M. Archana, * School of Mathematics and Statistics, University of Hyderabad, Hyderabad, Telangana 500046, India. email: archana_margam@ yahoo.co.in
V. Kannan, School of Mathematics and Statistics, University of Hyderabad, Hyderabad, Telangana 500046, India. email: vksm@ uohyd.ernet.in

INTERVALS CONTAINING ALL THE PERIODIC POINTS

Abstract

For any map f from \mathbb{R} to \mathbb{R}, if an interval J contains all periodic points of period 1 and 2 , then $f(f(J))$ contains all periodic points (and therefore contains the centre of f).

1 Introduction

This paper is in continuation of the investigation on dynamics on the real line made in [6], [7], [8], [1], and [5]. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map. For every positive integer $n, f^{1}=f$ and $f^{n}=f \circ f^{n-1}$. An element $x \in \mathbb{R}$ is said to be a periodic point of period n if $f^{n}(x)=x$ and $f^{i}(x) \neq x$ for $1 \leq i \leq n-1$. Let $P(f)$ denote the set of all periodic points of f and $\operatorname{Fix}(f)$ denote the set of all fixed points of f. A point $x \in I$ is a recurrent point if $x \in \omega(x)$, where $\omega(x)=\bigcap_{m \geq 0} \overline{\bigcup_{n \geq m} f^{n}(x)}$. The set of recurrent points is denoted by $R(f)$ and the centre of f equals the closure of the set of all recurrent points. By the convex hull of A we mean the smallest interval containing A.

The intermediate value theorem guarantees that if $P(f)$ is non-empty, then $\operatorname{Fix}\left(f^{2}\right)$ is nonempty and the convex hull of every periodic orbit contains at least one point of $\operatorname{Fix}\left(f^{2}\right)$ (in fact, $\operatorname{Fix}(f)$). Dually we ask: will the convex hull of $\operatorname{Fix}(f)$ or $\operatorname{Fix}\left(f^{2}\right)$ meet every cycle? For $\operatorname{Fix}(f)$ it need not be true; that it is true for $\operatorname{Fix}\left(f^{2}\right)$ has been proved in this paper.

[^0]Already there are known results [2] describing the location of periodic points forced by a given cycle. Working in the reverse direction: when $\operatorname{Fix}\left(f^{2}\right)$ is known, we have results about the location of $P(f)$. Here we have succeeded in proving that $\operatorname{Fix}\left(f^{2}\right)$ has to be well-spread in two different senses: (1) For every periodic point p, there exists a point x between two elements of $\operatorname{Fix}\left(f^{2}\right)$ such that $f^{2}(x)=p ;(2)$ Every periodic orbit contains a point that lies between two points of $\operatorname{Fix}\left(f^{2}\right)$. The analogue of this main theorem is not true in the plane \mathbb{R}^{2} or in the circle. Counterexamples can be easily constructed.

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is the Tent map given by $f(x)=1-|1-2 x|$, then we can easily calculate the following: $\operatorname{Fix}\left(f^{2}\right)=\left\{0, \frac{2}{5}, \frac{2}{3}, \frac{4}{5}\right\}$. The convex hull of $\operatorname{Fix}\left(f^{2}\right)$ is $\left[0, \frac{4}{5}\right]$. The image of the convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right)$ is $[0,1] . P(f)=$ $\left\{\left.\frac{2 m}{2 n+1} \right\rvert\, m \leq n\right.$ in $\left.\mathbb{N}\right\}$. We find $P(f) \subset f$ (convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right)$. We are interested in proving some general theorems that assert that for all continuous maps, inclusions similar to the above hold. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map. If there are closed subintervals $I_{0}, I_{1}, \ldots, I_{l}$ of \mathbb{R} with $I_{l}=I_{0}$ such that $f\left(I_{i}\right) \supset I_{i+1}$ for $i=0,1, \ldots, l-1$, then $I_{0} I_{1} I_{2} \ldots I_{l}$ is called a cycle of length l. We write $I_{i} \rightarrow I_{j}$, if $f\left(I_{i}\right) \supset I_{j}$.

Lemma 1. [4] If $I_{0} I_{1} I_{2} \ldots I_{l}$ is a cycle of length l, then there exists a periodic point x of f such that $f^{i}(x) \in I_{i}$ for $i=0,1, \ldots, l-1$ and $f^{l}(x)=x$.

