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ON THE MIXED DERIVATIVES OF A
SEPARATELY TWICE DIFFERENTIABLE

FUNCTION

Abstract

We prove that a function f(x, y) of real variables defined on a rect-
angle, having partial derivatives f ′′

xx, f
′′
yy ∈ L2([0, 1]2), has almost every-

where mixed derivatives f ′′
xy and f ′′

yx.

1 Introduction

In the well known “Scottish Book” [6], S. Mazur posed the following question
(VII.1935, Problem 66):

The real function z = f(x, y) of real variables x, y possesses the 1st partial
derivatives f ′x, f ′y and the pure second partial derivatives f ′′xx, f ′′yy. Do there
exist then almost everywhere the mixed 2nd partial derivatives f ′′xy, f ′′yx? Ac-
cording to a remark by P. Schauder, this theorem is true with the following
additional assumptions: The derivatives f ′x, f ′y are absolutely continuous in
the sense of Tonelli, and the derivatives f ′′xx, f ′′yy are square integrable. An
analogous question for n variables.

Given a function f : [a, b] × [c, d] → R and x ∈ [a, b], we denote by V1(x)
the variation of the function fx : [c, d] → R , fx(y) := f(x, y), and given
y ∈ [c, d] we denote by V2(y) the variation of fy : [a, b]→ R , fy(x) := f(x, y).

A function f is of Tonelli bounded variation [11, p. 169] if
∫ b
a
V1(x)dx < ∞

and
∫ d
c
V2(y)dy <∞. All integrals we consider (here and further in the paper)

are Lebesgue integrals. A function f is absolutely continuous in the sense of
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Tonelli if f is of Tonelli bounded variation: for almost all x ∈ [a, b] and for
almost all y ∈ [c, d] the functions fy and fx are absolutely continuous.

The existence and measurability of (mixed) partial derivatives were inves-
tigated by many mathematicians (see [1, Th. 79-81], [4], [3], [14], [13], [8], [2],
[12], [5], [7] and the literature given there). Mainly, these results give some
sufficient conditions for existence (and equality) almost everywhere of mixed
second partial derivatives, but they do not give any answer to the Mazur prob-
lem. In particular, G. Tolstov in [13] proved the following result (see also [7,
Lemma 4]).

Proposition 1.1. Let h ∈ L1([0, 1]2) and

f(x, y) =

∫ x

0

dx

∫ y

0

h(u, v)dudv.

Then there exists a measurable set A ⊆ [0, 1] with µ(A) = 1 such that

f ′x(x0, y) =

∫ y

0

h(u, v)dv

for every x0 ∈ A and y ∈ [0, 1].

Using this statement G. Tolstov proved that if a separately differentiable
function f : [0, 1]2 → R has f ′x ∈ C([0, 1]2) and there exists f ′′xy on a set
D ⊆ [0, 1]2 of the second category, then there exists a rectangle P ⊆ [0, 1]2

such that f ′′xy = f ′′yx almost everywhere on P . This result was developed in
[7, Theorem 7]. Moreover, in [14, Theorem 7] G. Tolstov proved the following
theorem.

Theorem 1.2. Let a measurable function f : (0, 1)2 → R and a measurable
set E ⊆ (0, 1)2 of positive measure satisfy the following conditions:

(i) for every (x0, y0) ∈ E there exists δ > 0 such that f has the partial
derivatives f ′x(p) and f ′y(p) at every point p ∈ ((x0 − δ, x0 + δ) × {y0}) ∪
({x0} × (y0 − δ, y0 + δ));

(ii) for every p0 ∈ E all derivative numbers of the functions f ′x and f ′y with
respect to each variable at the point p0 are finite.

Then a.e. on E there exist and are equal the mixed derivatives f ′′xy and
f ′′yx.

