−1 − a.e. on ∂Ω.

Now, by (3.66), (3.70) and using Fatou’s Lemma, we are able to adapt the
proof of Lemma 3.7 obtaining that z(x) = a(x,∇u(x)) a.e. in Ω and this
implies both (3.80) and (3.81).

Step 3. To prove the density of D(Bϕ) in L2(Ω), we prove that C∞
0 (Ω) ⊆

D(Bϕ)
L2(Ω)

. Let v ∈ C∞
0 (Ω). By the above, v ∈ R(I + 1

n
Bϕ) for all n ∈ N.

Thus, for each n ∈ N, there exists un ∈ D(Bϕ) such that (un, n(v−un)) ∈ Bϕ.
Consequently, we have a(x,∇un) ∈ X(Ω), n(v − un) = −div(a(x,∇un)) in



A Parabolic Quasilinear Problem for Linear Growth Functionals 163

D′(Ω) and∫
Ω

(w − un)n(v − un) dx =

=

∫
Ω

(a(x,∇un), Dw) −
∫

∂Ω

[a(x,∇un), ν](w − ϕ) dHN−1

−
∫

Ω

h(x,Dun) −
∫

∂Ω

|ϕ − un|f 0(x, ν(x)) dHN−1.

for every w ∈ BV (Ω) ∩ L2(Ω). Taking w = v, we get∫
Ω

(v−un)2 dx =
1

n

(∫
Ω

a(x,∇un)·∇v dx −
∫

∂Ω

[a(x,∇un), ν](v − ϕ)dHN−1

−
∫

Ω

h(x,Dun) −
∫

∂Ω

|ϕ − un|f 0(x, ν(x)) dHN−1

)

≤ 1

n

( ∫
Ω

a(x,∇un) · ∇v dx −
∫

∂Ω

[a(x,∇un), ν](v − ϕ) dHN−1

)

≤M

n

( ∫
Ω

|∇v| dx +

∫
∂Ω

|v − ϕ| dHN−1

)
.

Letting n → ∞, it follows that un → v in L2(Ω). Therefore v ∈ D(Bϕ)
L2(Ω)

and the proof is complete. �

Proof of Theorem 3.1 First, we prove that Bϕ ⊂ ∂Φϕ. Let (u, v) ∈ Bϕ

and w ∈ W 1,2
ϕ (Ω). Then, by (2.2), and applying Green’s formula we get

∫
Ω

(w − u)v dx = −
∫

Ω

(w − u) div a(x,∇u) dx

=

∫
Ω

(a(x,∇u), Dw − Du) −
∫

∂Ω

[a(x,∇u), ν](ϕ − u) dHN−1

=

∫
Ω

a(x,∇u) · ∇w dx −
∫

Ω

a(x,∇u) · ∇u dx −
∫

Ω

a(x,∇u) · Dsu

−
∫

∂Ω

[a(x,∇u), ν](ϕ − u) dHN−1

≤
∫

Ω

f(x,∇w) dx −
∫

Ω

f(x,Du) dx −
∫

∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1

=Φϕ(w) − Φϕ(u).

Suppose that w ∈ BV (Ω) ∩ L2(Ω). According to [6], Fact 3.3, there exists
a sequence wn ∈ W 1,2

ϕ (Ω), with wn → w in L2(Ω), and Φϕ(wn) → Φϕ(w).



164 F. Andreu, V. Caselles and J. M. Mazón

Then, by the above inequality, we have∫
Ω

(wn − u)v dx ≤ Φϕ(wn) − Φϕ(u).

Now, letting n → ∞, we get∫
Ω

(w − u)v dx ≤ Φϕ(w) − Φϕ(u),

and therefore, (u, v) ∈ ∂Φϕ.

Since Bϕ ⊂ ∂Φϕ, and, by Proposition 3.2, L∞(Ω) ⊂ R(I + Bϕ), we

have ∂Φϕ = Bϕ
L2(Ω)

. To finish the proof we only need to prove that the
operator Bϕ is closed. Let (un, vn) ∈ Bϕ, and assume that (un, vn) → (u, v)
in L2(Ω) × L2(Ω). Let us prove that (u, v) ∈ Bϕ. Since (un, vn) ∈ Bϕ, we
know that a(x,∇un) ∈ X(Ω) is such that

−vn = div a(x,∇un), in D′(Ω),(3.82)

a(x,∇un) · Dsun = f 0(x,Dsun),(3.83)

[a(x,∇un), ν] ∈ sign (ϕ − un)f 0(x, ν(x)) HN−1 − a.e.(3.84)

Multiplying (3.82) by un and applying Green’s formula we obtain

−
∫

Ω

unvn dx =

∫
∂Ω

[a(x,∇un), ν]ϕ dHN−1 −
∫

Ω

h(x,Dun)

−
∫

∂Ω

|ϕ − un|f 0(x, ν(x)) dHN−1.

Hence,

(3.85)

∫
Ω

h(x,Dun) ≤
∫

Ω

unvn dx +

∫
∂Ω

[a(x,∇un), ν]ϕ dHN−1.

From (2.5) and (3.85), we have

C0

∫
Ω

|Dun| dx − D1λN(Ω) ≤
∫

Ω

h(x,Dun) dx

≤
∫

Ω

unvn dx +

∫
∂Ω

[a(x,∇un), ν]ϕ dHN−1.

Hence,

(3.86)

∫
Ω

|Dun| dx ≤ M1 ∀ n ∈ N.
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Therefore, u ∈ BV (Ω) ∩ L2(Ω). On the other hand, since ‖a(x,∇un)‖∞ ≤
M , we may assume that

(3.87) a(x,∇un) ⇀ z in the weak∗ topology of L∞(Ω, RN),

with ‖z‖∞ ≤ M . Moreover, since vn → v in L2(Ω), we have that v =
−div(z) in D′(Ω). By the definition of the weak trace on ∂Ω of the normal
component of z, it is easy to see that

(3.88) [a(x,∇un), ν] ⇀ [z, ν] weakly∗ in L∞(∂Ω).