2 Main results

Theorem 2. For every real map $f, P(f) \subset f\left(f\left(\right.\right.$ convex hull of $\left.\left.\operatorname{Fix}\left(f^{2}\right)\right)\right)$.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Let $a=\inf \left\{x \in \mathbb{R}: f^{2}(x)=x\right\}$, $b=\sup \left\{x \in \mathbb{R}: f^{2}(x)=x\right\}$, where $-\infty \leq a<b \leq \infty$. Claim: If there is any periodic point of f to the right of b, then $f-\mathrm{id}$ and $f^{2}-\mathrm{id}$ are both negative on (b, ∞). Let y be the rightmost point of a periodic orbit of period k intersecting (b, ∞). By definition, $k>2$; thus $f(y)$ and $f^{2}(y)$, both points of this periodic orbit, must lie to the left of y. But the sign of $f-\mathrm{id}$ and $f^{2}-\mathrm{id}$ is constant on any component of the complement of the convex hull of $\operatorname{Fix}\left(f^{2}\right)$. A similar argument (or looking at a conjugate of f via an orientation-reversing homeomorphism) shows that if there is any periodic point to the left of a, then both f - id and f^{2} - id are positive on $(-\infty, a)$.

Now let us consider the case that one of a and b is finite; let $a=-\infty$ and some periodic orbit of period k intersects (b, ∞). Let y be the rightmost point in its orbit. Since $f-\mathrm{id}$ is negative on $(b, \infty), f^{k-1}(y) \notin(b, \infty)$, so $f^{k-1}(y) \in(-\infty, b]$. And therefore y belongs to f (convex hull of $\operatorname{Fix}\left(f^{2}\right)$, so orbit of y. Similarly if this convex hull is $[a, \infty)$.

If none of a and b is finite then the proof is trivial.

Assume now that both a and b are finite, let $[c, d]=f([a, b])$ and $[e, q]=$ $f([c, d])$. Note that $[e, q] \supseteq[c, d] \supseteq[a, b]$. Suppose some periodic orbit of period k intersects (q, ∞) and let y be its rightmost point. Then $k>2$, and consider $f^{k-1}(y)$; since y is the highest point in its orbit, $f^{k-1}(y)<y$, but since $f\left(f^{k-1}(y)\right)=y$ and $f-\mathrm{id}<0$ on (b, ∞), we must have $f^{k-1}(y)<b$. It cannot belong to $[c, d]$ since $y \notin[e, q]$. So we have $f^{k-1}(y)<c$. Now consider $f^{k-2}(y)$: since $f \circ f\left(f^{k-2}(y)\right)=y$, if $f^{k-2}(y)>b$ we have a contradiction to $f^{2}-\mathrm{id}<0$ on (b, ∞). Also, since y is not in $[e, q]$ we cannot have $f^{k-2}(y)$ in $[a, b]$. But then $f^{k-2}(y)<a$ and hence $f^{k-2}(y)<$ $f^{k-1}(y)$ since $f-$ id is positive on $(-\infty, a)$. Now let us suppose for some $m, 0<m<k$, we have $f^{m}(y) \in[b, y)$; note that $f^{k-1}(y), f^{k-2}(y)$ must lie below c, so $m<k-2$. Assume without loss of generality that m is the maximum value (among $0<m<k-2$) with $f^{m}(y) \in[b, y)$. Then for $j=m+1, \ldots, k-1, f^{j}(y)<a$ and hence $f^{j}(y)<f^{j+1}(y)$ (since $f-$ id is positive on (∞, a). This means we have $f^{m+1}(y)<f^{m+2}(y)<\ldots<$ $f^{k-1}(y)<c<b<f^{m}(y)<y$ and in particular, $f\left[f^{k-1}(y), f^{m}(y)\right] \supset$ $\left[f^{m+1}(y), y\right] \supset\left[f^{k-2}(y), f^{k-1}(y)\right]$ while $f\left[f^{k-2}(y), f^{k-1}(y)\right] \supset\left[f^{k-1}(y), y\right] \supset$ $\left[f^{k-1}(y), f^{m}(y)\right]$. Thus, $f^{2}\left[f^{k-2}(y), f^{k-1}(y)\right] \supset\left[f^{k-2}(y), f^{k-1}(y)\right]$ and this is an interval disjoint from $[a, b]$ intersecting $\operatorname{Fix}\left(f^{2}\right)$, a contradiction.

