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INTERVALS CONTAINING ALL THE
PERIODIC POINTS

Abstract

For any map f from R to R, if an interval J contains all periodic
points of period 1 and 2, then f(f(J)) contains all periodic points (and
therefore contains the centre of f).

1 Introduction

This paper is in continuation of the investigation on dynamics on the real line
made in [6], [7], [8], [1], and [5]. Let f : R → R be a continuous map. For
every positive integer n, f1 = f and fn = f ◦ fn−1. An element x ∈ R is said
to be a periodic point of period n if fn(x) = x and f i(x) 6= x for 1 ≤ i ≤ n−1.
Let P (f) denote the set of all periodic points of f and Fix(f) denote the set
of all fixed points of f . A point x ∈ I is a recurrent point if x ∈ ω(x), where
ω(x) =

⋂
m≥0

⋃
n≥m fn(x). The set of recurrent points is denoted by R(f)

and the centre of f equals the closure of the set of all recurrent points. By
the convex hull of A we mean the smallest interval containing A.

The intermediate value theorem guarantees that if P (f) is non-empty, then
Fix(f2) is nonempty and the convex hull of every periodic orbit contains at
least one point of Fix(f2) (in fact, Fix(f)). Dually we ask: will the convex
hull of Fix(f) or Fix(f2) meet every cycle? For Fix(f) it need not be true;
that it is true for Fix(f2) has been proved in this paper.
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Already there are known results [2] describing the location of periodic
points forced by a given cycle. Working in the reverse direction: when Fix(f2)
is known, we have results about the location of P (f). Here we have succeeded
in proving that Fix(f2) has to be well-spread in two different senses: (1) For
every periodic point p, there exists a point x between two elements of Fix(f2)
such that f2(x) = p; (2) Every periodic orbit contains a point that lies between
two points of Fix(f2). The analogue of this main theorem is not true in the
plane R2 or in the circle. Counterexamples can be easily constructed.

If f : R → R is the Tent map given by f(x) = 1 − |1 − 2x|, then we
can easily calculate the following: Fix(f2) = {0, 2

5 ,
2
3 ,

4
5}. The convex hull of

Fix(f2) is [0, 4
5 ]. The image of the convex hull of Fix(f2)) is [0, 1]. P (f) =

{ 2m
2n+1 | m ≤ n in N}. We find P (f) ⊂ f(convex hull of Fix(f2)). We are

interested in proving some general theorems that assert that for all continuous
maps, inclusions similar to the above hold. Let f : R → R be a continuous
map. If there are closed subintervals I0, I1, ..., Il of R with Il = I0 such that
f(Ii) ⊃ Ii+1 for i = 0, 1, ..., l − 1, then I0I1I2...Il is called a cycle of length l.
We write Ii → Ij , if f(Ii) ⊃ Ij .

Lemma 1. [4] If I0I1I2...Il is a cycle of length l, then there exists a periodic
point x of f such that f i(x) ∈ Ii for i = 0, 1, ..., l − 1 and f l(x) = x.

2 Main results

Theorem 2. For every real map f , P (f) ⊂ f(f(convex hull of Fix(f2))).

Proof. Let f : R → R be continuous. Let a = inf{x ∈ R : f2(x) = x},
b = sup{x ∈ R : f2(x) = x}, where −∞ ≤ a < b ≤ ∞. Claim: If there is
any periodic point of f to the right of b, then f − id and f2 − id are both
negative on (b,∞). Let y be the rightmost point of a periodic orbit of period
k intersecting (b,∞). By definition, k > 2; thus f(y) and f2(y), both points of
this periodic orbit, must lie to the left of y. But the sign of f− id and f2− id is
constant on any component of the complement of the convex hull of Fix(f2).
A similar argument (or looking at a conjugate of f via an orientation-reversing
homeomorphism) shows that if there is any periodic point to the left of a, then
both f − id and f2 − id are positive on (−∞, a).

