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Abstract

We explore properties of L"-derivates with respect to a monotone
increasing Lipschitz function. We then define L"-ex-major and L"-ex-
minor functions with respect to a monotone increasing Lipschitz function
and use these to define a Perron-Stieltjes type integral which extends
the integral of L. Gordon.

1 Introduction

In 1914, O. Perron [3] developed an extension of the Lebesgue integral based on
major and minor functions and upper and lower Dini derivates. The classical
derivative of a function F' is Perron integrable, and F' is the indefinite integral
of its derivative. Calderon and Zygmund then introduced the L"-derivative,
which has applications in harmonic analysis [1]. Later, L. Gordon developed
a Perron-type integral that recovers a function from its L"-derivative [2].

In [7], Tikare and Chaudhary defined L"-derivates with respect to a Lip-
schitz function of order 1. They then defined a Perron-type integral which
recovers a function from its L"-derivative with respect to a Lipschitz function.
In the present paper, we modify the integration process given in [7] so that it
extends the integral of L. Gordon [2].

Throughout this paper, a Lipschitz function will mean a Lipschitz function
of order 1, and r € [1, 00).
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2 Definitions and elementary properties of the
L™?-derivates

For completeness, here we restate the definitions of the L"-derivates with re-
spect to a Lipschitz function found in [7].

Definition 1. [7] Let f € L" [a,b], let ¢ be a monotone increasing Lipschitz
function defined on [a,b], and let h — 0.

We define the upper right L™?-derivate, denoted D f (z; ¢), to be the great-
est lower bound of all a such that

r

1 h
(h/o [f(fl?+f)f(x)a(¢($+t)¢(ﬂf))]idt> =o(h). (1)

If no real number o satisfies (1), then we set DY f (z;¢) = +oo. If (1)
holds for every real number «, then we set D;f f (z;¢) = —o0.

We define the lower right L™?-derivate, denoted D, f(z;¢), to be the
least upper bound of all o such that

T

1 h
(h/o [f<m+t>—f<x>—a<¢<x+t>—¢<x>>rdt) =o(h). (@

If no real number o satisfies (2), then we set D ,f (z;¢) = —oo. If (2)
holds for every real number «, then we set Dy ,f (x; ¢) = +00.

We define the upper left L™?-derivate, denoted D, f (z;¢), to be the great-
est lower bound of all o such that

1

r

1 h
<h/0 [—f(x—t)+f(1‘)—a(—¢(x—t)+¢(x))]idt> =o(h). ()

If no real number o satisfies (3), then we set D f (x;¢) = +oo. If (3)
holds for every real number «, then we set D f (x; ¢) = —oc.

Finally, we define the lower left L™?-derivate, denoted D_ ,.f (z; ), to be
the least upper bound of all a such that

T

1 h
(h/o [—f(ﬂc—t)Jrf(x)—a(—¢($—t)+¢($))]r_dt> =o(h). (4)

If no real number o satisfies (4), then we set D_ . f (z;¢) = —oo. If (4)
holds for every real number o, then we set D_ . f (z;¢) = 4o00.
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Definition 2. [7] We define the upper (two-sided) L™?-derivate as follows:
D, f (z;¢) = max {D} f (x;¢) ,D; f (z:9)} -
Similarly we define the lower (two-sided) L™?-derivate as follows:

D, f(x;¢) =min{Dy,f(x;0),D_,f(x;¢)}.

Definition 3. Let f and ¢ satisfy the hypotheses of Definition 1 and let h —
0. If D.f (z;0) and D,.f (x;¢) are the same real number, then we say that
f is L™®-differentiable at x and denote the common value by D, f (z,¢) .

If the ¢ is omitted from the notation for an L™?-derivate or L™?-derivative,
then it is assumed that ¢ is the identity function, and we have the L"-derivates
and L"-derivatives from [2].

It is clear that if ¢ is strictly decreasing in a neighborhood of z, then none
of the L™?-derivates at = can be finite; therefore, unless otherwise indicated,
in this paper we will assume that ¢ is monotone increasing.

We will make use of the following.

Theorem 4. [7] Let f and ¢ satisfy the hypotheses of Definition 1. Then
either D f(x;¢) = +oo or D f(x; @) is the minimum of all real numbers o
such that

r

1 h
(h | tra+0- 1@ -at@+1 —¢><x>mdt> — o(h),

where ¢ is a monotone increasing Lipschitz function.
Similar conditions hold for each of the other L™?-derivates.

