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ON FILTER CONVERGENCE OF SERIES

Abstract

A series
∑

xk is F-convergent to s if the sequence (
∑n

k=1 xk) of its
partial sums is F-convergent to s. We describe filters F for which F-
convergence of a series

∑
xk implies F-convergence to 0 of the series

terms xk. If (xk) is small enough with respect to a given filter F ,
then there is an F-subseries

∑
k∈I xk which is absolutely convergent

in the usual sense. Filters corresponding to summable ideals, Erdős-
Ulam ideals, matrix summability ideals, lacunary ideals and Louveau-
Veličković ideals are considered.

1 Introduction and preliminaries

The basic property of the classical series theory says that the terms of a con-
vergent series of reals form a null sequence; i.e., they must tend to zero. This
property, in turn, implies the existence of an absolutely convergent subseries
of a given convergent series. The question we pose in this paper is: how can
these properties be carried over to the notion of filter convergence?

We generalize some results of [9] and [7] and answer the above question
as follows. First, in Section 2, we characterize those filters F for which F-
convergence of a series

∑
xk implies F-convergence to 0 of the sequence of the

series terms (xk). We also consider those filters F for which F-convergence of
a series

∑
xk implies the usual convergence to 0 of an F-subsequence (xk)k∈I

of (xk). Then, in Section 3, we describe for some filters F the relation between
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the speed of a sequence converging to 0 and the existence of an F-subseries of
this sequence which is absolutely convergent in the usual way. This also yields
some generalization of the following (T) property [2] of a filter F : if

∑
xk is

an F-convergent series, then there is a subseries
∑
k∈A xk, A ∈ F , which is

convergent in the usual sense. In [2], J. Cervenansky, T. Salat and V. Toma
proved that filters Fst,FEU1/n

,F1/n (see the definitions below) do not have
the (T) property. In Section 3, we establish some weaker version of the (T)
property for classes of filters which contain Fst,FEU1/n

,F1/n.

Recall that a filter F on N is a non-empty collection of subsets of N satis-
fying the following axioms: ∅ /∈ F ; if A,B ∈ F , then A∩B ∈ F ; and for every
A ∈ F , if B ⊃ A, then B ∈ F .

The dual to the notion of filter is the notion of ideal. An ideal I on
N is a family of subsets of N closed under taking finite unions and subsets
of its elements. Given a filter F on N, we have the corresponding ideal of
complements IF = {N \A : A ∈ F} on N. And vice versa, a given ideal I on
N gives rise to the filter FI = {N \ A : A ∈ I}. Due to this correspondence,
sometimes we will say “ideal” while studying the corresponding “filter” and
the other way around.

One more family corresponding to a filter is the family of all its stationary
sets. A subset of N is called stationary with respect to F , or just F-stationary,
if it has a nonempty intersection with each member of the filter. In other words,
an A ⊂ N is F-stationary if and only if A does not belong to IF . Denote the
collection of all F-stationary sets by F∗. It is easy to check that the collection
F∗∗ = {A ⊂ N : A ∩ J 6= ∅, J ∈ F∗} is equal to F .

For an I ∈ F∗, we call the collection of sets F � I = {A ∩ I : A ∈ F} the
trace of F on I, which is evidently a filter on I. By F(I), we denote the filter
{A ⊂ N : A ⊃ B, B ∈ F � I} on N generated by the trace of F on I.

Any subset of N is either a member of F or a member of IF , or the set
and its complement are both F-stationary sets.

A sequence (xn), n ∈ N, in a topological space X is said to be F-convergent
to x, written x = F- limxn or xn →F x, if for every neighborhood U of x, the
set {n ∈ N : xn ∈ U} belongs to F ; equivalently {n ∈ N : xn /∈ U} ∈ IF . In
particular, if one takes F as the filter Fr whose ideal Fin consists of finite sets
(the Fréchet filter), then F-convergence coincides with the ordinary one.