Now, we prove the convergence of the energies. According to [6], Fact
3.3, there exists a sequence wj ∈ C1(Ω) ∩ BV (Ω), with wj |∂Ω = ϕ, wj → u

in L1(Ω), and Φϕ(wj) → Φϕ(u). Moreover, looking at the proof of Fact 3.3
in [6], we have that, wj = w1

j + w2
j with w1

j |∂Ω
= u|∂Ω and w1

j → u in L1(Ω),

w2
j |∂Ω

= ϕ−u|∂Ω, w2
j → 0 in L1(Ω), and, using [5], Lemma 1.8, we have that∫

Ω

(z,Dw1
j ) →

∫
Ω

(z,Du).

By the convexity of f and taking (3.83) and (3.84) into account we have

Φϕ(un) =

∫
Ω

f(x,∇un) dx +

∫
Ω

f 0(x,Dsun) +

∫
∂Ω

|un−ϕ|f 0(x, ν(x))dHN−1

≤
∫

Ω

a(x,∇un) · ∇un dx −
∫

Ω

a(x,∇un) · ∇wj dx +

∫
Ω

f(x,∇wj) dx

+

∫
Ω

a(x,∇un) · Dsun +

∫
∂Ω

[a(x,∇un), ν](ϕ − un) dHN−1

=

∫
Ω

(a(x,∇un), Dun) −
∫

Ω

a(x,∇un) · ∇wj dx + Φϕ(wj)

+

∫
∂Ω

[a(x,∇un), ν](ϕ − un) dHN−1 = Φϕ(wj) −
∫

Ω

a(x,∇un) · ∇wj dx

−
∫

Ω

div(a(x,∇un))un dx +

∫
∂Ω

[a(x,∇un), ν]ϕ dHN−1

= Φϕ(wj) −
∫

Ω

a(x,∇un)·∇wj dx +

∫
Ω

vnun dx +

∫
∂Ω

[a(x,∇un), ν]ϕdHN−1.

Hence, by (3.87) and (3.88), it follows that

lim sup
n→∞

Φϕ(un) ≤ Φϕ(wj) −
∫

Ω

(z,Dwj) +

∫
Ω

uv dx +

∫
∂Ω

[z, ν]ϕ dHN−1

= Φϕ(wj) −
∫

Ω

(z,Dw1
j ) −

∫
Ω

(z,Dw2
j ) −

∫
Ω

div(z)u dx +

∫
∂Ω

[z, ν]ϕ dHN−1
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= Φϕ(wj) −
∫

Ω

(z,Dw1
j ) +

∫
Ω

div(z)w2
j dx +

∫
∂Ω

[z, ν]u dHN−1 −
∫

Ω

div(z)u dx.

Letting j → ∞, we have that

lim sup
n→∞

Φϕ(un) ≤ Φϕ(u) −
∫

Ω

(z,Du) +

∫
∂Ω

[z, ν]u dHN−1 −
∫

Ω

div(z)u dx

= Φϕ(u) .

Finally, by the lower-semicontinuity of Φϕ, we obtain

(3.89) Φϕ(u) = lim
n→∞

Φϕ(un).

If we consider the R
N -valued measures µn, µ on Ω which are defined as

µn(B) :=

∫
B∩Ω

Dun +

∫
B∩∂Ω

(ϕ − un)ν dHN−1,

µ(B) :=

∫
B∩Ω

Du +

∫
B∩∂Ω

(ϕ − u)ν dHN−1

for all Borel sets B ⊂ Ω, we have

µj ⇀ µ weakly as measures in Ω.

Moreover,

Φϕ(u) =

∫
Ω

f̃(x, µ̃) and Φϕ(un) =

∫
Ω

f̃(x, µ̃n).

Hence, (3.89) yields

lim
n→∞

∫
Ω

f̃(x, µ̃n) =

∫
Ω

f̃(x, µ̃).

Then, applying [18], Theorem 3, it follows that∫
Ω

h̃(x, µ̃) = lim
n→∞

∫
Ω

h̃(x, µ̃n)

= lim
n→∞

∫
Ω

h(x,Dun) +

∫
∂Ω

|un − ϕ|f 0(x, ν(x)) dHN−1.

Since ∫
Ω

h̃(x, µ̃) =

∫
Ω

h(x,Du) +

∫
∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1,
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we have

(3.90)

∫
Ω

h(x,Du) +

∫
∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1 =

= lim
n→∞

∫
Ω

h(x,Dun) +

∫
∂Ω

|un − ϕ|f 0(x, ν(x)) dHN−1.

Now, since

lim
n→∞

∫
Ω

h(x,Dun) +

∫
∂Ω

|un − ϕ|f 0(x, ν(x)) dHN−1

= lim
n→∞

∫
Ω

a(x,∇un) · ∇un dx +

∫
Ω

f 0(x,Dsun)

+

∫
∂Ω

[a(x,∇un), ν](ϕ − un) dHN−1

= lim
n→∞

∫
Ω

(a(x,∇un), Dun) +

∫
∂Ω

[a(x,∇un), ν](ϕ − un) dHN−1

= lim
n→∞

∫
∂Ω

[a(x,∇un), ν]ϕ dHN−1 −
∫

Ω

div(a(x,∇un))un dx

=

∫
∂Ω

[z, ν]ϕ dHN−1 −
∫

Ω

div(z)u dx

=

∫
Ω

(z,Du) +

∫
∂Ω

[z, ν](ϕ − u) dHN−1,

we finally obtain∫
Ω

h(x,Du) +

∫
∂Ω

|ϕ − u|f 0(x, ν(x)) dHN−1

=

∫
Ω

(z,Du) +

∫
∂Ω

[z, ν](ϕ − u) dHN−1.