Indeed, we now show that in order for ¢ to have finite L™?-derivates at z,
¢ must be strictly increasing in a neighborhood of x and must not increase
too slowly.

Theorem 5. Let f and ¢ satisfy the hypotheses of Definition 1, and let x €
la,b]. If D} ¢(x) =0, that is, if

1
=

h
(}IL/O (d)(x—i-t)—gb(:z:))rdt) =o(h) ash — 0", (5)

then both D;f f (x;¢) and Dy . f (x;¢) are infinite.
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Similarly if D, ¢(x) = 0, that is, if

T

h
(ilz/o (¢(x)¢(:ct))rdt> =o(h) ash — 07,

then both D f (x;¢) and D_ . f (x; ¢) are infinite.

PRrOOF. We will prove that D;f¢(z) = 0 implies that D, f (x;¢) is infinite;
the other cases have similar proofs.
Suppose

1 ™

' +
(h/o [f (x+t)f($)]+dt> =o(h)ash—0 (6)

and let & € R. We then have by Minkowski’s inequality

-

h
(;A[f@+ﬂ—f@%ﬂﬂ¢@+ﬂ—¢@m1ﬁ>

N % h
S(iA[ﬂw+ﬂ—ﬂ@Hﬁ>~Ha<i£(¢@+ﬂ—ﬂ@fﬁ>

Both of the terms on the right hand side are o (h), so that D} f (z; ¢) = —c0.
Also by Minkowski’s inequality, we have

(;A[fu+w—f@md0

™

Slm

h
44M<ié(¢@+ﬂ—¢uwﬂ0 ,

so that if (6) does not hold, then D} f (x;¢) = +o0, and the result is proved.
O

Corollary 6. If D f (x;¢) or Dy, f (x;¢) is finite, then D ¢(x) > 0, and
if D, f (x;¢) or D_ ,.f (x;¢) is finite, then D, ¢(x) > 0.
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Theorem 7. Let f and ¢ satisfy the hypotheses of Definition 1, and let x €
[a,b]. Then,

1. Df¢(z) > 0 implies D;f f (x;¢) > D - f (z; 9),
2. D ¢(x) > 0 implies D f (z;¢) > D_,.f (z; ),
3. Dfo(x) >0 and D, ¢(x) > 0 imply D, f (x;6) > D,.f (z;¢).

PROOF. It is clear that (3) follows from (1) and (2). We will prove that
D} f (x;¢) > Dy f (z;¢); the proof for the left L™?-derivates is similar. If
Df f (z;0) +o00, then there is nothing to prove. We first assume that
D f (x;¢) is finite. Suppose that 8 could take the place of o in (1) and ~y
could take the place of « in (2), and suppose by way of contradiction that
v > B. We then have

S=

h
ogwm<;4<¢u+w¢unwg

3=

s(il[f@+ﬂ—f®%ﬁ%¢@+ﬂ—¢mm1ﬁ>

=

1" )
+<h/0 [f(ffﬂ)—f(x)—7(¢(x+t)—¢(x))]_dt>

The last two terms are o (h). This contradicts the fact that D;F¢(x) > 0,
so either Dy ,.f (z;¢) is a finite number less than or equal to D) f (x;¢) or

Dy, f (z;¢) = —o0.
Finally we consider the case where D;f f (z;¢) = —oo. Assume by way of

contradiction that Dy ,f (z;¢) # —o0; i.e., there exists vy that could take the
place of a in (2). The preceding inequality shows that if 8 < v, then

(;11/0 [f(x+t)—f(x)—5(¢(x+t)—¢>(x))]idt> T £ o(h).

This means that D, f (z; ¢) > —oo, and the theorem is proved. O

It is clear that if f is L™¢-differentiable at z, then Df¢(x) > 0 and
D, ¢(x) > 0. Therefore, the following is a consequence of Theorem 7.
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Corollary 8. If f is L™?-differentiable at x, then D,f (x,$) is the unique
real number o such that

1

' T
<h/h|f($+t)f(x)a(¢(m+t)¢(z))| dt) —o(h).

In addition, all four L™?-derivates are equal to D, f(x, ).

