ABSOLUTE NULL SUBSETS OF THE PLANE WITH BAD ORTHOGONAL PROJECTIONS

Abstract

Under Martin's Axiom, it is proved that there exists an absolute null subset of the Euclidean plane \mathbf{R}^{2}, the orthogonal projections of which on all straight lines in \mathbf{R}^{2} are absolutely nonmeasurable. A similar but weaker result holds true within the framework of ZFC set theory.

Among various set-theoretical operations commonly used in real analysis, the standard projection operation is very important but has a somewhat unpleasant property. Namely, the orthogonal projection of a subset Z of the Euclidean plane \mathbf{R}^{2} on a straight line lying in \mathbf{R}^{2} may be of a much more complicated structure than the structure of Z. There are many examples confirming this circumstance. For instance, if Z is a Borel subset of \mathbf{R}^{2}, then the orthogonal projection of Z on the real line \mathbf{R} is, in general, a non-Borel analytic (Suslin) subset of \mathbf{R}, and this fact turned out to be a starting point for the emergence and further development of classical descriptive set theory; see, e.g., [7], [11].

Also, simple examples show that the projection of a Lebesgue measurable subset of \mathbf{R}^{2} may be a Lebesgue nonmeasurable set in \mathbf{R}. In the present paper we consider an analogous phenomenon for the so-called absolute null subsets of \mathbf{R}^{2}.

A measure μ defined on some σ-algebra of subsets of \mathbf{R} (respectively, of \mathbf{R}^{2}) is called continuous if it vanishes on all singletons of \mathbf{R} (respectively, of \mathbf{R}^{2}).

According to the standard definition, a subset U of \mathbf{R} (respectively, of \mathbf{R}^{2}) is an absolute null set or universal measure zero set if, for every σ-finite

[^0]continuous Borel measure μ on \mathbf{R} (respectively, on \mathbf{R}^{2}), the equality $\mu^{*}(U)=0$ holds true, where μ^{*} denotes the outer measure canonically associated with μ.

Equivalently, U is an absolute null set if and only if there exists no nonzero σ-finite continuous Borel measure on U.

The above definition shows that the absolute null subsets of \mathbf{R} (of \mathbf{R}^{2}) are ultimately small with respect to the class $\mathcal{M}(\mathbf{R})$ (class $\left.\mathcal{M}\left(\mathbf{R}^{2}\right)\right)$ of the completions of all nonzero σ-finite continuous Borel measures on \mathbf{R} (on \mathbf{R}^{2}). In particular, these subsets are absolutely measurable with respect to the two above-mentioned classes; i.e., are measurable with respect to any measure belonging to $\mathcal{M}(\mathbf{R})\left(\mathcal{M}\left(\mathbf{R}^{2}\right)\right)$.

There are several delicate constructions of uncountable absolute null subsets of \mathbf{R} (of \mathbf{R}^{2}). For more details about those constructions, see, e.g., [13] and [16].

A subset X of the real line \mathbf{R} is called absolutely nonmeasurable (with respect to the class $\mathcal{M}(\mathbf{R}))$ if there exists no measure μ belonging to $\mathcal{M}(\mathbf{R})$ such that $X \in \operatorname{dom}(\mu)$.

This definition shows that absolutely nonmeasurable subsets of \mathbf{R} are extremely bad relative to the class $\mathcal{M}(\mathbf{R})$. It makes sense to note that these subsets of \mathbf{R} can be characterized in purely topological terms, as follows.

Recall that a subset B of \mathbf{R} is a Bernstein set if, for each nonempty perfect set $P \subset \mathbf{R}$, the relations $P \cap B \neq \emptyset$ and $P \cap(\mathbf{R} \backslash B) \neq \emptyset$ are satisfied.

Such a set B was first constructed by Bernstein [2] in 1908. In his argument Bernstein essentially relies on an uncountable form of the Axiom of Choice (AC) and uses the method of transfinite recursion. Much later, it was recognized that no countable form of $\mathbf{A C}$ is enough for obtaining B. The importance of Bernstein sets in various topics of general topology, measure theory, and the theory of Boolean algebras is well known; see, e.g., [7], [8], [10], [11], [14], [15].