A real λ ∈ R or a symbol λ ∈ {−∞,+∞} is called a derivative number
of a function f : (a, b) → R at a point x0 ∈ (a, b) if there exists a sequence

(αn)∞n=1 of reals αn 6= 0 such that lim
n→∞

αn = 0 and lim
n→∞

f(x0+αn)−f(x0)
αn

= λ.
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On the other hand, there are some interesting examples among the above
mentioned results. G. Tolstov constructed in [13] a function f : [0, 1]2 → R
having first partial derivatives f ′x, f

′
y ∈ C([0, 1]2) and second partial deriva-

tives f ′′xx and f ′′yy which are different on a set of positive measure. Moreover,
J. Serrin constructed in [12] a measurable function f : [0, 1]2 → R such that
for almost all y ∈ [0, 1] the functions fy : [0, 1] → R, fy(x) = f(x, y), are
differentiable and the set {p ∈ [0, 1]2 : ∃ f ′x(p)} is non-measurable.

The Mazur problem was solved in the negative in [9]. A separately twice
differentiable function f : [0, 1]2 → R was constructed in [9], whose partial
derivative f ′x is discontinuous with respect to y on a set A× B ⊆ [0, 1]2 with
µ(A) = 1 and µ(B) > 0. This example shows that for a separately twice
differentiable function f : [0, 1]2 → R the continuity of f ′x with respect to y
plays an important role for the existence of f ′′xy.

Note that the second partial derivatives f ′′xx, f ′′yy of the function f from
[9] are not integrable. Thus the following question naturally arises in the
connection with Schauder’s remark to the Mazur problem and the example
from [9].

Problem 1.3. Let f : [0, 1]2 → R be a separately twice differentiable function
and f ′′xx, f

′′
yy ∈ L2([0, 1]2).

(i) Does there exist a set A ⊆ [0, 1] with µ(A) = 1 such that f ′x is continuous
with respect to y at each point of A× [0, 1]?

(ii) Do there exist almost everywhere mixed derivatives f ′′xy and f ′′yx?

In this paper we give the positive answer to Problem 1.3. In Section 2
(Corollary 2.3) we give some sufficient conditions on a function f(x, y) for
f ′x ∈ C([0, 1]2). In Section 3 we prove an auxiliary statement (Proposition
3.3) on the consistency of the Fourier series of a function f and its partial
derivative f ′x, which we use in Section 4 for the proof of the main result of
the paper (Theorem 4.1). Finally, in Section 5 we give two examples which
show the essentiality of some assumptions in Corollary 2.3 and Theorem 4.1
and formulate open questions.

2 Jointly continuity of the first partial derivative

Lemma 2.1. Let Y ⊆ R, let a function f : [0, 1]× Y → R be continuous with
respect to y and f ′x be (uniformly) continuous with respect to x, uniformly on
y. Then f ′x : [0, 1]× Y → R is continuous.
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Proof. Fix x0 ∈ [0, 1] , y0 ∈ Y and ε > 0. Choose a neighborhood U =
[x1, x2] of x0 such that for all x,x

′ ∈ U and all y,

|f ′x(x, y)− f ′x(x′, y)| < ε

4
.

Using the continuity of f with respect to y, choose a neighborhood V of y0
such that for all y ∈ V ,∣∣∣∣f(x2, y0)− f(x1, y0)

x2 − x1
− f(x2, y)− f(x1, y)

x2 − x1

∣∣∣∣ < ε

2
.

By the Lagrange theorem, for every y ∈ V there is xy ∈ U such that

f ′x(xy, y) =
f(x2, y)− f(x1, y)

x2 − x1
.

Hence, for each y ∈ V ,

|f ′x(xy0 , y0)− f ′x(xy, y)| < ε

2
.

Therefore, for an arbitrary (x, y) ∈ U × V ,

|f ′x(x0, y0)− f ′x(x, y)| ≤ |f ′x(x0, y0)− f ′x(xy0 , y0)|+ |f ′x(xy0 , y0)− f ′x(xy, y)|
+ |f ′x(xy, y)− f ′x(x, y)|

<
ε

4
+
ε

4
+
ε

2
= ε.