We now show that the upper L™?-derivate is subadditive, the lower L™®-
derivate is superadditive and the L™?-derivative is additive.

Theorem 9. Let f satisfy the hypotheses of Definition 1, and let x € [a,].
Let f1 and fy be in L" [a,b],1 < r < o0, and let ¢ be a monotone increasing
Lipschitz function defined on [a,b] such that D} ¢(x) > 0. Let f = fi1 + fa.
Then

1. Df f (z;6) < D} f1(2;0) + Df fa (x;6) and
2. Dy, f(x;0) > Dyrfr(x;0) + Dy fo(x;9)

if the right side of each inequality is defined. Similar inequalities hold for the
left and two-sided L™?-derivates.

If f1 is L"®-differentiable at © and fo is L™?-differentiable at x, then f is
L™ -differentiable at x and D, f (z;¢) = D, f1 (x;¢) + Dy fa (x5 ¢).

PROOF. We sketch the proof of (1). If the right hand side of the inequality is
400, then there is nothing to prove. If the right hand side is finite, then the
result holds by Minkowski’s inequality.

If the right hand side is —oco, we may assume that D} fi (z;¢) = —oo.
Let 8 € R, let ag > D} fo(z;4) and let oy = 8 — az. An application of
Minkowski’s inequality proves the result. O

3 Relation between L"?-derivates and L’-derivates.

If ¢ is L"-differentiable at a point z, then we have the following.

Theorem 10. Let f satisfy the hypotheses of Definition 1, and let ¢ be a
monotone increasing Lipschitz function defined on [a,b] which is L"-differentiable
at x with D.¢ () > 0. Then f is L™?-differentiable at x if and only if f is
L7 -differentiable at x, and in this case we have

D, f(x) = Dy¢ (x) D f (2,9) - (7)
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PrOOF. Let B = D,¢(x). Suppose f is L™?-differentiable at x and let
a=D,f(x,¢). We then have

r

h
+la (,t/ |¢<x+t>—¢<x>—5t|rdt>

—h

Both of the terms on the righthand side are o (h), so f is L"-differentiable

f<z+t>—f(xwgw(wt)—mx))

T

at x and (7) holds.
Conversely, suppose f is L"-differentiable at x and let £ = D,.f (z). Then
we have that
1 h r %
(1 g
hJ-n
1 [h
<5 ) Warn-r@ -l
—h
1
| AN
+ =~ lp(x+1t)—¢(x)— Bt dt ] .
BlI\hJy
Both of the terms on the righthand side are o (h), so f is L™?-differentiable
at x and (7) holds.
O

Theorem 11. Let ¢ be a monotone increasing Lipschitz function defined on
[a,b]. Then D, f (x;¢) >0 if and only if D, f (x) > 0.

PROOF. Let v be the identity function. Suppose Dy . f (z;¢) > 0. Let
Pt 4 (o) mean that

T

h
<,11/0 [f(m+t)—f(x)—a(qb(x—i—t)—qS(gg))]rdt) —o(h).

Suppose a < . Then because ¢ is monotone increasing, we have that
Pf@ (ﬂ) implies Pf@ (Ot) .
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By Theorem 4, we have that if D, f (z;¢) > 0, then Pf 4 (0). We then
have that

I

1 h
(h/o [f<x+t>—f<x>—o<¢<x+t>—¢<x>>rdt) =o(h)
so that
h ¥
(}l/ [f(w+t)—f(:v)—0(v(w+t)—v(w))]idt> —o(h),

and so Dy . f () > 0. The converse follows similarly. Also, the result for the
lower left L"-derivate follows similarly. O

Theorem 12. Let ¢ be a monotone increasing Lipschitz function defined on
[a,b]. If D,.¢(x) is finite and if D, f(x;$) < oo, then D, f(x) < oo.

PRrOOF. We first work on the right side; the proof for the left side is similar.
Since D;f f(x;¢) < oo, there exists a real number « such that (1) holds. We
wish to prove that there exists 8 such that

I

h
(,ﬁ / [f(x+t)—f(:v)—ﬁt]1dt> = ofh)

Let D;f¢(x) = n, where 0 < n < oo. By Corollary 6, we also have that
1n > 0. We then have
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We may therefore conclude that D; f(z) < co, and the theorem is proved.
O

4 Relation between L"*-continuity and L"-continuity

Definition 13. [7] Let 1 < r < co. A function f € L"([a,b]) is said to be
L' -continuous with respect to ¢ (or simply L™®-continuous) at xo € [a,b] if
for some number k,

/[ | F0) = @) —K(o(z) — 6(au)) de = olh) (8)

ﬁ[xofh,ngrh]
In particular, if k = 0, we will simply say that f is L"-continuous at x.