Lemma 1. Let X be a subset of the real line \mathbf{R}. The following two assertions are equivalent:
(1) X is absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$;
(2) X is a Bernstein set in \mathbf{R}.

The proof of this lemma is not difficult and can be found, e.g., in [9] or in [10, p. 206].

Some Bernstein sets may possess additional properties of purely algebraic nature.

Example 1. Consider the real line \mathbf{R} as a vector space V over the field \mathbf{Q} of all rational numbers. Any basis of V is usually called a Hamel basis of \mathbf{R}, because such a basis was first constructed by Hamel in [6]. There exists
a Bernstein set in \mathbf{R} which simultaneously is a Hamel basis of \mathbf{R}; see, for instance, [1], [3], [4, p. 113], [5, p. 11], or [14, p. 221].

Example 2. Let G be a group of transformations of \mathbf{R} with $\operatorname{card}(G) \leq \mathbf{c}$, where \mathbf{c} denotes the cardinality of the continuum. There exists a Bernstein set $B \subset \mathbf{R}$ which is almost invariant under the group G. The latter means that for each $g \in G$, the inequality

$$
\operatorname{card}(B \triangle g(B))<\mathbf{c}
$$

is valid, where the symbol \triangle denotes the operation of symmetric difference of two sets; cf. Theorem 21 of Chapter 5 in [14]. In particular, taking the group Γ of all homotheties of \mathbf{R} with center 0 , one obtains a Bernstein subset of \mathbf{R} which simultaneously is almost invariant under Γ.

Lemma 1 and the previous example allow us to demonstrate the existence of a small subset of \mathbf{R}^{2} whose projection on every straight line l in \mathbf{R}^{2} is absolutely nonmeasurable in l. In what follows, the symbol λ_{1} stands for the ordinary one-dimensional Lebesgue measure on l and the symbol λ_{2} stands for the ordinary two-dimensional Lebesgue measure on \mathbf{R}^{2}.

Theorem 1. There exists a set $T \subset \mathbf{R}^{2}$ with $\lambda_{2}(T)=0$ such that the orthogonal projection of T on every straight line l in \mathbf{R}^{2} is absolutely nonmeasurable in l.

Proof. Take a Bernstein set $X \subset \mathbf{R}$ which is almost invariant under the group Γ (see Example 2), and in \mathbf{R}^{2} consider the set

$$
T=(X \times\{0\}) \cup(\{0\} \times X)
$$

This T is contained in the union of the two lines $\mathbf{R} \times\{0\}$ and $\{0\} \times \mathbf{R}$, so $\lambda_{2}(T)=0$. Now, let l be a straight line in \mathbf{R}^{2} and let θ denote the angle between l and $\mathbf{R} \times\{0\}$. We may assume, without loss of generality, that l passes through the origin $(0,0)$ and that $0<\theta<\pi / 2$. It is not difficult to verify that the orthogonal projection of T on l is congruent to the set

$$
T^{*}=\cos (\theta) X \cup \sin (\theta) X \subset \mathbf{R}
$$

By virtue of the definition of X, we have the inequalities

$$
\begin{aligned}
& \operatorname{card}((\cos (\theta) X) \triangle X)<\mathbf{c} \\
& \operatorname{card}((\sin (\theta) X) \triangle X)<\mathbf{c}
\end{aligned}
$$

whence it follows that

$$
\operatorname{card}\left(T^{*} \triangle X\right)<\mathbf{c}
$$

Remembering that X is a Bernstein subset of \mathbf{R}, we readily conclude that T^{*} is also a Bernstein set in \mathbf{R}, which completes the proof of Theorem 1.