It is natural to define F-convergence of a series as F-convergence of the
sequence of its partial sums. However, this definition is not the only possible
one. For example, S. G la̧b and M. Olczyk in [6] introduced another definition
based on the Cauchy condition. With their definition, the filter convergence
of a series implies the filter convergence of its terms to zero—as opposed to
the situation that we consider here.
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In this paper, we define a series
∑
xk of reals to be F-convergent to s if the

sequence (sn) = (
∑n
k=1 xk) is F-convergent to s, and we write s = F-

∑
k xk,

or simply s =
∑
F xk when there is only one possible summing index.

Theorem 1.1. [1] Let X be a topological space, xn, x ∈ X, and let F be a
filter on N. Then the following conditions are equivalent:

(i) (xn) is F-convergent to x;

(ii) (xn) is F(I)-convergent to x for every I ∈ F∗;

(iii) x is a cluster point of (xn)n∈I for every I ∈ F∗.

According to this theorem, it is natural to introduce the following notions.
A sequence (xn)n∈I with I ∈ F∗ is called an F-subsequence of the sequence
(xn). A series

∑
n∈I xn with I ∈ F∗ is called an F-subseries of the series∑

n∈N xn.
The natural ordering on the set of filters on N is defined as follows: F1 � F2

if F1 ⊃ F2. A filter F on N is said to be free if it dominates the Fréchet filter.
When we say “filter” below, we mean a free filter on N. In particular, all
ordinary convergent sequences and series will be automatically F-convergent.

Let us consider some examples of filters.
Recall that the statistical convergence filter is defined as the set

Fst =
{
A ⊂ N : lim

n→∞

|A ∩ {1, ..., n}|
n

= 1
}
.

A summable ideal is the set

Is =
{
A ⊂ N :

∑
k∈A

sk <∞
}
,

where s = (sk) is a sequence of non-negative real numbers such that
∑∞
k=1 sk =

∞. A summable filter is the filter Fs = FIs corresponding to Is.
An example of a filter dominating Fs is the Erdős-Ulam filter FEUs

. It is
determined by its ideal

EUs =
{
A ⊂ N : lim

n→∞

∑
k∈A∩[1,n] sk∑n

k=1 sk
= 0
}
.

All the filters above are the examples of filters with the following important
property. A filter F is a P -filter if, for every sequence of filter elements An,
there is A∞ ∈ F such that |A∞ \ An| < ∞ for every n ∈ N. An ideal is a
P -ideal if the corresponding filter of complements is a P -filter.

Identifying the set 2N with the Cantor space {0, 1}N we can talk about Fσ,
Borel, analytic filters and ideals.
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Definition 1.2. A map φ : 2N → [0,∞] is a submeasure on N if

• φ(∅) = 0 and φ({n}) <∞ for every n ∈ N;

• φ is monotone: A ⊂ B ⊂ N implies φ(A) ≤ φ(B);

• φ subadditive: A,B ⊂ N implies φ(A ∪B) ≤ φ(A) + φ(B).

It is lower semicontinuous if φ(A) = limn→∞ φ(A ∩ [1, n]) for every A ⊂ N.

There are two ideals associated with a lower semicontinuous submeasure φ
on N:

Fin(φ) = {A ⊂ N : φ(A) <∞}

and

Exh(φ) = {A ⊂ N : lim
n→∞

φ(A \ [1, n]) = 0}.

Theorem 1.3. Let I be an ideal on N. Then

(i) (K. Mazur, [11]) I is an Fσ ideal if and only if I = Fin(φ) for some
lower semicontinuous submeasure φ on N.

(ii) (S. Solecki, [12]) I is an analytic P -ideal if and only if I = Exh(φ) for
some lower semicontinuous submeasure φ on N. Every analytic P -ideal
is an Fσδ.