Theorem 14. Given a Lipschitz function ¢, a function f : [a,b] — R is
L" -continuous with respect to ¢ if and only if f is L"-continuous.

PROOF. Let f be L"-continuous. We need to show that (8) holds for any
Lipschitz function ¢ and any k. Let M be a positive constant such that for
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any x1, s € [a,b] we have
¢(22) — d(a1)| < Mlza — 4.

By Minkowski’s inequality we have

( / |f(x) — f(xo) — k(o(x) — qs(xo))v“dx)
[a,b]N[zo—h,zo+h]

s(/ |f<x>f(a:o>|fdx> + Ik (/ |¢><z>¢<xo>|'”dx>
la,b]N[zo—h,x0+h] la,b]N[zo—h,x0+h]
go(h)+|k|M/ o — 20| dz

[a,b]N[zo—h,z0+h]

1
< o(h) + KM / Ih|" da
la,b]N[zo—h,xo+h)]

< o(h) + (|k|M) (h) (2h)~
< o(h).

Conversely, supposing that (8) holds for some ¢ and some k, we also have,
by Minkowski’s inequality,

1
.

A

(/ f(x)—f(xwdx) _</ |f<z>—f<x0>—k<¢<x>—¢<xo>|’“dx>
la,b]N[zo—h,xo+h] la,b]N[zo—h,x0+h]

+1k ( [ ot - <z><xo>>’"dx>
[a,b]N[xo—h,z0+h]
< o(h).

5 Further properties of the L"?-derivates.

We will need the following as we develop the theory of L™?-ex-major functions.

Theorem 15. Suppose that f € L ([a,b]), that ¢ is a monotone increasing
Lipschitz function defined on [a,b] and that D,.f (x; ¢) > 0, except perhaps on
a countable set E' where, however, f is L"-continuous. Then f is monotone
increasing on [a,b] .
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The proof will require several lemmas, including the following extension of
[2] Lemma 2.

Definition 16. Let 0 < p <1 and let E be a measurable subset of [a,b]. Let
x € (a,b). We will say that x is a point of p-lower density of E if
AMEN(x—h,z+h))

lim inf =p. 9
2o 2h b ©)

Definition 17. Let 0 < p <1 and let E be a measurable subset of [a,b]. Let
x € a,b). We will say that x is a point of p-lower right-hand density of E if

lim inf MEN (@, +h))
h—0+ h

=p. (10)

For convenience we will assume that if b € E, then b is a point of 1-lower
right-hand density of E.

Definition 18. Let 0 < p <1 and let E be a measurable subset of [a,b]. Let
x € (a,b]. We will say that x is a point of p-lower left-hand density of E if

lim inf MEN(z—h2))

= . 11
h—0t h P ( )

For convenience we will assume that if a € E, then a is a point of 1-lower
left-hand density of E.

Lemma 19. Let R and L be nonempty disjoint measurable sets such that
[a,b] = RU L, and suppose that there exist p1 > 1/2 so that every point of
R is a point of p1-lower right-hand density of R, and ps > 1/2 so that every
point of L is a point of ps-lower left-hand density of L. The every point of R
is to the right of every point of L.

PROOF. Suppose to the contrary that there exist z; € R and z9 € L such
that a < x1 < 29 < b. Choose ¢ € (1/2,p1 A p2) as well as m > 1/(2¢ — 1).
Let

s = @-a" | " (r (6) — xi (1)) dt,

where x € [a,b] and d < a —m (b — a). We will show that g fails to achieve a
maximum value on [z1,z2]. Let us show that if ¢ € [x1,22) N R, then g (z)
increases as we move slightly to the right of zo. Let 3 € (x0,b) be such that
it £ € (wo, z3), then

A (RN (20,8))

>q.
§—xo
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Letting N =1/ (£ — d) (zo — d) , and noting that N > 0, we have
9(&) — g (x0)
3 To
— (€07 [ G- xw @) dt= -7 [ a0 - v 0)

13 o
ZN[(JUO—d) / (2xr (6) — 1) dt — (€ — d) / (@2xr (t) — 1) dt]

€ To
=N l(xo - d)/ (2xr (1) = 1) dt — (§ - 3?0)/ (2xr (1) = 1) dt]

> N[m(b—a)(2q¢—1)(§—z0) = (§ = z0) (b—a)]
> 0.