Theorem 3. Let f be a continuous function on the real line. $\operatorname{Fix}\left(f^{2}\right)$ is bounded if and only if $P(f)$ is bounded.

Proof. This follows from Theorem 2.
Corollary 4. For a real map f, if $\operatorname{Fix}\left(f^{2}\right)$ is bounded above but not below, then $f\left(\right.$ convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right) \supset P(f)$.

Proof. This follows from the first part of the proof of Theorem 2.
Remark 1. The analogue of the above corollary is true if f is bounded below but not above. The proof is similar to the above.

Theorem 5.

(1) For every real map f, if $\operatorname{Fix}\left(f^{2}\right)$ is unbounded, then

$$
P(f) \subset f\left(\text { convex hull of } \operatorname{Fix}\left(f^{2}\right)\right)
$$

(2) There exists a real map f such that $P(f) \nsubseteq f\left(\right.$ convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right)$.

Proof.
(1) This follows from the first part of the proof of Theorem 2.
(2) Define $f:[0,6] \rightarrow[0,6]$ as $f(x)=\left\{\begin{array}{ll}-x+6 & x \in[0,3] \\ -3 x+12 & x \in[3,4] \\ x-4 & x \in[4,6]\end{array}\right.$.

Then f is a piecewise linear map (see Figure 1 below) such that $f^{2}([0,1))=$ $(1,2]$ and $f^{2}((5,6])=[4,5)$. Thus there is no periodic point of period 2 in $[0,1) \cup(5,6]$. On the other hand, since 1 and 5 are periodic with period 2 , the convex hull of $\operatorname{Fix}\left(f^{2}\right)$ is $[1,5]$. Now, $f([1,5])=[0,5]$, which does not contain the periodic point 6 of period 4 . Hence $P(f) \not \subset f\left(\right.$ convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right)$.

Figure 1: The function, f

Remark 2. There is a real map f such that $\operatorname{Fix}\left(f^{2}\right)$ is bounded above, but $P(f)$ is not bounded above.

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f(x)=\left\{\begin{array}{ll}
-x & \text { if } x>0 \\
0 & \text { if } x \in[-1,0] \\
(4 n+3) x+8 n^{2}+12 n+3 & \text { if } x \in[-2 n-2,-2 n-1] \text { and } n \geq 0 \\
(-4 n-1) x-8 n^{2}-4 n-1 & \text { if } x \in[-2 n-1,-2 n] \text { and } n>0
\end{array} .\right.
$$

This f is nothing but the "linear extension" of the integer function

$$
\begin{cases}f(n)=-n & \text { if } n \geq 0 \\ f(2 n)=2 n-1 & \text { if } n<0 \\ f(2 n-1)=-2 n & \text { if } n \leq 0\end{cases}
$$

This f has no positive fixed point; no positive point of period 2. But every even positive integer is of period 3. Therefore $\operatorname{Fix}\left(f^{2}\right)$ is bounded above, but $P(f)$ is not bounded above.

Theorem 6. For a real map f, for all $p \in P(f)$, there exists $n \in \mathbb{N}$ and x, y $\in \operatorname{Fix}\left(f^{2}\right)$ such that $x \leq f^{n}(p) \leq y$.
Proof. First, let $\operatorname{Fix}\left(f^{2}\right)$ be bounded and $[a, b]$ be its convex hull. From the previous theorem, $P(f) \subset f^{2}\left(\right.$ convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right)$. Let there be a periodic point of period $k(>2)$, whose orbit is in the complement of the convex hull of $\operatorname{Fix}\left(f^{2}\right)$, and let p be the rightmost point in its orbit. By an argument similar to the one in the proof of Theorem 2, the signs of $f-\mathrm{id}, f^{2}-\mathrm{id}$ are positive on $(-\infty, a)$ and negative on (b, ∞). Then $p>b$ and $f^{k-2}(p)<f^{k-1}(p)<a$. Let us choose m as in the proof of Theorem 2 , and proceeding in the same way, we get that there is a fixed point for f^{2} in $\left[f^{k-2}(p), f^{k-1}(p)\right]$, which is a contradiction. So the orbit of p meets the convex hull of $\operatorname{Fix}\left(f^{2}\right)$.

