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Abstract

In 1971, D. Ornstein proved a theorem that completely solved Prob-
lem 157 of the Scottish Book. The purpose of this paper is to give an
independent proof.

1 Introduction

In 1971, D. Ornstein, [4] proved a theorem that directly solves Problem 157 of
the Scottish Book, see [5]. In this issue of the Exchange there are two related
Inroads papers, [1] and [2]. In [1] the history of Problem 157 is described and
a solution is given using O’Malley’s Theorem for the existence of approximate
extrema of approximately continuous functions. In [2] a separate proof of
O’Malley’s Theorem is presented. The purpose of this paper is to present an
independent proof of the original Scottish Book Problem 157.

We adopt the notation introduced in [2] repeating several of the definitions
for completeness. All sets and functions considered here will be assumed to be
measurable with respect to λ, Lebesgue measure on R. Suppose E ⊂ R and J
is a given interval with length |J |. Then the density (or relative measure) of
E in J is ∆(E, J) = λ(E ∩ J)/|J |. The upper density of E at a point x ∈ R
is defined as lim supr→0+ ∆(E, (x− r, x+ r)) and is denoted by δ(E, x). The
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lower density at x, δ(E, x) is defined similarly where lim inf replaces lim sup.
If these two are equal at x, their common value is called the density of E at x
and is denoted δ(E, x).

A function f : R→ R is approximately continuous at x0 if there is a set E
with density 1 at x0, so that

lim
x∈E, x→x0

f(x) = f(x0).

If y ∈ R, the function f determines two associated sets that we’ll make use of;
f−1((−∞, y)) and f−1([y,∞)). These are denoted as Ly and Uy respectively
when the function f is established.

Ornstein’s Theorem is the following, see [4].

Ornstein’s Theorem. Let f(x) be a real–valued function of a real variable
satisfying the following:

(A) f(x) is approximately continuous,

(B) For each x0, lim suph→0+ ∆(Uf(x0), (x0, x0 + h)) 6= 0.

Then, f is monotone increasing and continuous.

2 Proof of Ornstein’s Theorem

First note that if a function is both monotone and approximately continuous
then it’s continuous, so monotonicity is the only issue. So suppose f : [a, b]→
R satisfies conditions (A) and (B) of Ornstein’s hypothesis above. We must
show f(a) ≤ f(b). To do this we have a closer look at the conditions (A) and
(B). First, (A) implies both of the following, considerably weaker, one-sided
conditions.

∀x ∈ [a, b) ∀ε > 0 ∃δ > 0 such that ∀ z ∈ (x, x+ δ),(A1)

∆(Uf(x)−ε, (x, z)) >
1

2
.

∀x ∈ (a, b] ∀ε > 0 ∃δ > 0 such that ∀ z ∈ (x− δ, x),(A2)

∆(Lf(x)+ε, (z, x)) > 1− ε.

Condition (B) above can be restated in a similar fashion as:
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∀x ∈ [a, b) ∃ε > 0 such that ∀δ > 0 ∃ z ∈ (x, x+ δ),(B)

with f(z) ≥ f(x) and ∆(Uf(x), (x, z)) > ε.

Conditions (A1) and (B) have a somewhat complementary structure and
together these conditions imply a useful global density condition, (C) below.

∀x ∈ [a, b) ∀δ > 0 ∃z ∈ (x, x+ δ) such that f(z) ≥ f(x)(C)

and ∀ ε ∈ (0,
1

2
), ∆(Uf(x)−ε, (x, z)) > ε.

Lemma 1. If f : [a, b]→ R satisfies (A1) and (B) then f also satisfied (C).

Proof. Let x ∈ [a, b) be fixed. Since f satisfies (B), there is an εo > 0 so
that

∀δ > 0 ∃z ∈ (x, x+ δ) with f(z) ≥ f(x) and ∆(Uf(x), (x, z)) > εo. (1)

Applying condition (A1) for this εo yields a δ′ > 0 so that for every
z ∈ (x, x+ δ′),

∆(Uf(x)−εo , (x, z)) >
1

2
. (2)

Now fix δ > 0 and let δo = min(δ, δ
′
). Then by (1) there is a zo ∈ (x, x+ δo)

with
f(zo) ≥ f(x) and ∆(Uf(x), (x, zo)) > εo (3)

And since δo ≤ δ
′

we also have that

∆(Uf(x)−εo , (x, zo)) >
1

2
. (4)

Finally, let ε ∈ (0, 12 ).

Case 1 ε ∈ (0, εo]

In this case, Uf(x) ⊂ Uf(x)−ε so that by (3)

∆(Uf(x)−ε, (x, zo)) > εo ≥ ε.

Case 2 ε ∈ (εo,
1
2 )

Here, Uf(x)−εo ⊂ Uf(x)−ε so that by (2),

∆(Uf(x)−ε, (x, zo)) ≥ ∆(Uf(x)−εo , (x, zo)) >
1

2
≥ ε.
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This completes the proof of Lemma 1.

Remark 2. If f : [a, b] → R satisfies (C) then for every x ∈ [a, b) there is a
z = z(x) ∈ (x, b] such that

i. f(x) ≤ f(z), and

ii. If ε ∈ (0, 12 ), then ∆(Uf(x)−ε, (x, z)) > ε.

We’re now prepared to prove the following.

Theorem 3. Let f : [a, b] → R. Then f is monotone increasing if and only
if f satisfies conditions (A2) and (C).

Proof. If f is increasing, then it immediately follows from the definitions
that f satisfies both conditions.

So suppose that f satisfies both (A2) and (C). We begin by using Remark
2 to define a (possibly transfinite) sequence, {xα} as follows. Let x0 = a and
suppose that xβ has been defined for all β < α. If α = αo + 1 is a successor
ordinal, then define xα = z(xαo) as per the remark above. If α is a limit
ordinal, simply let xα = sup{xβ : β < α}.

Then this process terminates after countably many, say γ steps, and neces-
sarily xγ = b. It suffices to show that {f(xα) : α ≤ γ} is a monotone increasing
sequence. At non-limit ordinals, monotonicity is simply a consequence of Re-
mark 2i. However, at limit ordinals there’s some work to be done. To this
end, suppose λ ≤ γ is a limit ordinal and assume {f(xα) : α < λ} is monotone
increasing. We must show that f(xλ) ≥ limα<λ f(xα).

Let ε ∈ (0, 12 ). Using the fact that {[xβ , xβ+1) : α ≤ β < λ} partitions the
interval [xα, xλ) and Remark 2ii, we have that for all α < λ,

∆(Uf(xα)−ε, (xα, xλ)) > ε. (5)

Since λ is a limit ordinal, limα<λ xα = xλ and so by (A2), xα can be chosen
sufficiently close to xλ that

∆(Lf(xλ)+ε, (xα, xλ)) > 1− ε. (6)

However, (5) and (6) entailes that f(xλ) + ε ≥ f(xα) − ε. Since ε > 0 is
arbitrary this implies f(xλ) ≥ limα<λ f(xα) as claimed.

Remark 4. Ornstein’s Theorem follows directly from Theorem 3 since mono-
tone functions that are approximately continuous are indeed continuous.
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