Now suppose zg € (z1,22] N L. Let z3 € (a,x9) be such that if £ € (x3,x0),

then
A (LN (& o))

> q.
zo —§

‘We then have
g (0) — g(&)
0 13
e / (e () — xo (1)) dt — (6 — )" / (e (6) — xo (1)) di

3 o
— () / (e (8) — xn (1)) dt — (w0 — d) " / (s () = xr () dt

1 Zo
=N [(560 - d)/ (2xr (t) = 1) dt — (§ - d)/ (2x () = 1) dt}

13 o
=N [(ffo - f)/ (2xr (1) — 1) dt — (£ - d)/£ (2xr () = 1) dt]

<N[(@o =& —a)=m(b—a)(2¢—1)(xo &)
< 0.

We then have that g (x) increases as we move slightly to the left of zyo. We have
thus demonstrated that g cannot achieve a maximum on [z1,x2]. However,
since g is continuous, it must achieve a maximum on [z, 23], a contradiction.

O
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Lemma 20. Let F' be a measurable function on [a,b], let E' be a countable
subset of [a,b], and let E = [a,b] \ E'. Suppose (i) F is approzimately con-
tinuous at each point of E' and (i1) each point xo of E is a point of py-lower
right-hand density of the set {x € [a,b] : F(x) > F(x9)} for some p1 > 1/2,
and a point of pa-lower left-hand density of the set {x € [a,b] : F(z) < F(x0)}
for some py > 1/2. Then F is monotone increasing on [a,b].

PROOF. Suppose 1,22 € [a,b] and F(xz1) < F(x2). We need to show that
r1 < Ta.

We have that E’ is a countable set so that the set {y : F/(x) =y for some x €
E’} is also countable. Therefore, we may choose ¢ > 0 so that F(x;) <
F(x9) — e and F(x) # F(xq) — € for any x € E'.

Let R = {z € [a,b] : F(z) > F(a2) — €} and L = {x € [a,b] : F(x) <
F(xz3) —€}. RUL = [a,b] where R and L are disjoint measurable sets. Since
T isin R and z7 is in L, both R and L are non-empty.

Let x¢g € R. If z¢p € E, then z is a point of p;-lower right-hand density, for
some p; > 1/2, of {x € [a,b] : F(x) > F(x0)} C{z € [a,b] : F(x) > F(x3)—¢}.

If g € E', then F(xzg) > F(x2) —e. Choose v € (0, F(zo) — (F(z2) — ¢€)).
Then because F' is approximately continuous at xg, we have that x( is a point
of density of

{z: F(z) € (F(zo) — v, F(zo) +7) € R}.

We have shown that every point of R is a point of p;-lower right-hand
density of R for some p; > 1/2. A similar argument shows that every point of
L is a point of pa-lower left-hand density of the set {x € [a,b] : F(z) < F(x0)}
for some ps > 1/2. This then implies that R and L satisfy the hypotheses of
Lemma 19 so that every point of L is to the left of every point of R. Since
x1 € L and x5 € R, it follows that 1 < xs.

Proof of Theorem 15. We have D, . f(z,¢) > 0 for all z € E, so by
Theorem 11 and Chebyshev’s inequality [5], we have that iapp(x) > 0 for all
xz € E. Also by Chebyshev’s inequality, f is approximately continuous on E’.

The conclusion now follows from Lemma 20.
O
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6 L"?-ex-major (ex-minor) functions.

In [2], L. Gordon shows that there exists a function f which is an L"-derivative
defined on [a, b], so that if ¢ is an L"-major function of f, then ¢ _(b) = —oc.
Thus, for a monotone increasing Lipschitz function ¢, we define L™?-ex-major
functions and L™%-ex-minor functions of f as follows.