Every summable ideal Is is an Fσ P -ideal; Is is determined by a lower
semicontinuous submeasure φ(A) =

∑
n∈A sn, and Is = Fin(φ) = Exh(φ).

Every Erdős-Ulam ideal EUs equals Exh(φ), and the corresponding lower
semicontinuous submeasure φ is given by

φ(A) = sup
n∈N

∑
i∈A∩[1,n] si∑n

i=1 si
.

A wide class of analytical P -ideals containing all the Erdős-Ulam ideals
are ideals Iτ determined by summability matrices τ : τn,i ≥ 0,

∑∞
j=1 τn,j ≤ 1

for every n ∈ N; lim supn→∞
∑∞
j=1 τn,j > 0; limn→∞ τn,j = 0 for every n ∈ N.

We define Iτ to be a matrix summability ideal if Iτ is equal to Exh(φ), where
φ(A) = supn∈N

∑
i∈A τn,i. For a connection of Iτ with summable ideals, see

[8, Lemma 4].

Two more classes of ideals will appear in Section 3.
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2 F-convergence to 0 of terms of F-convergent series

In [9], the coincidence of the limit point range and the sum range of an F-
convergent series along a filter F was studied. It was shown that an essential
property for this coincidence is the existence of a null subsequence of an F-
convergent series. The characterization of this property [9, Proposition 2] is
that for every A ∈ F , there exists s ∈ A such that s + 1 ∈ A; the 1-shift
property. In this section, we generalize this result from [9].

The property that the terms of convergent series converge to 0 is charac-
teristic only for the usual convergence of series. Indeed, one can easily check
the following statement from [9]. We present it with a proof for the reader’s
convenience.

Proposition 2.1. Let F be a filter on N. Then F is the Fréchet filter if, for
every F-convergent series

∑
xk, the terms xk →k→∞ 0.

Proof. Suppose F is not the Fréchet filter. This means that there is some
infinite C ⊂ N such that A = N \ C ∈ F . Denote by E the infinite set
A ∩ (C + 1). Now let (xk) be the following sequence: xk is 1 for k ∈ E, −1
for k ∈ (E − 1) and 0 for k ∈ N \ (E ∪ (E − 1)). Then

∑
xk F-converges to 0,

but xk 6→k→∞ 0.

Let us describe two classes of filters with similar properties: F-convergence
to 0 of terms of a series and existence of a subsequence converging to 0.

Definition 2.2. A filter F is said to have the shift property, or is called shift
invariant, if A ∈ F implies A+ 1 ∈ F .

Proposition 2.3. The following conditions are equivalent:

1. F is shift invariant;

2. For every I ∈ F∗ and A ∈ F , (A+ 1) ∩A ∩ I 6= ∅;

3. IF is a shift invariant ideal; i.e., A ∈ IF implies A+ 1 ∈ IF .

Proof. The equivalence of (1) and (2) follows from the definition of a sta-
tionary set and the equality F∗∗ = F . Let us check the equivalence of (1) and
(3). Implication (1)⇒ (3): for every A ∈ IF , the set B := N\A ∈ F and thus
B ∩ (B+ 1) ∈ F . Since A+ 1 ⊂ N \ (B ∩ (B+ 1)), we deduce that A+ 1 ∈ IF .
Implication (3)⇒ (1): if B ∈ F , then A := N \B ∈ IF and A∪ (A+ 1) ∈ IF .
Since B + 1 contains N \ (A ∪ (A+ 1)), we deduce that B + 1 ∈ F .