(3.91)

Again, by (3.87) and (3.88) we can apply Lemma 3.6 obtaining that

(3.92) |[z(x), ν(x)]| ≤ f 0(x, ν(x)) a.e. in ∂Ω.

Moreover, acting as in the proof of Proposition 3.2, we get that

(3.93) |z · Dsu| ≤ f 0(x,Dsu) as measures in Ω.

Hence by (3.89), (3.90), (3.91), (3.87) (3.93) and (3.92), we can apply Lemma
3.5, to obtain∫

Ω

z · ∇u dx =

∫
Ω

h(x,∇u) dx =

∫
Ω

a(x,∇u) · ∇u dx,(3.94)

z · Dsu = f 0(x,Dsu),(3.95)

[z, ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e.(3.96)
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Now, using Lemma 3.7, we have

(3.97) div z = div a(x,∇u), in D′(Ω),

and

(3.98) [z, ν] = [a(x,∇u), ν] HN−1 − a.e. on ∂Ω.

Since v = −div(z) in D′(Ω), taking (3.97) into account, we get

v = −div(a(x,∇u)), in D′(Ω),

and, using (3.94), (3.95) and (3.97), we get

a(x,∇u) · Dsu = f 0(x,Dsu).

Finally, by (3.96) and (3.98) we get

[a(x,∇u), ν] ∈ sign (ϕ − u)f 0(x, ν(x)) HN−1 − a.e.

Therefore, (u, v) ∈ Bϕ. �

Proof of Theorem 2.2 Let (S(t))t≥0 be the semigroup in L2(Ω) generated
by the subdifferential of Φϕ. Then by the nonlinear semigroup theory ([9]),

given u0 ∈ L2(Ω) = D(∂Φϕ), u(t) = S(t)u0 is the only strong solution of
problem (3.1). Thus, by Theorem 3.1, we have that for almost all t ∈
[0, +∞[, u(t) ∈ D(Bϕ) and −u′(t) ∈ Bϕ(u(t)). This concludes the proof. �

4. Behaviour of the solution

We have the following weak form of the maximum principle.

Theorem 4.1 Suppose u1 and u2 are two solutions of (1.1) corresponding
to initial data u1,0 and u2,0 in L2(Ω) and boundary data ϕ1 and ϕ2 in L1(∂Ω),
respectively. If

u1,0 ≥ u2,0 and ϕ1 ≥ ϕ2,

then u1 ≥ u2.

Proof. For almost all t ∈ [0, +∞[, we have u′
i(t) ∈ L2(Ω), ui(t) ∈ BV (Ω) ∩

L2(Ω), a(x,∇ui(t)) ∈ X(Ω), and

u′
2(t) − u′

1(t) = div[a(x,∇u2(t)) − a(x,∇u1(t))], in D′(Ω),(4.1)

a(x,∇ui(t)) · Dsui(t) = f 0(x,Dsui(t)),(4.2)

[a(x,∇ui(t)), ν] ∈ sign(ϕi − ui(t))f
0(x, ν(x)) HN−1 − a.e. on ∂Ω.(4.3)
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Multiplying in (4.1) by
(
u2(t)−u1(t)

)+
, integrating in Ω, and using Green’s

formula, we get

1

2

∫
Ω

d

dt

[(
u2(t) − u1(t)

)+]2
dx =

=

∫
Ω

div
[
a(x,∇u2(t)) − a(x,∇u1(t))

](
u2(t) − u1(t)

)+
dx

= −
∫

Ω

(
a(x,∇u2(t)) − a(x,∇u1(t)), D

((
u2(t) − u1(t)

)+))
+

+

∫
∂Ω

[a(x,∇u2(t)) − a(x,∇u1(t)), ν]
(
u2(t) − u1(t)

)+
dHN−1.

(4.4)

Now, by the chain rule for BV-functions ([2], [14], Lemma 1.2), there exists
a scalar function η(t), with 0 ≤ η(t) ≤ 1, such that∫

Ω

(
a(x,∇u2(t)) − a(x,∇u1(t)), D

((
u2(t) − u1(t)

)+))
=

=

∫
{u2≥u1}

(
a(x,∇u2(t)) − a(x,∇u1(t)

) · (∇u2(t) −∇u1(t)
)

dx+

+

∫
Ω

η(t)
(
a(x,∇u2(t)) − a(x,∇u1(t)

) · Ds
(
u2(t) − u1(t)

)
.

Observe that, by the monotonicity of a, (H5) and (4.2), we have that

(4.5)

∫
Ω

(
a(x,∇u2(t)) − a(x,∇u1(t)), D

((
u2(t) − u1(t)

)+)) ≥ 0.

On the other hand, since ϕ1 ≥ ϕ2, from (4.3), it is easy to see that

(4.6)

∫
∂Ω

[a(x,∇u2(t)) − a(x,∇u1(t)), ν]
(
u2(t) − u1(t)

)+
dHN−1 ≤ 0.

From (4.4), (4.5) and (4.6), it follows that

1

2

∫
Ω

d

dt

[(
u2(t) − u1(t)

)+]2
dx ≤ 0.

Since u1,0 ≥ u2,0, we have u1 ≥ u2, and the proof is concluded. �
We shall now prove that the solution u(t) stabilizes as t → +∞ by

converging to a solution of the steady-state problem. To do that, we follow
the proof of Theorem 4.2 in [17].
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Theorem 4.2 Suppose u0 ∈ L2(Ω) ∩ BV (Ω) and ϕ ∈ L∞(∂Ω). Then the
solution u(t) of (1.1) converges as t → +∞ to some limit w ∈ B−1

ϕ (0) in the
following sense:

u(t) → w strongly in L1(Ω) and weakly in L2(Ω).