Definition 21. Suppose f (x) is a function defined on [a,b] and ¢ is a mono-
tone increasing Lipschitz function also defined on [a,b]. A finite-valued func-
tion v (z) € L" [a,b],1 <1 < oo, is said to be an L™?-ex-major function of f

if
1 g (a) =0,
2. 9 (x) is L"-continuous on [a,b],

3. except for at most a denumerable subset of [a,b], we have
—00 # D, (x59) = f(). (12)

A function X\ (x) is an L™®-ex-minor function of f if —\(x) is an L"%-ex-
magjor function of —f.

Theorem 22. Suppose that 1 (z) and \(z) are, respectively, L™?-ex-magjor
and L™®-ex-minor functions of f. The function u (x) = 9 (x) — X (x) is mono-
tone increasing on |a,b] .

PROOF. Suppose that ¢ is an L™?-ex-major function and that X is an L™%-
ex-minor function of f on [a,b]. We shall show that for nearly every z, we have
D,u(x;¢) = 0.

Let x be such that —oco # D, (x;¢) > f(z) > D \(x;¢) # +o0, and let
€ > 0. There exist a, 3, with @ < B + ¢, such that

/h[S(z,t)r_dt = o(h"t1)
0

and .
| . ora = o),
where
S(x,t) =z +1t) —¥(z) — Blo(z + 1) — ¢(z))
and

T(x,t) =Mz +1t) — ANz) — a(d(xz+1t) — o(x)).
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Let

U(x,t) (¢ (z+1) —o(2))

)
¥ (z) = A())

= We+t) -y @) -p@@+1t) - ()
@ +t) = A(z) —a(o(@+1) —o(2))].

Therefore, U(z,t) = S(z,t)—T'(z,t), and so [U(xz,t)]- < [S(z,t)]-+[T(z, )]+
By Minkowski’s inequality, we have

h
/0 fu(e +1) — u(@) — (8 — a)(él + 1) — $(@))]7dt = o(” ).

So D yu(x;¢) > (8 —a) > —e. Since € is arbitrary, we have D, ,u(z;¢) > 0.
The proof that D_ ,u(x;¢) > 0 is similar, so we have D, u(z,$) > 0. Since
u(x) is L"-continuous, our conclusion now follows from Theorem 15. O

Definition 23. Suppose f (x) is a function defined on [a,b] and ¢ is a mono-
tone increasing Lipschitz function also defined on [a,b]. Ifinf ) (b) taken over
all L™?-ex-magor functions of f equals sup A (b) taken over all L™?-ex-minor
functions of f, then the common value, denoted by

(Pro) / s,

is called the P, y-integral of f on [a,b], and f is said to be P, 4-integrable on
[a,b] .

If ¢ is a Lipschitz function defined on [a, b], then it is of bounded variation.
We can find monotone increasing Lipschitz functions ¢; and ¢2 so that for
every x € [a,b], we have

¢ (x) = ¢1(x) — g2 (z).

Of course the functions ¢; and ¢o are not unique. However, we have the
following theorem.

Theorem 24. Let ¢ be a Lipschitz function defined on [a,b], and let ¢1, P2,
~v1 and v be monotone increasing Lipschitz functions so that ¢ (z) = ¢1 (x) —
@2 () = 71 (z) — 2 (x) for all x € [a,b]. Suppose that f is Pr g, -, Prg,-,
P, .- and P, ,,-integrable on [a,b]. Then

Pro [ 5= B [ 1= [(1- i [ 1
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We first prove the following lemma.

Lemma 25. Let ¢1 and ¢2 be monotone increasing Lipschitz functions defined
on [a,b] with ¢ = ¢1+ @2, and let f be any function defined on [a,b]. Suppose
Yy s an L% -ex-magjor (L™t -ex-minor) function of f and vy is an L™92-
ex-magjor (L™?2-ex-minor) function of f, and let 1) = 1y + 1bo. Then 1) is an
L™ -ex-magjor (L™®-ex-minor) function of f.