Theorem 2.4. Let F be a filter on N. The following conditions are equivalent:
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1. For every sequence (xk) such that
∑
xk F-converges, the sequence (xk)

is F-convergent to 0;

2. F has the shift property.

Proof. (2)⇒(1). Let
∑
F xk = x and suppose that (xk) does not F-converge

to 0. Then by Theorem 1.1, there is δ > 0 and J ∈ F∗ such that |xk| > δ for
k ∈ J . For ε = δ/4, let us find A ∈ F such that |x −

∑s
k=1 xk| < ε for every

s ∈ A. Applying condition (2) of Proposition 2.3, we take s ∈ A such that
s+ 1 ∈ A ∩ J . Then we come to a contradiction:

ε >
∣∣∣x− s+1∑

k=1

xk

∣∣∣ ≥ |xs+1| −
∣∣∣x− s∑

k=1

xk

∣∣∣ > δ − ε > 2ε.

(1)⇒(2). Suppose that condition (1) of Proposition 2.3 does not hold.
Then there is A ∈ F such that (A+ 1) 6∈ F , and so there is I ∈ F∗ such that
(A + 1) ∩ I = ∅. This means that A ∩ (I − 1) = ∅. Consider J := A ∩ I.
We have J ∈ F∗, J − 1 ∈ IF and J ∩ (J − 1) = ∅. Let (xk) be the following
sequence: xk = −1 for k ∈ J − 1, xk = 1 for k ∈ J and xk = 0 for all other k.
Then

∑
xk is F-convergent, since

∑
k∈B xk = 0, where B = N \ (J − 1) ∈ F ;

but (xk) does not F-converge to 0.

Let us also consider the following weaker property.

Definition 2.5. A filter F is said to have the 1-shift property, or is called
1-shift invariant, if A ∈ F implies A+ 1 ∈ F∗.

Proposition 2.6. A filter F is 1-shift invariant if and only if for every A ∈ F ,
A ∩ (A+ 1) 6= ∅.

Proof. One direction is obvious. Thus, it is sufficient to show that A∩ (A+
1) ∈ F∗. Let us take an arbitrary B ∈ F and check that B∩ (A∩ (A+1)) 6= ∅.
We know that B ∩ A ∈ F . Hence, by the propositions assumption, we get
B∩A∩ (B∩A+1) 6= ∅. Since B∩A+1 ⊂ A+1, we have B∩A∩ (A+1) 6= ∅.
That is what we needed to check.

This proposition means that the 1-shift property is the property of the
same name from [9]. So, the following theorem can be found in [9] or can be
proved the same way as Theorem 2.4 above.

Theorem 2.7. Let F be a filter on N. The following conditions are equivalent:

1. For every sequence (xk) such that
∑
xk F-converges, there is a null

subsequence (xkn); i.e., (xkn)→ 0;
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2. F has the 1-shift property.

Theorem 2.8. Let F be a 1-shift invariant P -filter. Then every sequence
(xk) with F-convergent series

∑
xk has an F-subsequence (xk)k∈I , I ∈ F∗,

which is F-convergent to 0.

Proof. Let F-
∑
xk = x. Since F is a P -filter, there is A ∈ F such that

limn→∞
∑an
k=1 xk = x, where (an) is an increasing numeration of A. Suppose

(xk) 6→F(I) 0 for any I ∈ F∗. According to the 1-shift property, we can take
I = (A + 1) ∩ A. By Theorem 1.1, there are δ > 0 and J ∈ F∗, with J ⊂ I,
such that |xk| > δ for k ∈ J . Let us take ε = δ/4 and N big enough to satisfy
|x −

∑an
k=1 xk| < ε for all an ≥ N . For every s ∈ J , we have s − 1 ∈ A, and

taking s > N , we come to a contradiction:

ε >
∣∣∣x− s∑

k=1

xk

∣∣∣ ≥ |xs| − ∣∣∣x− s−1∑
k=1

xk

∣∣∣ > δ − ε > 2ε.

If F is a P -filter, then for every I ∈ F∗, the filter F(I) is also a P -filter.
Thus, we can strengthen the statement of Theorem 2.8.

Corollary 2.9. If F is a 1-shift invariant P -filter, then every sequence (xk)
with F-convergent series

∑
xk has an F-subsequence (xk)k∈I , I ∈ F∗, which

converges to 0.