Proof. Since Bϕ is the subdifferential of Φϕ, by a classical result of Bruck
([10], Theorem 4), to prove the weak convergence in L2(Ω), it is sufficient
to prove that Φϕ attains its minimum in L2(Ω). In fact, let {un} be a
minimizing sequence for Φϕ. Without loss of generality, we may assume
that un ∈ BV (Ω) ∩ L2(Ω). Now, by approximation we may assume that
un ∈ W 1,1(Ω) ∩ L2(Ω). Denote by J : R → R the truncature function

J(r) :=




−‖ϕ‖∞ if r < −‖ϕ‖∞
r if |r| ≤ ‖ϕ‖∞

‖ϕ‖∞ if r > ‖ϕ‖∞.

If we take wn := J ◦ un, wn ∈ W 1,1(Ω)∩L∞(Ω), and using that |J ′| ≤ 1, we
have

Φϕ(wn) =

∫
Ω

f(x,∇wn) dx +

∫
∂Ω

|wn − ϕ|f 0(x, ν(x)) dHN−1 =

=

∫
{|un|≤‖ϕ‖∞}

f(x,∇un) dx +

∫
∂Ω

|J ◦ un − J ◦ ϕ|f 0(x, ν(x)) dHN−1 ≤

≤
∫

Ω

f(x,∇un) dx +

∫
∂Ω

|un − ϕ|f 0(x, ν(x)) dHN−1.

Thus, {wn} is still a minimizing sequence for Φϕ. Moreover, this sequence is
bounded in W 1,1(Ω) ∩ L∞(Ω), hence, relatively compact in L1(Ω). We may
extract a subsequence converging in L1(Ω) to some u ∈ L1(Ω) ∩ BV (Ω).
Therefore,

Φϕ(u) = inf
u∈L2(Ω)

Φϕ(u).

Then, by Bruck’s result ([10], Theorem 4), there exists w ∈ B−1
ϕ (0), such

that u(t) → w weakly in L2(Ω). Finally, we prove the strong convergence in
L1(Ω). Since (u(t),−u′(t)) ∈ ∂Φϕ, using [9], Lemma 3.3, we have

d

ds
Φϕ

(
u(s)

)
= −

∫
Ω

u′(s)2 dx ≤ 0,

hence,
Φϕ

(
u(t)

) ≤ Φϕ

(
u0

) ∀ t > 0.

Thus, {u(t) : t ≥ 0} is bounded in BV (Ω), and therefore relatively compact
in L1(Ω). The result follows. �
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5. Appendix

In this appendix we prove the approximation Lemma. Before giving the
proof, let us construct a substitute for the distance function to the boundary
d(., ∂Ω). That construction would be unnecessary if ∂Ω would be of class
W 2,∞ ([7]). We follow the proof of Lemma 5.1 in [7] for C2 domains.

If ∂Ω is a manifold of class C1, then there is some ε > 0 such that for
all points y ∈ Ω such that d(y, Ω) < ε there is z ∈ ∂Ω and t ∈ (0, ε) such
that y = z − tν(z), ν(z) being the outer unit normal to ∂Ω at z ([11]). In
other words, Ωε := {x ∈ Ω : x = y − tν(y), y ∈ ∂Ω, t ∈ (0, ε)} is open.
Then there is a function D ∈ C1(Ω) such that D = 0 on ∂Ω, D > 0 on Ω
and ∇D(x) = −ν(x) for all x ∈ ∂Ω. This is a consequence of Withney’s
extension Theorem ([15], p.48, [13], p.245). Indeed, since

ν(y)
x − y

|x − y| → 0 as x, y → p, x = y, x, y ∈ ∂Ω,

by Withney’s Theorem , we know that there exists a function D̃ ∈ C1(Ω)
such that D̃ = 0 on ∂Ω and ∇D̃(x) = −ν(x) for all x ∈ ∂Ω. Now, let y ∈ ∂Ω
and t ∈ (0, ε). Using the mean value theorem, we know that

D̃(y − tν(y)) = D̃(y) − t∇D̃(y − sν(y)) · ν(y) = −t∇D̃(y − sν(y)) · ν(y).

Since D̃ ∈ C1(Ω), we have

D̃(y − tν(y)) = t(1 + ω(t))

where ω(t) = o(1) as t → 0+ and is the modulus of continuity of ∇D̃.
Without loss of generality we may assume that ε > 0 is such that ω(t) < 1

2

for all t ∈ (0, ε). In particular, we have that

(5.1) D̃(x) > 0 for all x ∈ Ωε.

We shall modify D̃ so that the modified function is > 0 in Ω. Let η ∈
C([0,∞)), η(t) > 0, for all t ∈ (0,∞), η(t) = o(t) as t → 0+. Let Ω1 be an
open set, Ω1 ⊂ Ω, with smooth boundary ∂Ω1 ⊂ Ωε such that 0 < δ−η(δ) <
D̃(x) < δ + η(δ) for all x ∈ ∂Ω1 for some δ > 0. Let Ω′

2 be an open set with
smooth boundary such that Ω′

2 ⊂ Ω1 and η(δ) < d(∂Ω1, ∂Ω′
2) < 2η(δ), where

d(∂Ω1, ∂Ω′
2) = inf{|x − y| : x ∈ ∂Ω1, y ∈ ∂Ω′

2}. Let d∂Ω′
2

be the distance
function to ∂Ω′

2, > 0 in Ω′
2, negative outside. Let d∂Ω′

2,n = ρn ∗ d∂Ω′
2
, ρn

being a positive regularizing kernel. Observe that ‖∇d∂Ω′
2,n‖∞ ≤ 1. We may

choose n large enough, and Ω2 such that Ω2 ⊂ Ω′
2, η(δ) < d(∂Ω1, ∂Ω2) <
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2η(δ), 0 < d∂Ω′
2,n < η(δ) in ∂Ω2, and d∂Ω′

2,n > 0 in Ω2. Let B1,2 = Ω1 \ Ω2.
Then, using again Withney’s extension Theorem, there is a function R ∈
C1(B1,2) such that R = D̃−δ and ∇R = ∇D̃ on ∂Ω1, and R = d∂Ω′

2,n, ∇R =
∇d∂Ω′

2,n on ∂Ω2. Moreover, ‖∇R‖∞ is bounded by a constant depending on

‖D̃‖∞,∂Ω1 , ‖d∂Ω′
2,n‖∞,∂Ω2 , ‖∇D̃‖∞,∂Ω1 , ‖∇d∂Ω′

2,n‖∞,∂Ω2 and

sup
x∈∂Ω1,y∈∂Ω2

|D̃(x) − δ − d∂Ω′
2,n(y)|

|x − y| ≤ 2η(δ)

η(δ)
= 2.