Example 3. Let H be a Hamel basis of \mathbf{R} which simultaneously is a Bernstein set in \mathbf{R}; see Example 1. We may assume, without loss of generality, that $H=\left\{h_{\xi}: \xi<\alpha\right\}$, where α denotes the least ordinal number of cardinality \mathbf{c}. According to the definition of H, any nonzero element $x \in \mathbf{R}$ admits a unique representation

$$
x=q_{1} h_{\xi_{1}}+q_{2} h_{\xi_{2}}+\ldots+q_{n} h_{\xi_{n}}
$$

where $n>0, q_{1}=q_{1}(x), q_{2}=q_{2}(x), \ldots, q_{n}=q_{n}(x)$ are some rational numbers distinct from zero, and $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is a strictly increasing sequence of ordinals, all of which are strictly less than α. Further, let us put

$$
K^{\prime}=\left\{x \in \mathbf{R}: q_{n}(x)>0\right\}
$$

Obviously, we may write

$$
K^{\prime} \cup\left(-K^{\prime}\right)=\mathbf{R} \backslash\{0\}, \quad K^{\prime} \cap\left(-K^{\prime}\right)=\emptyset
$$

Moreover, since $H \subset K^{\prime}$ and $-H \subset \mathbf{R} \backslash K^{\prime}$, we conclude that both K^{\prime} and $-K^{\prime}$ are Bernstein sets in \mathbf{R}. Now, denoting

$$
K=\left(K^{\prime} \times\{0\}\right) \cup\left(\{0\} \times\left(-K^{\prime}\right)\right)
$$

we infer that $\lambda_{2}(K)=0$. At the same time, considering in \mathbf{R}^{2} the straight line

$$
l=\{(x, y): x-y=0\}
$$

one can easily deduce that the orthogonal projection of K on l coincides with the set $l \backslash\{(0,0)\}$, so is λ_{1}-measurable in l. This fact explains why in the proof of Theorem 1 we appealed to the aid of an almost Γ-invariant Bernstein subset of \mathbf{R}.

The natural question arises whether it is possible to strengthen Theorem 1 and to establish the existence of an absolute null subset of \mathbf{R}^{2} (with respect to the class $\mathcal{M}\left(\mathbf{R}^{2}\right)$), the orthogonal projections of which on all straight lines in \mathbf{R}^{2} are absolutely nonmeasurable in those lines. In this context, let us immediately note that such a generalization of Theorem 1 is not realizable within ZFC set theory. Indeed, a model of ZFC was constructed in which the Continuum Hypothesis $(\mathbf{C H})$ fails to be true and in which all uncountable
absolute null subsets of \mathbf{R}^{2} have cardinalities ω_{1}, where ω_{1} denotes the least uncountable cardinal number; for more details, see [12], [13]. Since the cardinality of any Bernstein set is equal to \mathbf{c}, in the above-mentioned model of ZFC there exists no absolute null subset of \mathbf{R}^{2} whose orthogonal projection on $\mathbf{R} \times\{0\}$ is absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

Nevertheless, by using Martin's Axiom (MA), it becomes possible to substantially strengthen Theorem 1 in terms of absolute null subsets of \mathbf{R}^{2}. For this purpose, we need the notion of a \mathbf{c}-Luzin set in \mathbf{R}.

A set $X \subset \mathbf{R}$ is called a \mathbf{c}-Luzin subset of \mathbf{R} if $\operatorname{card}(X)=\mathbf{c}$ and, for every first category set $F \subset \mathbf{R}$, the inequality $\operatorname{card}(F \cap X)<\mathbf{c}$ is satisfied.

It is well known that, under Martin's Axiom, there exist c-Luzin subsets of \mathbf{R}; see, e.g., [13]. In our further consideration, two c-Luzin sets in \mathbf{R} with certain specific properties will play a key role.

Lemma 2. Assuming Martin's Axiom, every \mathbf{c}-Luzin subset of \mathbf{R} is an absolute null set in \mathbf{R}.

Lemma 3. The product of two absolute null subsets of \mathbf{R} is an absolute null subset of \mathbf{R}^{2}.

Lemmas 2 and 3 are well known, so we omit their detailed proofs here. Actually, Lemma 3 is Theorem 8.1 from [13], and Lemma 2 is readily implied by the following two assertions:
(i) Assuming Martin's Axiom, any set $X \subset \mathbf{R}$ with $\operatorname{card}(X)<\mathbf{c}$ is an absolute null subset of \mathbf{R};
(ii) Every σ-finite Borel measure on \mathbf{R} is concentrated on a first category subset of \mathbf{R}.