The shift property is a strictly stronger condition than the 1-shift property
even for P -filters. One can construct a filter which is 1-shift invariant, but not
shift invariant; for example, a filter on N isomorphic to the Fubini product
{N} × Fr = {(n,A) : n ∈ N, A ∈ Fr}.

Let us find examples of filters with the shift property.

Proposition 2.10. Let I = Exh(φ) be an analytical P -filter such that φ(A) =
supµ≤φ µ(A), where µ is a measure and µ({n}) ≥ µ({n+ 1}) for every n ∈ N.
Then I is a shift invariant ideal.

Proof. Let us take an arbitrary I ∈ I. We have limk→∞ φ(I \ [1, k]) = 0.
For I + 1, by the propositions condition and semicontinuity of φ, we get

φ ((I + 1) \ [1, k]) = lim
n→∞

φ ((I + 1) ∩ (k, n])

= lim
n→∞

sup
µ≤φ

∑
i∈I∩(k,n]

µ({i+ 1}) ≤ lim
n→∞

φ (I ∩ (k, n]) = φ(I \ [1, k]),

and so the sequence converges to 0 as k →∞. Thus, we obtain I + 1 ∈ I, and
by Proposition 2.3, the statement is proved.
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Corollary 2.11. The following ideals I are shift invariant:

• I determined by a summability matrix τ such that τi,j ≥ τi,j+1 for all
i, j ∈ N;

• I = EUs and si ≥ si+1 for all i ∈ N;

• I = Is and si ≥ si+1 for all i ∈ N.

3 Null filter subsequences and filter subseries

Let us consider another approach to the study of terms of a series which
converge to 0 with respect to a given filter. In [7], we studied sequences of a
Hilbert space which have 0 weak filter limit, but can tend to infinity in norm.
A connection to the question that we study here was established. In particular,
it was shown that there is a convergent Fst-subseries

∑
n∈I xn <∞ of positive

reals xn if and only if there is an Fst-subsequence of (nxn)n∈J converging to
0. In this section, we extend the results obtained in [7] to lacunary statistical
convergence filters and Louveau-Veličković filters. For filters corresponding to
general matrix summability ideals, the problem is open.

Definition 3.1. Let H be an infinite-dimensional separable Hilbert space.
For a given filter F on N, let us say that a sequence (an) of positive reals
is F-admissible if there is a sequence (xn) ⊂ H with ‖xn‖ = an such that
F- limxn = 0 in weak topology.

Let us state the main theorem of the paper [7].

Theorem 3.2. Let F be a filter on N. The following properties of a sequence
an > 0, n ∈ N, are equivalent:

1. (an) is F-admissible;

2. For every I ∈ F∗, ∑
n∈I

a−2
n =∞;

3. F dominates the summable filter Fa−2

; or dually Ia−2
n ⊂ IF .

Summarizing results obtained in [7], namely Theorem 5.9, Remark 5.10
and Theorem 5.14, we have the following theorem.
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Theorem 3.3. Let φ be a lower semicontinuous submeasure on N and F the
filter corresponding either to the ideal I = Exh(φ) or to the ideal I = Fin(φ).
A sequence (an) of positive numbers is F-admissible if, for every J ∈ F∗,
an
√
φ(n) 6→J ∞.

Moreover, for the Erdős-Ulam ideals and summable ideals, the opposite
implication is also true.

Let us apply now the equivalence of negation of the statement of Theorem
3.3 and the negation of (2) in Theorem 3.2. If we write 1

a2nϕn
→J 0 instead of

an
√
ϕn →J ∞ and put an = 1/

√
xn, then we obtain the following corollary

on F-subseries.

Corollary 3.4. Let F be a filter which corresponds to either an Erdős-Ulam
ideal or a summable ideal, and let ϕn be sn∑n

k=1 sk
or sn, accordingly. For a

sequence (xn) of positive reals, the following statements are equivalent:

(1) there is an I ∈ F∗ such that
∑
n∈I xn <∞;

(2) there is a J ∈ F∗ such that xn/ϕn →n∈J 0.