We define D : Ω → R by

D = D̃ in Ω1,

D = R + δ in B1,2,

D = d∂Ω′
2,n + δ in Ω2.

Then D ∈ C1(Ω), D = 0 on ∂Ω, D > 0 on Ω and ∇D(x) = −ν(x) for all
x ∈ ∂Ω.

Proof of Lemma 3.4 We may think that u and v are extended as BV
functions in R

N in such a way that

(5.2)

∫
∂Ω

|Du| =

∫
∂Ω

|Dv| = 0.

We consider a family of radially symmetric positive mollifiers

ηj =
1

τN
j

η

(
x

τj

)
, η ≥ 0 ,

∫
RN

η(x)dx = 1 , τj ↓ 0+ ,

and we set

(5.3) zj = ηj ∗
(
v +

u

j

)

Clearly, we have zj ∈ C1(Ω) and obviously we have

(5.4) zj → v in LN/(N−1)(Ω).

Also, from (5.2) it follows that

(5.5)

∫
Ω

√
1 + |Dzj(x)|2dx →

∫
Ω

√
1 + |Dv(x)|2dx.

This implies, by the Theorem of convergence of traces for BV functions that

(5.6) zj|∂Ω → v|∂Ω in L1(∂Ω).
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By the Theorem of differentiation of measures ([7]), we obtain

(5.7) Dzj(x) → ∇v(x) λN a.e. in Ω.

Indeed, since Dzj = ηj ∗ Dv + 1
j
ηj ∗ Du, this is a consequence of the four

following limits

lim
j

[ηj ∗ ∇v](x) = ∇v(x) λN a.e. in Ω,(5.8)

lim
j

[ηj ∗ (Dv)s](x) = (Dv)s(x) = 0 λN a.e. in Ω,(5.9)

lim
j

1

j
[ηj ∗ ∇u](x) = ∇u(x) lim

j

1

j
= 0 λN a.e. in Ω,(5.10)

lim
j

1

j
[ηj ∗ (Du)s](x) = 0 λN a.e. in Ω,(5.11)

since (Du)s, (Dv)s are singular with respect to λN and |∇u(x)| < ∞ λN a.e.
in Ω. In the same way, using the Theorem of differentiation of measures, we
have

lim
j

[ηj ∗ ∇v](x) = 0 |Dv|s a.e. in Ω,(5.12)

lim
j

[ηj ∗ ∇u](x) = 0 |Dv|s a.e. in Ω,(5.13)

lim
j

[ηj ∗ (Du)ss](x) = 0 |Dv|s a.e. in Ω,(5.14)

lim
j

1

j
[ηj ∗ (Du)sa](x) = (Du)sa(x) lim

1

j
= 0 |Dv|s a.e. in Ω,(5.15)

where (Du)sa, (Du)ss denote the absolutely continuous and singular part of
(Du)s with respect to (Dv)s, and we obtain

(5.16) lim
j

Dzj(x)

|Dzj(x)| = lim
j

Dzj(x)

|[ηj ∗ (Dv)s]|(x)
=

Dv

|Dv|(x) |Dv|s a.e. in Ω.

Similarly

(5.17) lim
j

|Dzj(x)| = lim
j

|[ηj ∗ |Dv|s](x)| = ∞ |Dv|s a.e. in Ω.

Next, we prove that for a suitable choice of the numbers τj one has

(5.18) lim
j

Dzj(x)

(1/j)[ηj ∗ |Du|ss](x)
=

Du

|Du|(x) |Du|ss a.e..

Assuming this, it is easy to prove that

(5.19) lim
j

Dzj(x)

|Dzj(x)| =
Du

|Du|(x) |Du|ss a.e..
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Indeed,

Dzj = ηj ∗ Dv(x) +
1

j
ηj ∗ Du(x)

= ηj ∗ ∇v(x) + ηj ∗ (Dv)s(x) +
1

j
ηj ∗ ∇u(x)

+
1

j
ηj ∗ (Du)sa(x) +

1

j
ηj ∗ (Du)ss(x).

Since ηj∗∇v(x) → 0, ηj∗(Dv)s(x) → 0, 1
j
ηj∗∇u(x) → 0, 1

j
ηj∗(Du)sa(x) → 0

|Du|ss-a.e., we see that (5.19) follows from (5.18). To prove (5.18) we observe
that

(5.20)
Dzj(x)

(1/j)[ηj ∗ |Du|ss](x)
=

[ηj ∗ Dv](x)

(1/j)[ηj ∗ |Du|ss](x)
+

[ηj ∗ Du](x)

[ηj ∗ |Du|ss](x)
.

Since

(5.21)
[ηj ∗ Du](x)

[ηj ∗ |Du|ss](x)
→ Du

|Du|(x) |Du|ss a.e.,

it is sufficient to prove that

(5.22)
[ηj ∗ Dv](x)

1
j
[ηj ∗ |Du|ss](x)

→ 0 |Du|ss a.e..

To prove (5.22), we define

(5.23) aτ (x) =
[ητ ∗ Dv](x)

[ητ ∗ |Du|ss](x)
.