Lemma 2.2. Let g : [0, 1] → R and
∫ 1

0
(g′)2dx ≤ c. Then the function g is

Hölder of the order 1
2 and constant

√
c.

Proof. For all 0 ≤ x0 < x1 ≤ 1

|g(x1)− g(x0)| =
∣∣∣∣∫ x1

x0

g′dx

∣∣∣∣ ≤ ((x1 − x0)

∫ x1

x0

(g′)2dx

) 1
2

≤
√
c(x1 − x0) .

The next theorem is a simple combination of the previous two lemmas.

Corollary 2.3. Let Y ⊆ R, let a function f : [0, 1] × Y → R be continuous
with respect to y, and suppose f ′′xx exists and

sup
y∈Y

∫ 1

0

(f ′′xx(x, y))2dx <∞.

Then f ′x : [0, 1]× Y → R is continuous.
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3 Square integrable partial derivatives

Lemma 3.1. Let
∫ 2π

0
g2(x)dx <∞ ,

∫ 2π

0
g(x)dx = 0 and f(x) = a+

∫ x
0
g(t)dµ

(in particular let f be a differentiable function such that f(0) = f(2π) and the
derivative g = f ′ ∈ L1([0, 2π])). Then for every n ∈ N,∫ 2π

0

f(x) cosnxdx = − 1

n

∫ 2π

0

g(x) sinnxdx

and ∫ 2π

0

f(x) sinnxdx =
1

n

∫ 2π

0

g(x) cosnxdx.

Proof. By [10, p. 251], for a differentiable function f we have f(x) = f(0) +∫ x
0
f ′(t)dµ for every x ∈ [0, 2π]. It remains to use the integration by parts [10,

Ch. IX, §8, Th. 5].

For a function f : [a, b]→ C and p ∈ {1, 2} the expression f ∈ Lp([a, b]) will

denote that
∫ b
a
|f(x)|p dx <∞. The same for a function f : [a, b]× [c, d]→ C.

For a function f : [0, 2π]2 → C, the expression

f ∼
∑

n,m∈Z
anme

inxeimy

will denote that f ∈ L2([0, 2π]2) and
∑
n,m∈Z anme

inxeimy is the Fourier series
of f which converges to f in the L2-norm. The same for a function f : [0, 2π]→
C.

Lemma 3.2. Let f ∼
∑
n,m∈Z anme

inxeimy , αn ∼
∑
m∈Z anme

imy, n ∈ Z
and fy(x) := f(x, y).

Then there exists a subset B ⊆ [0, 2π] with µ(B) = 2π such that ∀ y ∈ B
the function fy is square integrable and

fy ∼
∑

n∈Z
αn(y)einx. (1)

Proof. For every n ∈ Z we consider the linear continuous operator T1,n :
L2([0, 2π]2)→ L2([0, 2π]), which any function g ∼

∑
n,m∈Z bnme

inxeimy sends

to the function T1,ng ∼
∑
m∈Z bnme

imy. Note that T1,nf = αn for every n ∈ Z.
Moreover, we consider the linear operator T2,n : L2([0, 2π]2)→ L2([0, 2π]),

T2,ng(y) =
1

2π

∫ 2π

0

g(x, y)e−inxdx
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for all y ∈ B(g) = {v ∈ [0, 2π] : gv ∈ L2([0, 2π])}, where gv(x) := g(x, v). Note
that µ(B(g)) = 2π. Since(∫ 2π

0

h(x)dx

)2

≤ 2π

∫ 2π

0

|h(x)|2dx

for every measurable on [0, 2π] function h, by the Fubini theorem we have∫ 2π

0

|T2,ng(y)|2 dy ≤ 1

2π

∫ 2π

0

∫ 2π

0

|g(x, y)e−inx|2dxdy

=
1

2π

∫ 2π

0

∫ 2π

0

|g(x, y)|2dxdy.