These statements can be also reformulated as follows:

(1) there is a convergent F-subseries of
∑
xn;

(2) there is an F-subsequence of (xn/ϕn) converging to 0.

Let us unify the results of Corollary 2.9 and Corollary 2.11 with the above
Corollary 3.4. We have the following weak analogue of the (T) property for
the Erdős-Ulam and summable ideals with the 1-shift property.

Corollary 3.5. Let F be a filter which corresponds to either an Erdős-Ulam
ideal or a summable ideal with si ≥ si+1, and let ϕn be equal to sn∑n

k=1 sk
or

sn, accordingly. If
∑
xk is F-convergent, then there is an I ∈ F∗ such that∑

k∈I ϕk|xk| <∞.

Now let us check the “moreover” part of Theorem 3.3 and get results similar
to Corollaries 3.5 and 3.4 for the class of lacunary statistical filters.

Recall the definition of lacunary sequence [5] and introduce the correspond-
ing ideal.

Let (θr) be a rapidly increasing sequence of naturals such that ∆θr :=
θr − θr−1 →r→∞ ∞. A lacunary ideal Iθ is defined as follows: I ∈ Iθ if and
only if

lim
r→∞

|(θr−1, θr] ∩ I|
∆θr

= 0.
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It is easy to see that the corresponding matrix summability elements are

τr,i =

{
0, when i 6∈ (θr−1, θr]

1
∆θr

, when i ∈ (θr−1, θr]
,

and φ({i}) = supn∈N τn,i = 1
∆θr

, where θr is the number for which i ∈
(θr−1, θr]. Some results on lacunary statistical convergence may be found
in [5].

Defining for every I 6∈ Iθ the sets Dn(I) = (θn−1, θn] ∩ I, we obtain the
following lemma.

Lemma 3.6. Let Iθ be a lacunary ideal. Then I 6∈ Iθ if and only if there are
ε > 0 and a subsequence n1 < n2 < . . . such that

1 >
|Dnj (I)|

∆θnj

> ε for all j ∈ N. (3.1)

Theorem 3.7. Let Fθ correspond to a lacunary ideal Iθ. A sequence (an) is
not Fθ-admissible if and only if there is J ∈ F∗θ such that

an

√
1

∆θr(n)
→n∈J ∞, where n ∈ (θr(n)−1, θr(n)].

Proof. Theorem 3.3 gives us the “only if” part . So, it is the “if” part

that we need to prove. Let us have J ∈ F∗θ such that an
√

1
∆θr(n)

→ ∞
along J . Lemma 3.6 gives us (nj) and ε > 0 such that Dnj

(J) satisfies (3.1).
Obviously, for every subsequence (mj) ⊂ (nj), the inequality (3.1) also holds.
Thus, I =

⊔∞
j=1Dmj

(J) ∈ F∗θ . To prove our statement, it is sufficient to find

(mj) such that
∑
n∈I a

−2
n <∞.

Let us write f(n) = an
√

1
∆θr(n)

and choose a subsequence (mj) such that

mink∈Dmj
f2(k) > 2j . We have

∑
n∈I

a−2
n =

∞∑
j=1

∑
k∈Dmj

(J)

a−2
k ≤

∞∑
j=1

∑
k∈Dmj

(J)

1

f2(k)

1

∆θr(k)

<

∞∑
j=1

1

2j
|Dmj (J)|
∆θr(mj)

<∞.
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Corollary 3.8. Let Fθ be a lacunary statistical convergence filter and (xn) a
sequence of positive reals. The following statements are equivalent:

(1) there is an Fθ-subseries of
∑
xn which is convergent;

(2) there is an Fθ-subsequence of (∆θr(n)xn) converging to 0.