Since Dv and |Du|ss are mutually singular, then

aτ (x) → 0 |Du|ss a.e..

Thus, if we consider the sets

E(τ, j) =
{

x ∈ Ω : |aτ (x)| >
1

j2

}
,

for any fixed j ∈ N we have

lim
τ→0

|Du|ss(E(τ, j)) = 0.

For each j ∈ N, there is some τj such that

|Du|ss(E(τj, j)) <
1

2j
,
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that is

|Du|ss({x ∈ Ω : j|aτ (x)| >
1

j
}) <

1

2j
.

This easily implies that

lim
j→∞

jaτj
(x) = 0, |Du|ss a.e..

which is exactly (5.22). Moreover, we may choose τj such that 1
j
[ηj ∗

|Du|ss](x) → ∞ |Du|ss a.e.. From this, and (5.18), it follows that

(5.24) |Dzj|(x) → ∞ |Du|ss a.e..

We observe that up to know we have not used neither the hypothesis on the
regularity of ∂Ω nor the regularity of g.

We observe that the functions zj that we have constructed satisfy some
of the requirements of the Lemma but not all of them, in particular, (3.6),
(3.8), (3.12), (3.13) have yet to be satisfied. For that, we construct suitable
correction functions σj and ρj around the boundary and we shall define

vj = zj + σj + ρj.

Let gj ∈ C1(∂Ω) be such that gj → g in L1(∂Ω). We shall construct the
sequence of functions σj ∈ C1(Ω) such that

σj = gj − zj on ∂Ω,(5.25) ∫
Ω

|σj| N
N−1 → 0,(5.26)

σj(x) = 0 if D(x) > εj + ε2
j ,(5.27) ∫

Ω

ψ · Dσj →
∫

∂Ω

ψ · ν(g − v) dHN−1(5.28)

for all ψ ∈ C(Ω, RN),∫
Ω

|Dσj| →
∫

∂Ω

|v − g| dHN−1,(5.29)

|D(σj+zj)(x)| → ∞ HN−1 a.e. in T ={x ∈ ∂Ω : g(x) = v(x)},(5.30)

and

(5.31)
D(σj + zj)(x)

|D(σj + zj)(x)| →
g(x) − v(x)

|g(x) − v(x)|ν(x)

HN−1 a.e. in T = {x ∈ ∂Ω : g(x) = v(x)}.
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Construction of σj.

For each number ε ∈ (0, ε0) we consider a function hε(t) : [0,∞) → [0,∞)
such that

hε ∈ C1([0,∞)),

h′
ε(t) ≤ 0, h′

ε(0) = −1

ε
,

h′
ε(t) is not decreasing,

hε(0) = 1, hε(t) = 0 for t ≥ ε + ε2.

Let {εn}∞n=1 be a decreasing sequence of numbers such that

2ε1 < ε0 < 1, lim
j

εj = 0.

Now, let G ∈ W 1,1(Ω) such that G|∂Ω = g. Since gj ∈ C1(∂Ω), we may
consider a function Gj ∈ C1(Ω) which is an extension of gj. We may assume

that Gj → G in L1(Ω) and

∫
Ω

|∇Gj| →
∫

Ω

|∇G|. We define

(5.32) σj = [Gj(x) − zj(x)]hεj
(D(x)).

Clearly, σj ∈ C1(Ω),
σj = gj − zj on ∂Ω,

and, if D(x) > εj + ε2
j , then hεj

(D(x)) = 0, and, therefore

σj(x) = 0.

Now,∫
Ω

|σj|N/(N−1) =

∫
Ω2εj

|σj|N/(N−1) ≤
∫

Ω2εj

|Gj(x) − zj(x)|N/(N−1)

where, for any ε > 0, we denote

Ωε = {x ∈ Ω : D(x) < ε}.
The functions Gj, zj being independent of εj, we may choose εj > 0 small
enough such that ∫

Ω2εj

|Gj(x) − zj(x)|N/(N−1) <
1

j
.

Hence ∫
Ω

|σj|N/(N−1) → 0 as j → ∞.
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Let ψ ∈ C(Ω, RN). Since

∇σj(x) = ∇(Gj − zj)(x)hεj
(D(x)) + (Gj − zj)(x)h′

εj
(D(x))∇D(x),

we have∫
Ω

ψ(x) · ∇σj(x)dx =

∫
Ω

ψ(x) · (∇Gj(x) −∇zj(x))hεj
(D(x))dx

+

∫
Ω

(Gj(x) − zj(x))ψ(x) · ∇(hεj
(D(x)))dx

=

∫
Ω

εj+ε2
j

ψ(x) · (∇Gj(x) −∇zj(x))hεj
(D(x))dx

+

∫
Ω

εj+ε2
j

(Gj(x)−zj(x))ψ(x) · h′
εj

(D(x))∇D(x)dx.

Again, since |hε| ≤ 1 for all ε > 0, a proper choice of εj guarantees that∫
Ω

εj+ε2
j

ψ(x) · (∇Gj(x) −∇zj(x))hεj
(D(x))dx → 0

as j → ∞. Now, by our choice of Gj, (5.5) and a proper choice of εj, we
have that
(5.33)∫

Ω
εj+ε2

j

(Gj(x) − zj(x))ψ(x) · h′
εj

(D(x))∇D(x)dx →
∫

∂Ω

ψ · ν(g − v)dHN−1.