Thus T2,n is continuous. Since T1,n(eikxeimy) = T2,n(eikxeimy) for every
k,m ∈ Z, T1,n = T2,n; in particular, T2,nf = αn. Now we choose a set

B ⊆ B(f) with µ(B) = 2π such that αn(y) = 1
2π

∫ 2π

0
f(x, y)e−inxdx for every

n ∈ Z and y ∈ B. This gives (1).

Proposition 3.3. Let a function f : [0, 2π]2 → R be differentiable with respect
to x, f ′x ∈ L2([0, 2π]2) and, moreover, f(0, y) = f(2π, y) = α(y) for every
y ∈ [0, 2π] with α ∈ L2([0, 2π]). Then f ∈ L2([0, 2π]2). Moreover, if

f ∼
∑

n,m∈Z
anme

inxeimy, then f ′x ∼
∑

n,m∈Z
inanme

inxeimy.

Proof. Let

f ′x ∼
∑

n,m∈Z
bnme

inxeimy.

By the Fubini theorem there exists a set B ⊆ [0, 2π] with µ(B) = 2π such
that for every y ∈ B we have gy ∈ L2([0, 2π]), where gy(x) := f ′x(x, y), and in
particular gy ∈ L1([0, 2π]). Note that for an arbitrary y ∈ B we have∫ 2π

0

f ′x(x, y)dx = f(2π, y)− f(0, y) = 0.

So, by the Fubini theorem,

b0m =
1

4π2

∫ 2π

0

∫ 2π

0

f ′x(x, y)e−imydxdy = 0

for all m ∈ Z.
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Consider the function h(x, y) = f(x, y) − α(y). For every y ∈ B and
x ∈ [0, 2π] we have

h2(x, y) =

(∫ x

0

gy(t)dt

)2

≤ x
∫ x

0

g2y(t)dt ≤ 2π

∫ 2π

0

g2y(t)dt.

Thus ∫ 2π

0

∫ 2π

0

h2(x, y)dxdy ≤ 4π2

∫ 2π

0

∫ 2π

0

(f ′x(x, y))2dxdy,

and h ∈ L2([0, 2π]2). So f ∈ L2([0, 2π]2), too. Let

f ∼
∑

n,m∈Z
anme

inxeimy.

Now using Lemma 3.1 and the Fubini theorem for every m,n ∈ Z, n 6= 0,
we have

anm =
1

4π2

∫
B

e−imydy

∫ 2π

0

f(x, y)e−inxdx

=
1

in

1

4π2

∫
B

e−imydy

∫ 2π

0

f ′x(x, y)e−inxdx

=
bnm
in

.

4 Main result

The following theorem gives a positive answer to the Mazur problem for func-
tions with square integrable pure partial derivatives (Problem 1.3).

Theorem 4.1. Let f : [0, 1]2 → R be a separately twice differentiable function
and f ′′xx, f

′′
yy ∈ L2([0, 1]2). Then

(i) a.e. there are equal mixed derivatives f ′′xy, f
′′
yx ∈ L2([0, 1]2);

(ii) there exists A ⊆ [0, 1] with µ(A) = 1 such that f ′x is continuous with
respect to y at every point of A× [0, 1];

(iii) f ∈ C([0, 1]2).

Proof. (i). We consider a function f : [0, 2π]2 → R. It is sufficient to prove
this assertion for a sequence of products f · ϕn of f by twice differentiable
functions ϕn with bounded derivatives and the conditions ϕn(x, y) = 1 for all
(x, y) ∈ [ 1n , 2π−

1
n ]2 and ϕn(x, y) = 0 on an open set in [0, 2π]2 which contains
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the boundary of [0, 2π]2. Thus it is sufficient to consider a function f which
satisfies the additional assumption

f(x, y) = f ′x(x, y) = f ′y(x, y) = f ′′xx(x, y) = f ′′yy(x, y) = 0

on an open set in [0, 2π]2 which contains the boundary of [0, 2π]2.
According to Proposition 3.3, we have f, f ′x, f

′
y ∈ L2([0, 2π]2). Let

f ∼
∑

n,m∈Z
anme

inxeimy.