In connection with (i), see again [13].
In connection with (ii), see e.g. Chapter 16 in [15] where a more general result than (ii) is discussed for σ-finite Borel measures on metric spaces.

Lemma 4. Under Martin's Axiom, there exists an absolute null subset Z of \mathbf{R}^{2} such that, for every straight line l in \mathbf{R}^{2}, the equality $\operatorname{card}(l \cap Z)=\mathbf{c}$ holds true.

Proof. Denote by α the least ordinal number of cardinality \mathbf{c} and define:
$\left\{l_{\xi}: \xi<\alpha\right\}=$ the family of all straight lines in \mathbf{R}^{2} not parallel to the coordinate axes $\mathbf{R} \times\{0\}$ and $\{0\} \times \mathbf{R}$;
$\left\{B_{\xi}: \xi<\alpha\right\}=$ the family of all those Borel subsets of \mathbf{R} which are of first category in \mathbf{R}.

According to the definition of $\left\{l_{\xi}: \xi<\alpha\right\}$, every straight line l in \mathbf{R}^{2} given by the equation

$$
y=a x+b \quad(a \in \mathbf{R}, b \in \mathbf{R}, a \neq 0)
$$

belongs to $\left\{l_{\xi}: \xi<\alpha\right\}$, and we may additionally suppose that l occurs in $\left\{l_{\xi}: \xi<\alpha\right\}$ continuum many times.

Now, by using the method of transfinite recursion, construct two injective families

$$
\left\{x_{\xi}: \xi<\alpha\right\} \subset \mathbf{R}, \quad\left\{y_{\xi}: \xi<\alpha\right\} \subset \mathbf{R}
$$

Assume that, for an ordinal number $\xi<\alpha$, the partial families $\left\{x_{\zeta}: \zeta<\xi\right\}$ and $\left\{y_{\zeta}: \zeta<\xi\right\}$ of points in \mathbf{R} have already been constructed. Consider the line l_{ξ}. The canonical equation corresponding to this line is of the form

$$
y=a_{\xi} x+b_{\xi} \quad\left(a_{\xi} \in \mathbf{R}, b_{\xi} \in \mathbf{R}, a_{\xi} \neq 0\right)
$$

Using Martin's Axiom and keeping in mind the relation $a_{\xi} \neq 0$, it is not difficult to check that there exists a point $x^{\prime} \in \mathbf{R}$ satisfying the following two conditions:

$$
\begin{gathered}
x^{\prime} \notin\left(\cup\left\{B_{\zeta}: \zeta<\xi\right\}\right) \cup\left\{x_{\zeta}: \zeta<\xi\right\} \cup\left\{y_{\zeta}: \zeta<\xi\right\} \\
a_{\xi} x^{\prime}+b_{\xi} \notin\left(\cup\left\{B_{\zeta}: \zeta<\xi\right\}\right) \cup\left\{x_{\zeta}: \zeta<\xi\right\} \cup\left\{y_{\zeta}: \zeta<\xi\right\} .
\end{gathered}
$$

We then put $x_{\xi}=x^{\prime}$ and $y_{\xi}=a_{\xi} x^{\prime}+b_{\xi}$.
Proceeding in this manner, we obtain the required two injective α-sequences $\left\{x_{\xi}: \xi<\alpha\right\}$ and $\left\{y_{\xi}: \xi<\alpha\right\}$ of points of \mathbf{R}. Further, we put

$$
X=\left\{x_{\xi}: \xi<\alpha\right\}, \quad Y=\left\{y_{\xi}: \xi<\alpha\right\}
$$

It immediately follows from our construction that both X and Y are c-Luzin subsets of \mathbf{R}.

By virtue of Lemmas 2 and 3, the product set $Z^{\prime}=X \times Y$ is an absolute null subset of \mathbf{R}^{2}.

Also, it can easily be seen that every line $l_{\xi}(\xi<\alpha)$ meets Z^{\prime} in continuum many points.