Indeed, using the change of variable’s formula ([13], p. 118, [20], p. 96),∫
Ω

εj+ε2
j

(Gj(x) − zj(x))ψ(x) · h′
εj

(D(x))∇D(x)dx

=

∫ εj+ε2
j

0

∫
[D=λ]

(Gj(y) − zj(y))ψ(y) · h′
εj

(D(y))
∇D(y)

|∇D(y)|dHN−1(y)dλ

=(εj + ε2
j)

∫
[D=λj ]

(Gj(y) − zj(y))ψ(y) · h′
εj

(D(y))
∇D(y)

|∇D(y)|dHN−1(y)

for some λj ∈ (0, εj + ε2
j) by the intermediate value Theorem. Now, since

Gj, zj do not depend on our choice of εj, by choosing εj → 0+ sufficiently
fast, we obtain(5.33). Hence∫

Ω

ψ(x) · ∇σj(x)dx →
∫

∂Ω

ψ · ν(g − v)dHN−1
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as j → ∞. In particular, we have

(5.34) lim inf
j

∫
Ω

|∇σj(x)|dx ≥
∫

∂Ω

|g − v|dHN−1.

On the other hand, we have∫
Ω

|∇σj(x)|dx ≤
∫

Ω
εj+ε2

j

|∇Gj(x) −∇zj(x)|dx

+

∫
Ω

εj+ε2
j

|Gj(x) − zj(x)||h′
εj

(D(x))||∇D(x)|dx.

Again, a suitable choice of εj guarantees that∫
Ω

εj+ε2
j

|∇Gj(x) −∇zj(x)|dx → 0

as j → ∞. Similarly, the properties of Gj, zj and a choice of εj imply that∫
Ω

εj+ε2
j

|Gj(x) − zj(x)||h′
εj

(D(x))||∇D(x)|dx →
∫

∂Ω

|g(x) − v(x)|dHN−1.

Hence

lim sup
j

∫
Ω

|∇σj(x)|dx ≤
∫

∂Ω

|g(x) − v(x)|dHN−1.

This, together with (5.34) proves that

(5.35) lim
j

∫
Ω

|∇σj(x)|dx =

∫
∂Ω

|g − v|dHN−1.

Finally, since

Dσj + Dzj = ∇Gjhεj
(D) + ∇zj(1 − hεj

(D)) + (Gj − zj)h
′
εj

(D)∇D,

we may write on ∂Ω

(5.36) Dσj + Dzj = ∇Gj − (Gj − zj)h
′
εj

(0)ν(x).

Hence, on ∂Ω, we have

Dσj + Dzj

|Dσj + Dzj| =
∇Gj − (Gj − zj)h

′
εj

(0)ν

|∇Gj − (Gj − zj)h′
εj

(0)ν| =
εj∇Gj + (Gj − zj)ν

|εj∇Gj + (Gj − zj)ν| .
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Now, choosing εj such that εj∇Gj → 0 as j → ∞, we obtain that

(5.37)
Dσj + Dzj

|Dσj + Dzj| →
g(x) − v(x)

|g(x) − v(x)|ν(x)

HN−1 a.e. in T = {x ∈ ∂Ω : g(x) = v(x)}. Next, a proper choice of εj in
(5.36) guarantees that

(5.38) |Dσj(x) + Dzj(x)| → ∞

HN−1 a.e. in T .

Next, we construct a sequence of functions ρj ∈ C1(Ω) such that

ρj = 0 on ∂Ω,(5.39) ∫
Ω

|ρj| N
N−1 → 0,(5.40)

ρj = 0 if D(x) > δ2
j(5.41)

for some δj > 0,

(5.42)

∫
Ω

|Dρj| → 0 ;

for HN−1 -a.e. x ∈ T , there is j0(x) such that

(5.43) Dρj(x) = 0 for all j ≥ j0(x);

(5.44) if we set vj = zj + σj + ρj then (3.13) holds.

Construction of ρj.

For all δ > 0 consider a function ψδ : [0,∞) → [0,∞) such that


ψδ ∈ C1([0,∞)),

ψδ(0) = 0, ψδ(t) = 0 for t ≥ δ2,

|ψ′
δ(t)| ≤

4

δ
, for t ∈ (0, δ2),

ψ′
δ(0) ≥ 1

δ
,∫ ∞

0

|ψ′
δ(t)|dt ≤ 2δ.
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We define ζ : ∂Ω → R

(5.45) ζ(x) =




u(x) − g(x)

|u(x) − g(x)| if g(x) = v(x) and g(x) = u(x)

0 elsewhere

Let ζj be a sequence of functions in C1(∂Ω) converging to ζ in L1(∂Ω).
Now, we may assume that ζ is the trace of a function Θ ∈ W 1,1(Ω) and
ζj are traces of functions Θj ∈ C1(Ω) such that Θj → Θ in L1(Ω) and∫
Ω
|DΘj| →

∫
Ω
|DΘ|. Let δj be a decreasing sequence of positive numbers

that converges to 0 and consider the functions

(5.46) ρj(x) = Θj(x)ψδj
(D(x)).

Clearly, ρj ∈ C1(Ω), ρj(x) = 0 if x ∈ ∂Ω. Also (5.41) holds. Since, by our
choice of the functions ψδ, we have

(5.47) |ψδ(t)| ≤ 2δ.

Now, ∫
Ω

|ρj|N/(N−1) ≤ 2δj

∫
Ω

|Θj|N/(N−1)

which tends to 0 as j → ∞, which proves (5.40).

Our purpose now is to choose the functions ζj such that (5.43) holds.
For that, we consider the sets

N+ = {x ∈ ∂Ω : ζ(x) = 1},
N− = {x ∈ ∂Ω : ζ(x) = −1},

N = N+ ∪ N−.

We consider increasing sequences of compact sets K+
j ⊆ N+, K−

j ⊆ N−

such that

lim
j

HN−1(N+ \ K+
j ) = lim

j
HN−1(N− \ K−

j ) = 0.

We consider also decreasing sequences of open sets G+
j ⊇ N+, G−

j ⊇ N−

such that

lim
j

HN−1(G+
j \ N+) = lim

j
HN−1(G−

j \ N−) = 0.