Then, by Proposition 3.3,

f ′x ∼
∑

n,m∈Z
inanme

inxeimy, f ′y ∼
∑

n,m∈Z
imanme

inxeimy,

f ′′xx ∼
∑

n,m∈Z
−n2anmeinxeimy and f ′′yy ∼

∑
n,m∈Z

−m2anme
inxeimy.

Let
αm ∼

∑
n∈Z

inanme
inx, m ∈ Z.

Using Proposition 3.2, we choose a set A1 ⊆ [0, 2π] so that µ(A1) = 2π and
for every x ∈ A1 we have gx ∈ L2([0, 2π]) and

gx ∼
∑

m∈Z
αm(x)eimy,

where gx(y) := f ′x(x, y). Since there exist open neighborhoods V1 and V2 of
points 0 and 2π in [0, 2π] such that gx(y) = 0 for every x ∈ A1 and y ∈ V1∪V2,
according to the well-known localization theorem of Riemann we have∑

m∈Z
αm(x) = 0

for every x ∈ A1. From the Fourier expansions of f ′′xx and f ′′yy we have the
bound ∑

n,m∈Z
m2n2|anm|2 ≤

∑
n,m∈Z

(m4 + n4)|anm|2 <∞.

Then there exists a function h ∈ L2([0, 2π]2) with

h ∼ −
∑

n,m∈Z
mnanme

inxeimy.

Once more, using Proposition 3.2 we choose a set A2 ⊆ A1 so that µ(A2) = 2π
and for every x ∈ A2 , we have hx ∈ L2([0, 2π]) and

hx ∼
∑

m∈Z
imαm(x)eimy,
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where hx(y) := h(x, y). Put

F (x, y) =

∫ y

0

h(x, t)dt.

Note that hx ∈ L1([0, 2π]) and
∑
m∈Z αm(x) = 0 for every x ∈ A2. Using

Theorem 3 of [10, Ch. X, §4] on the termwise integration of Fourier series
of integrable functions of one variable, we obtain that for every x ∈ A2 the
equality

F (x, y) =
∑

m∈Z
αm(x)(eimy − 1) =

∑
m∈Z

αm(x)eimy

is satisfied. Note that F ∈ L2([0, 2π]2) (it may be obtained analogously as the
inclusion h ∈ L2([0, 2π]2) in the proof of the Proposition 3.3). Thus F = f ′x
in L2([0, 2π]2).

Hence, F (x, y) = f ′x(x, y) almost everywhere on [0, 2π]2. Therefore, by the
Fubini theorem, there exists a set B ⊆ [0, 2π] with µ(B) = 2π such that

µ ({x ∈ [0, 2π] : f ′x(x, y) = F (x, y)}) = 2π,

and the function gy ∈ L1([0, 2π]) for every y ∈ B, where gy(x) := f ′x(x, y).
Consider the function

G(x, y) =

∫ x

0

du

∫ y

0

h(u, v)dv.

Now for every x ∈ [0, 2π] and y ∈ B we have

f(x, y) =

∫ x

0

f ′x(u, y)du =

∫ x

0

F (u, y)du =

∫ x

0

du

∫ y

0

h(u, v)dv = G(x, y).

Since f is continuous with respect to y, G ∈ C([0, 2π]2) and B is dense in
[0, 2π], we have that f(x, y) = G(x, y) for every (x, y) ∈ [0, 2π]2.

Note that the function f ′x is continuous with respect to x. According to [9,
Proposition 2.1] the set E of all points (x, y) ∈ [0, 2π]2 at which f ′′xy exists is
a Fσδ-set. In particular, E is measurable. It follows from Proposition 1.1 that
the set E has the measure 4π2 and a.e. f ′′xy = h. Analogously a.e. there exist
mixed derivatives f ′′yx which are a.e. equal to h. Hence, f ′′x,y, f

′′
yx ∈ L2([0, 2π]2).