Now let us consider the case that one of a and b is finite; let a = −∞
and some periodic orbit of period k intersects (b,∞). Let y be the rightmost
point in its orbit. Since f − id is negative on (b,∞), fk−1(y) /∈ (b,∞), so
fk−1(y) ∈ (−∞, b]. And therefore y belongs to f(convex hull of Fix(f2), so
orbit of y. Similarly if this convex hull is [a,∞).

If none of a and b is finite then the proof is trivial.
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Assume now that both a and b are finite, let [c, d] = f([a, b]) and [e, q] =
f([c, d]). Note that [e, q] ⊇ [c, d] ⊇ [a, b]. Suppose some periodic orbit of
period k intersects (q,∞) and let y be its rightmost point. Then k > 2, and
consider fk−1(y); since y is the highest point in its orbit, fk−1(y) < y, but
since f(fk−1(y)) = y and f − id < 0 on (b,∞), we must have fk−1(y) < b.
It cannot belong to [c, d] since y /∈ [e, q]. So we have fk−1(y) < c. Now
consider fk−2(y): since f ◦ f(fk−2(y)) = y, if fk−2(y) > b we have a con-
tradiction to f2 − id < 0 on (b,∞). Also, since y is not in [e, q] we can-
not have fk−2(y) in [a, b]. But then fk−2(y) < a and hence fk−2(y) <
fk−1(y) since f − id is positive on (−∞, a). Now let us suppose for some
m, 0 < m < k, we have fm(y) ∈ [b, y); note that fk−1(y), fk−2(y) must
lie below c, so m < k − 2. Assume without loss of generality that m is the
maximum value (among 0 < m < k − 2) with fm(y) ∈ [b, y). Then for
j = m + 1, . . . , k − 1, f j(y) < a and hence f j(y) < f j+1(y) (since f − − id
is positive on (∞, a). This means we have fm+1(y) < fm+2(y) < . . . <
fk−1(y) < c < b < fm(y) < y and in particular, f [fk−1(y), fm(y)] ⊃
[fm+1(y), y] ⊃ [fk−2(y), fk−1(y)] while f [fk−2(y), fk−1(y)] ⊃ [fk−1(y), y] ⊃
[fk−1(y), fm(y)]. Thus, f2[fk−2(y), fk−1(y)] ⊃ [fk−2(y), fk−1(y)] and this is
an interval disjoint from [a, b] intersecting Fix(f2), a contradiction.

Theorem 3. Let f be a continuous function on the real line. Fix(f2) is
bounded if and only if P (f) is bounded.

Proof. This follows from Theorem 2.

Corollary 4. For a real map f , if Fix(f2) is bounded above but not below,
then f(convex hull of Fix(f2)) ⊃ P (f).

Proof. This follows from the first part of the proof of Theorem 2.

Remark 1. The analogue of the above corollary is true if f is bounded below
but not above. The proof is similar to the above.

Theorem 5.

(1) For every real map f , if Fix(f2) is unbounded, then

P (f) ⊂ f(convex hull of Fix(f2)).

(2) There exists a real map f such that P (f) * f(convex hull of Fix(f2)).

Proof.

(1) This follows from the first part of the proof of Theorem 2.
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(2) Define f : [0, 6]→ [0, 6] as f(x) =

 −x + 6 x ∈ [0, 3]
−3x + 12 x ∈ [3, 4]
x− 4 x ∈ [4, 6]

.

Then f is a piecewise linear map (see Figure 1 below) such that f2([0, 1)) =
(1, 2] and f2((5, 6]) = [4, 5). Thus there is no periodic point of period 2 in
[0, 1)∪ (5, 6]. On the other hand, since 1 and 5 are periodic with period 2, the
convex hull of Fix(f2) is [1, 5]. Now, f([1, 5]) = [0, 5], which does not contain
the periodic point 6 of period 4. Hence P (f) 6⊂ f(convex hull of Fix(f2)).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

y = x
y = f(x)

Figure 1: The function, f

Remark 2. There is a real map f such that Fix(f2) is bounded above, but
P (f) is not bounded above.