Now, we take functions ζ+
j , ζ−

j ∈ C1(∂Ω) with values in [0, 1] such that

(5.48) ζ+
j (x) =

{
1 in K+

j

0 in ∂Ω \ G+
j
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(5.49) ζ−
j (x) =

{
1 in K−

j

0 in ∂Ω \ G−
j ,

and we set
ζj = ζ+

j − ζ−
j .

The functions ζj satisfy

(5.50) ζj(x) =




1 in K+
j \ G−

j

0 in ∂Ω \ (G+
j ∪ G−

j )

−1 in K−
j \ G+

j .

Moreover

(5.51) lim
j

HN−1(T ∩ (G+
j ∪ G−

j )) = 0.

Recall that the functions Θj are extensions of ζj to Ω. Now,

∇ρj(x) = ∇Θj(x)ψδj
(D(x)) + Θj(x)ψ′

δj
(D(x))∇D(x).

If x ∈ ∂Ω, then
∇ρj(x) = −Θj(x)ψ′

δj
(0)ν(x).

Now, using (5.51), for almost all x ∈ T = {x ∈ ∂Ω : g(x) = v(x)}, there
exists j0(x) ∈ N such that ζj(x) = 0 for all j ≥ j0(x). Hence, also

∇ρj(x) = 0 for all j ≥ j0(x).

Next ∫
Ω

|∇ρj| ≤ 2δj

∫
Ω

|∇Θj| + ‖Θj‖∞‖∇D‖∞
∫

Ω
δ2
j

|ψ′
δj

(D(x))|dx

≤ 2δj

∫
Ω

|∇Θj| + ‖Θj‖∞‖∇D‖∞ 4

δj

∫
Ω

δ2
j

dx.

Now, for j large enough∫
Ω

δ2
j

dx =

∫ δ2
j

0

∫
[D=λ]

dHN−1(z)

|∇D(z)| dλ ≤ 2

∫ δ2
j

0

∫
[D=λ]

dHN−1(z)dλ ≤ Cδ2
j

where C depends on Per(∂Ω). Hence∫
Ω

|∇ρj| ≤ 2δj

∫
Ω

|∇Θj| + ‖Θj‖∞‖∇D‖∞4Cδj.
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Now, choosing δj we may guarantee that∫
Ω

|∇ρj| → 0 as j → ∞.

Since

∇vj = ∇Gjhεj
+∇zj(1− hεj

) + (Gj − zj)h
′
εj

(D)∇D +∇Θjψδj
+ Θjψ

′
δj
∇D,

on ∂Ω, we have

(5.52) ∇vj(x) = ∇Gj(x) − (Gj(x) − zj(x))h′
εj

(0)ν(x) − Θj(x)ψ′
δj

(0)ν(x)

and we may write on ∂Ω

∇vj

|∇vj| =
∇Gj − (Gj − zj)h

′
εj

(0)ν − Θjψ
′
δj

(0)ν

|∇Gj − (Gj − zj)h′
εj

(0)ν − Θjψ′
δj

(0)ν| =

=
δj∇Gj − δj(Gj − zj)h

′
εj

(0)ν − δjΘjψ
′
δj

(0)ν

|δj∇Gj − δj(Gj − zj)h′
εj

(0)ν − δjΘjψ′
δj

(0)ν| .

Now, we choose δj such that δj∇Gj → 0, δj(Gj − zj)h
′
εj

(0) → 0, as j → ∞,
we obtain that ∇vj

|∇vj| →
g(x) − u(x)

|g(x) − u(x)|ν(x)

HN−1 a.e. on {x ∈ ∂Ω : g(x) = v(x), u(x) = v(x)}. By choosing δj to
converge sufficiently fast to 0, from (5.52), we obtain that

|∇vj(x)| → ∞
HN−1 a.e. on {x ∈ ∂Ω : g(x) = v(x), u(x) = v(x)}.

Let us now check that vj = zj + σj + ρj satisfies the required properties.
Since vj = gj on ∂Ω, (3.6) follows immediately. The property (3.7) follows
from (5.4), (5.26) and (5.40). To check (3.8), let ψ ∈ C1(Ω, RN), ψ =
(ψ1, ..., ψn) and ψN+1 ∈ C1(Ω, R). Using (3.6) and (3.7), we obtain

lim
j

∫
Ω

[ N∑
i=1

ψi(x)Divj(x) + ψN+1(x)
]
dx

= − lim
j

∫
Ω

div ψ(x)vj(x)dx +

∫
∂Ω

gjψ · ν dHN−1 +

∫
Ω

ψN+1(x)dx

= −
∫

Ω

div ψ(x)v(x)dx +

∫
∂Ω

gψ · ν dHN−1 +

∫
Ω

ψN+1(x)dx

=

∫
Ω

[ψ(x) · Dv(x) + ψN+1(x)]dx +

∫
∂Ω

(g − v)ψ · ν dHN−1.
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Now, because of the lower semicontinuity of the total variation with respect
to weak convergence, we have∫

Ω

√
1 + |Dv|2 +

∫
∂Ω

|g − v|dHN−1 ≤ lim inf
j

∫
Ω

√
1 + |Dvj|2dx.

On the other hand, since∫
Ω

√
1 + |∇vj|2dx ≤

∫
Ω

√
1 + |∇zj|2dx +

∫
Ω

|∇σj|dx +

∫
Ω

|∇ρj|dx,

using (5.5), (5.29) and (5.42) we obtain that

lim sup
j

∫
Ω

√
1 + |Dvj|2dx ≤

∫
Ω

√
1 + |Dv|2 +

∫
∂Ω

|g − v|dHN−1.

This proves (3.8). Now, using (5.7), (5.27) and (5.41) we obtain (3.9). Next,
we observe that (3.10) is a consequence of (5.16), (5.27) and (5.41). In the
same way, (3.11) is a consequence of (5.19), (5.27) and (5.41). We observe
that (3.12) follows from (5.31) and (5.43). Fina lly, (3.13) has already been
proved. �
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