Finally, let g be a rotation of \mathbf{R}^{2} about the origin (0,0), whose corresponding angle is θ, where $0<\theta<\pi / 2$, and let

$$
Z=Z^{\prime} \cup g\left(Z^{\prime}\right)
$$

Then Z is an absolute null subset of \mathbf{R}^{2}, too, and has continuum many common points with every straight line lying in \mathbf{R}^{2}. This completes the proof of the lemma.

As a straightforward consequence of Lemma 4, we obtain that the orthogonal projection of the absolute null set Z on any line l in \mathbf{R}^{2} coincides with l.

In this context, it should be mentioned that, under Martin's Axiom, the existence of an absolute null subset of \mathbf{R}^{2}, the orthogonal projection of which on every line $l \subset \mathbf{R}^{2}$ coincides with l, was also shown by Zindulka; see Corollary 3.7 in [17].

Theorem 2. Assuming Martin's Axiom, there exists an absolute null subset T of \mathbf{R}^{2}, the orthogonal projection of which on every straight line $l \subset \mathbf{R}^{2}$ is an absolutely nonmeasurable subset of l.

Proof. Let Z be as in Lemma 4. We shall construct a set $T \subset Z$ with the desired properties.

In what follows the symbol $l\left(z, z^{\prime}\right)$ will denote the straight line passing through two distinct points z and z^{\prime} in \mathbf{R}^{2}.

Also, for any point $t \in \mathbf{R}^{2}$ and for any straight line $l \subset \mathbf{R}^{2}$, we will denote by the symbol $\operatorname{pr}_{l}(t)$ the orthogonal projection of t on l.

As earlier, let α be the least ordinal number of cardinality \mathbf{c}.
Let $\left\{\left(l_{\xi}, P_{\xi}\right): \xi<\alpha\right\}$ be an injective enumeration of all pairs (l, P), where l is a straight line in \mathbf{R}^{2} and P is a nonempty perfect subset of l.

Starting with this α-sequence $\left\{\left(l_{\xi}, P_{\xi}\right): \xi<\alpha\right\}$, we define by transfinite recursion two disjoint injective families

$$
\left\{t_{\xi}: \xi<\alpha\right\} \subset Z, \quad\left\{t_{\xi}^{\prime}: \xi<\alpha\right\} \subset Z
$$

Suppose that, for an ordinal $\xi<\alpha$, the two partial families

$$
\left\{t_{\zeta}: \zeta<\xi\right\} \subset Z, \quad\left\{t_{\zeta}^{\prime}: \zeta<\xi\right\} \subset Z
$$

have already been defined. Take the pair $\left(l_{\xi}, P_{\xi}\right)$ and introduce the following notation:
$T_{\xi}=\left\{t_{\zeta}: \zeta<\xi\right\} ;$
$T_{\xi}^{\prime}=\left\{t_{\zeta}^{\prime}: \zeta<\xi\right\}$;
$\mathcal{L}_{\xi}=$ the family of all those straight lines in \mathbf{R}^{2} which pass through one of the points from $T_{\xi} \cup T_{\xi}^{\prime}$ and, simultaneously, are perpendicular to one of the straight lines from $\left\{l_{\zeta}: \zeta \leq \xi\right\}$;
$S_{\xi}=$ the set of all points $z \in \mathbf{R}^{2}$ such that $\operatorname{pr}_{l_{\xi}}(z) \in P_{\xi}$.
Keeping in mind the relations

$$
\operatorname{card}(\xi)<\operatorname{card}(\alpha)=\mathbf{c}, \quad \operatorname{card}\left(T_{\xi} \cup T_{\xi}^{\prime}\right)<\mathbf{c}
$$

we immediately get the inequality $\operatorname{card}\left(\mathcal{L}_{\xi}\right)<\mathbf{c}$. In addition, remembering the property of Z described in the formulation of Lemma 4, we obtain that every straight line in \mathbf{R}^{2} intersecting P_{ξ} and perpendicular to l_{ξ} is entirely contained in the set S_{ξ} and has continuum many common points with Z.