PRrROOF. We prove the lemma for L™?-ex-major functions; the proof for L™®-
ex-minor functions is similar. Conditions 1 and 2 of the definition of the
L"?-ex-major function are clearly satisfied by 1. To prove that condition 3
holds, let us denote by E the set of those x € [a, b] satisfying

—00 # D1 (w3 61) = f(2)
and

—00 # D, s (w; d2) = f(x).
We have that [a,b] \ E is countable. Let 2 € E, and let « be such that
—00 # a < min (D, (x; ¢1), D, 2(x; ¢2)). Then

1
T

h
(;/ [w<x+t>—w<m>—a<¢<x+t>—¢<x>>r;dt>

h
- (/i/o [r(x + ) + o + 1) = ¢1 (@) — Pa(a)

—a(p1(x+1t) + do(x +t) — d1(x) — ¢2($))]r—>

h

- (111/ [1(z +1) = (2) — alér(z +1) = 61(x))

1
+ho(z +t) — o(x) — a(da(z +t) — ¢2($))]i>
. g

< (fll/o [W1(z+t) =1 (z) — a1 (z+1) — ¢1 (2))]2 dt)

1 (" )
+ (h/o o (x+1t) — 12 (z) — (g2 (x +1t) — d2 (aj))]dt)
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Since both terms on the right side are equal to o(h), we have

r

1 h
(h | a0 = (@) - aola+ 0 - ol dt) < o(h)

This means that —oo # D, ¥(x; ¢).

Now we show that D, (z;¢) > f(z). If f(z) = —oc0, we are done.

But if f(z) = oo, then Py, 4, () and Py, 4,(c) hold for all real numbers.
So we have D, 9 (x; ¢) = oo for all real numbers.

Finally, we assume f(x) is finite. Then Py, 4,(a) holds and Py, ¢,(c)
holds, so that Py () holds.
Therefore, —oo # D, (xz;¢) > f(z).

O

Lemma 26. Let ¢ and ¢2 be monotone increasing Lipschitz functions defined
on [a,b] with ¢ = ¢1+¢2, and let f be both P, 4, -integrable and P, 4,-integrable
on [a,b]. Then f is P, 4-integrable on [a,b] and

o) [ = (o) / (P / s (13)

PROOF. Let ¢ > 0. For i € {1,2}, let v; be an L"™%-ex-major function of
f on [a,b], and let \; be an L™%-ex-minor function of f on [a,b] so that
Y; (b) — A (b) < /4. Let ¥ = Y1 + 19 and let A = A1 + Aa. By the lemma
above, we have that v is an L™?-ex-major function of f on [a,b] and that A
is an L™?-ex-minor function of f on [a,b] with 1 (b) — A (b) < £/2. Thus, f is
P, ,-integrable on [a,b]. We also have that

o) [ e ((Pr,m / F ot (P / b f) ‘

b b b
< | (0) — (Prg) / £+ [ (6) = (Prgy) / £+ [ (6) = (Prgy) / f‘
<e,
so that (13) holds. O

Proof of Theorem 24. By Lemma 26, f is P, ¢,4,-integrable and
P, , 1 ¢,-integrable on [a, b] with

(Pr.gr+7s) /abf = (Prryité2) /abf
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and b b b b
(Pr) [ 1+ Pos) [ 1= Po) [ 1P [ 1

We now define the P,-integral with respect to an arbitrary Lipschitz func-
tion.

Definition 27. Suppose f (x) is a function defined on [a,b] and ¢ is a Lip-
schitz function also defined on [a,b]. Let ¢1 and ¢2 be monotone increasing
Lipschitz functions such that ¢ = ¢ — ¢2. If f is P, 4, -integrable and P, 4, -
integrable on [a,b], then f is P, 4-integrable on [a,b] and we get

(o) [ = (P / (B / '

This value is well-defined by Theorem 24.

References

[1] A. P. Calderon and A. Zygmund, Local properties of solutions of elliptic
partial differential equations, Studia Math., 20 (1961), 171-225.

[2] L. Gordon, Perron’s integral for derivatives in L", Studia Math., 28 (1966),
295-316.

[3] R. A. Gordon, The integrals of Lebesque, Denjoy, Perron, and Henstock,
Grad. Stud. Math., 4, Amer. Math. Soc., 1994.

[4] P. Musial and Y. Sagher, The L" Henstock-Kurzweil integral, Studia.
Math., 160(1) (2004), 53-81.

[5] H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th ed., Pearson, 2010.

[6] S. Saks, Theory of the Integral, 2nd English ed., Warszawa, 1937, Reprint,
Dover, New York, 1964.

[7] S. A. Tikare and M. S. Chaudhary, The Henstock-Stieltjes integral in L",
J. Adv. Res. Pure Math., 4(1) (2012), 59-80.

[8] R. Wheeden and A. Zygmund, Measure and Integral, Pure and Applied
Mathematics. Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.