Every lacunary statistical convergence ideal is obviously a shift invariant
ideal. So, the above corollary, together with Corollary 2.9, gives us the follow-
ing result.

Corollary 3.9. Let Fθ be a lacunary statistical convergence filter. If
∑
xk is

Fθ-convergent, then there is an I ∈ Fθ∗ such that
∑
k∈I

|xk|
∆θr(k)

<∞.

Finally, let us have the description of F-admissibility and its corollaries for
Louveau-Veličković ideals.

Let us mention that Louveau-Veličković ideals are examples of non-density
ideals (c.f. [4]). Note that lacunary statistical convergence ideals are density
ideals, as are Erdős-Ulam ideals. Density ideals are defined in [3] as follows.
Assume that Dk are pairwise disjoint intervals on N and µn a measure that is
concentrated on Dn. Then φ = supn µn is a lower semicontinuous submeasure,
and Zµ = Exh(φ) is called a density ideal.

Recall the definition of Louveau-Veličković ideal [10]. Let (θr) be an in-
creasing sequence of naturals. Let Dr be pairwise disjoint intervals on N such
that |Dr| = 2θr . Let φr be a submeasure on Dr given by

φr(I) =
log2(|I ∩Dr|+ 1)

θr
.

Then φ = supr φr is a lower semicontinuous submeasure, and LVθ = Exh(φ) is
called the Louveau-Veličković ideal. It is easy to see that the following lemma
is true.

Lemma 3.10. Let LVθ be a Louveau-Veličković ideal. Then I 6∈ LVθ if and
only if there are ε > 0 and a subsequence n1 < n2 < . . . such that

2 >
log2(|I ∩Dnj

|+ 1)

θnj

> ε for all j ∈ N. (3.2)

Theorem 3.11. Let F correspond to I = LVθ. A sequence (an) is not F-
admissible if and only if there is J ∈ F∗ such that

an

√
1

|J ∩Dr(n)|
→n∈J ∞, where n ∈ Dr(n).
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Proof. Let us first suppose that a sequence (an) is not F-admissible. For a

given I, we write f(k, I) = ak
√

1
|I∩Dr(k)|

, and for a natural n, we set I<n =

{k ∈ I : f(k, I) < n} and I≥n = {k ∈ I : f(k, I) ≥ n}. Then there is I ∈ F∗
such that for every n, we have

∞ >
∑
k∈I

a−2
k =

∞∑
r=1

∑
k∈Dr∩I

1

|Dr ∩ I|f2(k, I)

≥
∞∑
r=1

( ∑
k∈Dr∩I<n

1

|Dr ∩ I|n2
+

∑
k∈Dr∩I≥n

1

|Dr ∩ I|maxk∈Dr
f2(k, I)

)

=

∞∑
r=1

|Dr ∩ I<n|
|Dr ∩ I|n2

+

∞∑
r=1

|Dr ∩ I≥n|
|Dr ∩ I|maxk∈Dr f

2(k, I)
. (3.3)

For this I ∈ F∗ and the sets I≥n and I<n from (3.3), there are two possible
cases: (1) There are infinitely many n such that I<n ∈ I; (2) I<n ∈ F∗(I) for
all n starting from some natural number.

Since (I<n) is an increasing sequence, the case (1) gives us that I<n ∈ I for
all n. For P -filters, this means that we can find A ∈ F such that |I∩A∩I<n| <
∞ for every n. Thus, for every n, there is a natural N such that for all k > N ,
k ∈ I ∩ A, we have f(k, I) ≥ n. We conclude that f(k, I ∩ A) ≥ f(k, I)→∞
along I ∩A.