These circumstances imply the existence of two points

$$
t \in S_{\xi} \cap Z, \quad t^{\prime} \in S_{\xi} \cap Z
$$

satisfying the following two conditions:
(a) $\operatorname{pr}_{l_{\xi}}(t) \neq \operatorname{pr}_{l_{\xi}}\left(t^{\prime}\right)$ and the straight line $l\left(t, t^{\prime}\right)$ is not perpendicular to any straight line from the family $\left\{l_{\zeta}: \zeta<\xi\right\}$;
(b) $t \notin \cup \mathcal{L}_{\xi}$ and $t^{\prime} \notin \cup \mathcal{L}_{\xi}$.

We then put $t_{\xi}=t$ and $t_{\xi}^{\prime}=t^{\prime}$.
Proceeding in this manner, we come to the two disjoint injective α-sequences

$$
\left\{t_{\xi}: \xi<\alpha\right\} \subset Z, \quad\left\{t_{\xi}^{\prime}: \xi<\alpha\right\} \subset Z
$$

Finally, we define

$$
T=\left\{t_{\xi}: \xi<\alpha\right\}, \quad T^{\prime}=\left\{t_{\xi}^{\prime}: \xi<\alpha\right\}
$$

and claim that T is as required.
Indeed, first of all, T is an absolute null set in \mathbf{R}^{2}, because T is a subset of the absolute null set Z.

Let l be an arbitrary straight line in \mathbf{R}^{2}. There exists an ordinal $\xi<\alpha$ such that $l=l_{\xi}$. From the transfinite construction described above it follows that:
(c) the orthogonal projection $\operatorname{pr}_{l}(T)$ of T on l has common points with every nonempty perfect subset of l and the orthogonal projection $\operatorname{pr}_{l}\left(T^{\prime}\right)$ of T^{\prime} on l also has common points with every nonempty perfect subset of l;
(d) $\operatorname{card}\left(\operatorname{pr}_{l}(T) \cap \operatorname{pr}_{l}\left(T^{\prime}\right)\right) \leq \operatorname{card}(\xi)+1$.

Indeed, to show the validity of (c), it suffices to note that for any nonempty perfect subset P of l, we have $(l, P)=\left(l_{\beta}, P_{\beta}\right)$, where $\beta<\alpha$, and

$$
\operatorname{pr}_{l}\left(t_{\beta}\right) \in P_{\beta}, \quad \operatorname{pr}_{l}\left(t_{\beta}^{\prime}\right) \in P_{\beta}
$$

by virtue of our transfinite construction.
To show the validity of (d), it suffices to observe that if two ordinal numbers $\zeta<\alpha$ and $\eta<\alpha$ are such that $\max (\zeta, \eta)>\xi$, then the line $l\left(t_{\zeta}, t_{\eta}^{\prime}\right)$ cannot be perpendicular to $l=l_{\xi}$; see (a) and (b). Consequently, if a point x belongs to $\operatorname{pr}_{l}(T) \cap \operatorname{pr}_{l}\left(T^{\prime}\right)$, then

$$
x=\operatorname{pr}_{l}\left(t_{\zeta}\right)=\operatorname{pr}_{l}\left(t_{\eta}^{\prime}\right)
$$

where

$$
t_{\zeta} \in T, \quad t_{\eta}^{\prime} \in T^{\prime}, \quad \zeta \leq \xi, \quad \eta \leq \xi
$$

whence it follows that the cardinality of the set $\operatorname{pr}_{l}(T) \cap \operatorname{pr}_{l}\left(T^{\prime}\right)$ does not exceed $\operatorname{card}(\xi)+1$.

The relations (c) and (d) directly imply that both $\operatorname{pr}_{l}(T)$ and $\operatorname{pr}_{l}\left(T^{\prime}\right)$ are Bernstein subsets of l, so $\operatorname{pr}_{l}(T)$ is absolutely nonmeasurable with respect to the class $\mathcal{M}(l)$.

Theorem 2 has thus been proved.