Define f : R→ R as

f(x) =


−x if x > 0

0 if x ∈ [−1, 0]

(4n + 3)x + 8n2 + 12n + 3 if x ∈ [−2n− 2,−2n− 1] and n ≥ 0

(−4n− 1)x− 8n2 − 4n− 1 if x ∈ [−2n− 1,−2n] and n > 0

.
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This f is nothing but the “linear extension” of the integer function
f(n) = −n if n ≥ 0

f(2n) = 2n− 1 if n < 0

f(2n− 1) = −2n if n ≤ 0

.

This f has no positive fixed point; no positive point of period 2. But every
even positive integer is of period 3. Therefore Fix(f2) is bounded above, but
P (f) is not bounded above.

Theorem 6. For a real map f , for all p ∈ P (f), there exists n ∈ N and x, y
∈ Fix(f2) such that x ≤ fn(p) ≤ y.

Proof. First, let Fix(f2) be bounded and [a, b] be its convex hull. From the
previous theorem, P (f) ⊂ f2(convex hull of Fix(f2)). Let there be a periodic
point of period k(> 2), whose orbit is in the complement of the convex hull of
Fix(f2), and let p be the rightmost point in its orbit. By an argument similar
to the one in the proof of Theorem 2, the signs of f − id, f2 − id are positive
on (−∞, a) and negative on (b,∞). Then p > b and fk−2(p) < fk−1(p) < a.
Let us choose m as in the proof of Theorem 2, and proceeding in the same
way, we get that there is a fixed point for f2 in [fk−2(p), fk−1(p)], which is a
contradiction. So the orbit of p meets the convex hull of Fix(f2).

If Fix(f2) is unbounded then the proof is trivial.

Remark 3. For a continuous map f on I, let J be the smallest interval
containing Fix(f2). The following question is natural to ask: how is the convex
hull of P (f), denoted by [P (f)], situated with respect to J , f(J) and f2(J)?
We answer this question through examples.

It is clear that J ⊂ f(J) ⊂ f2(J) and [P (f)] ⊂ f2(J).

1. J = [P (f)] = f(J) = f2(J) for f(x) = 1− x on [0, 1].

2. J ⊂ [P (f)] = f(J) ⊂ f2(J) for the tent map

f(x) =

{
2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 ≤ x ≤ 1

.

3. J ⊂ [P (f)] = f(J) ⊂ f2(J) for the following function: Define f :
[0, 8] → [0, 8] linearly on every interval [n, n + 1], 0 ≤ n ≤ 7, after
defining, f(0) = 5, f(1) = 6, f(2) = 7, f(3) = 8, f(4) = 4, f(5) = 0,
f(6) = 3, f(7) = 2 and f(8) = 1.
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4. J ⊂ f(J) ⊂ [P (f)] ⊂ f2(J) for the following function: Define f :
[0, 8] → [0, 8] linearly on every interval [n, n + 1], 0 ≤ n ≤ 7, after
defining, f(0) = 7, f(1) = 8, f(2) = 6, f(3) = 5, f(4) = 4, f(5) = 0,
f(6) = 2, f(7) = 3 = f(8).

5. J ⊂ f(J) ⊂ [P (f)] = f2(J) for the function given in (2) of Theorem 5.

We note that these are the only possibilities.

Remark 4. In fact f2(J) contains the centre of f . This will follow from:

• Fix(f2) is closed.

• P (f) = R(f) [3].

3 Some final remarks

In this paper we have proved that (1) f2( convex hull of Fix(f2)) ⊃ P (f), and
(2) every member of P (f), at some time or the other, should come between
two elements of Fix(f2). In other words the smaller set Fix(f2) is in some
sense spread fairly enough in the bigger set P (f).

We conclude the paper with the following open question that looks simple:

• Whenever m forces n (in the Sarkovski-sense and m,n being integers
≥ 2), should every m-cycle of f be contained in the f2-image of the
convex hull of the union of all n-cycles of f?

If this is proved, the main theorem of this paper is the particular case
when n = 2. (Some partial affirmative results can be proved.)

Acknowledgment. The authors wish to thank the referees for their
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