Now let us show that the case (2) gives us that all sets I≥n are also in
F∗(I). First note that

|I≥n ∩Di|+ |I<n ∩Di| = |I ∩Di| ≥ xi|I<n ∩Di|

for some xi → +∞, since the first series from (3.3) converges. Thus,

|I≥n ∩Di| ≥ (xi − 1)|I<n ∩Di|,

and for those i for which |I<n ∩Di| ≥ 1, we have

|I≥n ∩Di|+ 1 ≥ (xi − 1)

2

(
|I<n ∩Di|+ 1

)
.

So, we get

log2(|I≥n ∩Di|+ 1)

θi
≥ log2(|I<n ∩Di|+ 1)

θi
+

log2
(xi−1)

2

θi
. (3.4)

Since the last summand is nonnegative when i→∞, we obtain that I≥n is in
F∗(I).
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Our last step is to apply Lemma 3.10 and choose one Dmn for each I≥n

such that the condition (3.2) holds and (mn) is increasing. Then by the same
lemma, the set J =

⊔∞
n=1Dmn

∩I≥n is in F∗, actually in F∗(I), and for every
n, there is a natural N such that for all k > N , k ∈ J , we have f(k, I) ≥ n.
So, this case also gives us that f(k, J) ≥ f(k, I)→∞ along J .

Now we consider the opposite direction. Let us have J ∈ F∗ such that

f(k, J) = ak
√

1
|J∩Dr(k)|

→ ∞ along J . Lemma 3.10 gives us (nj) and ε > 0

such that Dnj∩J satisfies (3.2). Obviously, for every subsequence (mj) ⊂ (nj),
the inequality (3.2) also holds, and thus, I =

⊔∞
j=1Dmj ∩ J ∈ F∗. We choose

(mj) such that mink∈Dmj
f2(k, J) ≥ 2j . Hence, we have

∑
n∈I

a−2
n =

∞∑
j=1

∑
k∈J∩Dmj

a−2
k =

∞∑
j=1

∑
k∈J∩Dmj

1

f2(k)|J ∩Dmj
|

≤
∞∑
j=1

1

mink∈Dmj
f2(k)

<

∞∑
j=1

1

2j
<∞.

The absence of F-admissibility is proved.

Corollary 3.12. Let F be a filter which corresponds to the Louveau-Veličković
ideal. For a sequence (xn) of positive reals, the following statements are equiv-
alent:

(1) there is an I ∈ F∗ such that
∑
n∈I xn <∞;

(2) there is a J ∈ F∗ such that

|J ∩Dr(n)|xn →n∈J 0, where n ∈ Dr(n).

Finally, to obtain the analogue of Corollaries 3.5 and 3.9 for the Louveau-
Veličković ideals, let us check that they have the shift property.

Proposition 3.13. The Louveau-Veličković ideals are shift invariant.

Proof. Suppose I ∈ LV = Exh(φ); that is, limk→∞ φ(I \ [1, k]) = 0. Let us
check the same limit for I + 1. We have

φ ((I + 1) \ [1, k]) = lim
n→∞

φ ((I + 1) ∩ (k, n])

= lim
n→∞

sup
r

log2(|(I + 1) ∩ (k, n] ∩Dr|+ 1)

θr

≤ φ (I \ [1, k]) + lim
n→∞

sup
r

1

θr
log2

(
|(I + 1) ∩ (k, n] ∩Dr|+ 1

|I ∩ (k, n] ∩Dr|+ 1

)
. (3.5)
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The supremum in the last summand of (3.5) is reached at r = r(k), which
tends to ∞ when k →∞. This supremum is

≤ 1

θr(k)
log2

(
1 +

1

|I ∩ (k, n] ∩Dr(k)|+ 1

)
≤ 1

θr(k)
log2 2→k→∞ 0.

Thus, φ ((I + 1) \ [1, k]) is also convergent to 0 as k →∞.

Corollary 3.14. Let F be a Louveau-Veličković filter. If
∑
xk is F-convergent,

then there is an I ∈ F∗ such that
∑
k∈I

|xk|
|I∩Dr(k)|

<∞, where k ∈ Dr(k).
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