(ii), (iii). It follows from the proof of (i) that for every n ∈ N there exists
hn ∈ L2([0, 1]2) such that

f(x, y) =

∫ x

0

du

∫ y

0

hn(u, v)dv
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for every (x, y) ∈ [ 1n , 1−
1
n ]2. Therefore f is continuous on (0, 1)2 and according

to Proposition 1.1 there exists A0 ⊆ [0, 1] with µ(A0) = 1 such that f ′x is
continuous with respect to y at every point of A × (0, 1). It remains to use
this fact to some separately twice differentiable extension f̃ : [−1, 2]2 → R of
f with f̃ ′′xx, f̃

′′
yy ∈ L2([−1, 2]2).

Corollary 4.2. Let f(x, y) have on [0, 1]2 the second pure partial derivatives.
Then there exists an open dense set G ⊆ [0, 1]2 on which there are equal mixed
partial derivatives f ′′xy and f ′′yx.

Proof. Note that by [14, p. 427] the functions f ′′xx and f ′′yy are of the first
Baire class. Hence, there exists an open dense subset G ⊆ [0, 1]2 on which the
pure derivations are locally bounded. It remains to use Theorem 4.1.

5 Examples, questions

For a real valued function f , we denote suppf = {x ∈ R : f(x) 6= 0}.
The following example shows that the assumption

sup
y∈Y

∫ 1

0

(f ′′xx(x, y))2dx <∞

in Corollary 2.3 cannot be replaced by

sup
y∈Y

∫ 1

0

|f ′′xx(x, y)|dx <∞.

Theorem 5.1. There exists a function f : [0, 1]2 → R satisfying the following
conditions:

(i) f is separately infinitely differentiable;

(ii) supy∈[0,1]
∫ 1

0
|f ′′xx(x, y)|dx = supx∈[0,1]

∫ 1

0
|f ′′yy(x, y)|dy <∞;

(iii) f ′x and f ′y are discontinuous at every point of some closed set E of pos-
itive measure.

Proof. Let

C = [0, 1] \
∞⊔
n=1

2n−1⊔
k=1

(an,k, bn,k)

be a Cantor type set of positive measure such that
(1) 0 < an,k < bn,k < 1 for every n and k;
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(2) an,k 6= bm,l for every n,m ∈ N, k ≤ 2n−1 and l ≤ 2m−1;
(3) bn,k − an,k = bn,l − an,l for every n ∈ N and k, l ≤ 2n−1.
Let {an,k, bn,k : n ∈ N, 1 ≤ k ≤ 2n−1} = {pn : n ∈ N}, ϕ : N → N3

be a bijection. Inductively for n we choose a sequence (Wn)∞n=1 of rectangles
Wn = Un × Vn such that

(a) Un = (an, bn), Vn = (cn, dn) ∈ {(am,k, bm,k) : m ∈ N, 1 ≤ k ≤ 2m−1};
(b) Un ∩ Um = Vn ∩ Vm = ∅ for all distinct n,m ∈ N;
(c) bn − an = dn − cn for all n ∈ N;
(d) Wn ⊆ {(x, y) ∈ R2 : max{|x − ck|, |y − cm|} ≤ 1

l } for every n ∈ N,
where (k,m, l) = ϕ(n).

Note that E = C2 ⊆ {wn : n ∈ N} for every sequence (wn)∞n=1 of points
wn ∈Wn.

Let ψ : R → R+ be an arbitrary infinitely differentiable function with
suppψ(y) = (0, 1) and maxx∈[0,1] |ψ(x)| = 1. For every n ∈ N we put εn =
bn − an = dn − cn,

ϕn(x) = ψ

(
x− an
εn

)
and

ψn(y) = ψ

(
y − cn
εn

)
.

Consider the function f : [0, 1]2 → R,

f(x, y) =
∑∞

n=1
εnϕn(x)ψn(y).