If $\operatorname{Fix}\left(f^{2}\right)$ is unbounded then the proof is trivial.
Remark 3. For a continuous map f on I, let J be the smallest interval containing $\operatorname{Fix}\left(f^{2}\right)$. The following question is natural to ask: how is the convex hull of $P(f)$, denoted by $[P(f)]$, situated with respect to $J, f(J)$ and $f^{2}(J)$? We answer this question through examples.

It is clear that $J \subset f(J) \subset f^{2}(J)$ and $[P(f)] \subset f^{2}(J)$.

1. $J=[P(f)]=f(J)=f^{2}(J)$ for $f(x)=1-x$ on $[0,1]$.
2. $J \subset[P(f)]=f(J) \subset f^{2}(J)$ for the tent map

$$
f(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2-2 x & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

3. $J \subset[P(f)]=f(J) \subset f^{2}(J)$ for the following function: Define f : $[0,8] \rightarrow[0,8]$ linearly on every interval $[n, n+1], 0 \leq n \leq 7$, after defining, $f(0)=5, f(1)=6, f(2)=7, f(3)=8, f(4)=4, f(5)=0$, $f(6)=3, f(7)=2$ and $f(8)=1$.
4. $J \subset f(J) \subset[P(f)] \subset f^{2}(J)$ for the following function: Define $f:$ $[0,8] \rightarrow[0,8]$ linearly on every interval $[n, n+1], 0 \leq n \leq 7$, after defining, $f(0)=7, f(1)=8, f(2)=6, f(3)=5, f(4)=4, f(5)=0$, $f(6)=2, f(7)=3=f(8)$.
5. $J \subset f(J) \subset[P(f)]=f^{2}(J)$ for the function given in (2) of Theorem 5 .

We note that these are the only possibilities.
Remark 4. In fact $f^{2}(J)$ contains the centre of f. This will follow from:

- $\operatorname{Fix}\left(f^{2}\right)$ is closed.
- $\overline{P(f)}=\overline{R(f)}[3]$.

3 Some final remarks

In this paper we have proved that $(1) f^{2}\left(\right.$ convex hull of $\left.\operatorname{Fix}\left(f^{2}\right)\right) \supset P(f)$, and (2) every member of $P(f)$, at some time or the other, should come between two elements of $\operatorname{Fix}\left(f^{2}\right)$. In other words the smaller set $\operatorname{Fix}\left(f^{2}\right)$ is in some sense spread fairly enough in the bigger set $P(f)$.

We conclude the paper with the following open question that looks simple:

- Whenever m forces n (in the Sarkovski-sense and m, n being integers ≥ 2), should every m-cycle of f be contained in the f^{2}-image of the convex hull of the union of all n-cycles of f ?

If this is proved, the main theorem of this paper is the particular case when $\mathrm{n}=2$. (Some partial affirmative results can be proved.)
Acknowledgment. The authors wish to thank the referees for their constructive critique of the first draft.

References

[1] M. Archana and V. Kannan, A context free language associated with interval maps, preprint.
[2] S. Baldwin, Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions, Discrete Math., 67(2) (1987), 111-127.
[3] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer, 1992.
[4] B. S. Du, A simple proof of Sharkovsky's theorem, Amer. Math. Monthly, 111(7) (2004), 595-599.
[5] V. Kannan, B. Sankara Rao, I. Subramania Pillai and S. Niketa Salvi, Polynomials hardly commuting with increasing bijections, Semigroup Forum, 76(i) (2008), Springer-Verlag, 124-132.
[6] A. Nagar, V. Kannan and S. P. Sesha Sai, Properties of topologically transitive maps on the real line, Real Anal. Exchange, 27(2) (2001), 325-334.
[7] A. Nagar, V. Kannan and K. Srinivas, Some simple conditions implying topological transitivity for interval maps, Aequationes Math., 67(3) (2004), 201-204.
[8] A. Nagar and S. P. Sesha Sai, Some classes of transitive maps on \mathbb{R}, J. Anal., 8 (2000), 103-111.
[9] A. N. Šarkovskii, Coexistence of cycles of continuous mapping of the line into itself, Ukrainian Math. J., 16 (1964), 61-71 [in Russian]; Intern. J. Bifurcation and Chaos, 5(5) (1995), 1263-1273.

[^0]: Mathematical Reviews subject classification: Primary: 54C30, 37E05; Secondary: 37C25
 Key words: Periodic points, period, convex hull
 Received by the editors January 20, 2015
 Communicated by: Zbigniew Nitecki
 *The research for this paper was supported by UGC, INDIA.