It follows from (b) that f is separately infinitely differentiable. Clearly,

sup
y∈[0,1]

∫ 1

0

|f ′′xx(x, y)|dx = sup
x∈[0,1]

∫ 1

0

|f ′′yy(x, y)|dy =

∫ 1

0

|ψ′′(x)|dx.

Thus f satisfies the condition (ii).
We show that f satisfies the condition (iii). For every n ∈ N we choose

un ∈ Un and vn ∈ Vn such that

ϕn(un) = A := max
x∈[0,1]

|ψ′(x)| and |ψn(vn)| = 1.

Therefore |f ′x(un, vn)| = A for every n ∈ N. Since f ′x(z) = 0 for every z ∈ E
and E =⊆ {(un, vn) : n ∈ N}, f ′x is discontinuous at every point of E.

Analogously f ′y is jointly discontinuous at every point of E.

The following modification of the example from [9, Theorem 3.2] shows that
the assumptions of the existence of f ′′yy and f ′′xx everywhere on the rectangle
[0, 2π]2 in Theorem 4.1 cannot be weakened.
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Theorem 5.2. There exists a function f : [0, 1]2 → R satisfying the following
conditions:

(i) f has continuous partial derivative f ′′yy;

(ii) for every y ∈ [0, 1] there exists a finite set A(y) such that f ′′xx(x, y) = 0
for all x ∈ [0, 1] \A(y);

(iii) the set
⋃
y∈[0,1]A(y) is countable;

(iv) f ′x is discontinuous with respect to y at every point of some set E of
positive measure; in particular, f ′′xy does not exist at all points of E.

Proof. We construct a function f similarly as in the proof of Theorem 3.2
from [9], modifying the functions ϕn only.

Let B ⊂ [0, 1] be a closed set without isolated points with µ(B) > 0, whose
complement [0, 1] \B is dense in [0, 1] and

[0, 1] \B =

∞⊔
n=1

(an, bn).

Let ψ : R→ R+ be an arbitrary twice differentiable function with suppψ(y) =
(0, 1),

ψn(y) = ψ

(
y − an
bn − an

)
, n = 1, 2, . . .

εn > 0 so that lim
n→∞

εn
(bn−an)2 = 0.

We choose continuous functions ϕn : [0, 1]→ [0, εn] so that |ϕ′n(x)| = 1 for
all x ∈ [0, 1] \An, where An is some finite set.

The function f : [0, 1]2 → R,

f(x, y) =
∑∞

n=1
ϕn(x)ψn(y),

satisfies conditions (i)− (iii) and condition (iv) for

E =

(
[0, 1] \

∞⋃
n=1

An

)
×B.

In connection with this example and Theorem 4.1, the following question
naturally arises.
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Problem 5.3. Let f : [0, 1]2 → R be a separately twice differentiable function
and f ′′xx, f

′′
yy ∈ L1([0, 1]2).

(i) Do there exist a.e. the mixed derivatives f ′′xy and f ′′yx?

(ii) Does there exist a set A ⊆ [0, 1] with µ(A) = 1 such that f ′x is continuous
with respect to y in each point of A× [0, 1]?

(iii) Is the function f jointly continuous?

It follows from the proof of Theorem 4.1 that the conditions f ′′xx, f
′′
yy ∈

L2([0, 1]2) can be replaced by the condition f ′′xx, f
′′
yy ∈ L1([0, 1]2) and by the

existence of an function h ∈ L1([0, 1]2) with

h ∼ −
∑

n,m∈Z
mnanme

inxeimy.

In this connection the following question naturally arises.

Problem 5.4. Let f : [0, 2π]2 → R be a separately twice differentiable function
with f(x, y) = 0 on an open set in [0, 2π]2 which contains the boundary of
[0, 2π]2 and f ′′xx, f

′′
yy ∈ L1([0, 1]2). Let

f ∼
∑

n,m∈Z
anme

inxeimy.

Does there exist an function h ∈ L1([0, 1]2) with

h ∼ −
∑

n,m∈Z
mnanme

inxeimy?
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