Remark 1. In the literature, the notion of a strong measure zero set was introduced by Borel many years ago and yields an interesting representative of the so-called small sets; cf. [12], [13], [16]. Recall that a subset X of \mathbf{R} has strong measure zero if, for every sequence $\left\{\varepsilon_{n}: n=0,1,2, \ldots\right\}$ of strictly positive real numbers, there exists a sequence $\left\{\Delta_{n}: n=0,1,2, \ldots\right\}$ of open intervals in \mathbf{R} which collectively cover X and

$$
\lambda_{1}\left(\Delta_{n}\right)<\varepsilon_{n} \quad(n=0,1,2, \ldots) .
$$

The analogous notion makes sense for the plane \mathbf{R}^{2} (in the corresponding definition, open intervals should be replaced by open squares and λ_{1} should be replaced by λ_{2}). It is not difficult to show that every strong measure zero set is an absolute null set; see [13]. However, in contrast to absolute null sets in \mathbf{R} (in \mathbf{R}^{2}), the existence of uncountable strong measure zero subsets of \mathbf{R} (of \mathbf{R}^{2}) cannot be established within the framework of ZFC set theory; see [12], [13]. At the same time, under Martin's Axiom, any \mathbf{c}-Luzin set in \mathbf{R} (in \mathbf{R}^{2}) has strong measure zero; see [13]. For strong measure zero subsets of \mathbf{R}^{2} no analogue of Theorem 2 is true. Indeed, if Z is a strong measure zero subset of \mathbf{R}^{2}, then the orthogonal projection of Z on the coordinate axis $\mathbf{R} \times\{0\}$ is a strong measure zero subset of $\mathbf{R} \times\{0\}$, so is measurable.

Remark 2. A set $Z \subset \mathbf{R}^{2}$ is called absolutely nonmeasurable with respect to the class $\mathcal{M}\left(\mathbf{R}^{2}\right)$ if there exists no measure μ belonging to this class such that $Z \in \operatorname{dom}(\mu)$. Actually, the absolutely nonmeasurable sets with respect to $\mathcal{M}\left(\mathbf{R}^{2}\right)$ are identical with the Bernstein subsets of \mathbf{R}^{2} (this fact is a direct analogue of Lemma 1 and its proof does not differ from the proof of Lemma 1; the same argument works for any uncountable Polish topological space). If Z is an arbitrary subset of \mathbf{R}^{2} absolutely nonmeasurable with respect to the class $\mathcal{M}\left(\mathbf{R}^{2}\right)$ and l is an arbitrary straight line in \mathbf{R}^{2}, then the orthogonal projection of Z on l coincides with the whole of l. Indeed, take any point $t \in l$ and consider the straight line l^{\prime} perpendicular to l and passing through t. Since l^{\prime} is a nonempty perfect subset of \mathbf{R}^{2} and Z is a Bernstein set in \mathbf{R}^{2}, we obviously have $Z \cap l^{\prime} \neq \emptyset$. Consequently, $t \in \operatorname{pr}_{l}(Z)$ and so $l=\operatorname{pr}_{l}(Z)$. In particular, we see that the orthogonal projection of an absolutely nonmeasurable subset of \mathbf{R}^{2} on any straight line l in \mathbf{R}^{2} turns out to be absolutely measurable with respect to the class of all measures defined on various σ-algebras of subsets of l.

References

[1] A. Abian, An example of a nonmeasurable set, Boll. Un. Mat. Ital., 1(4) (1968), 366-368.
[2] F. Bernstein, Zur Theorie der trigonometrischen Reihen, Sitzungsber. Sächs. Akad. Wiss. Leipzig. Math.-Natur., Kl. 60 (1908), 325-338.
[3] C. Burstin, Die Spaltung des Kontinuums in c im L. Sinne nichtmessbare Mengen, Wien. Ber., 125 (1916), 209-217.
[4] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts, 39, Cambridge Univ. Press, Cambridge, 1997.
[5] K. Ciesielski, L. Larson, K. Ostaszewski, I-density continuous functions, Mem. Amer. Math. Soc., 107(515) (1994).
[6] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: $f(x+y)=f(x)+f(y)$, Math. Ann., 60 (1905), 459-462.
[7] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, Berlin, 1995.
[8] A. B. Kharazishvili, Nonmeasurable Sets and Functions, Elsevier, Amsterdam, 2004.
[9] A. B. Kharazishvili, On a bad descriptive structure of Minkowski's sum of certain small sets in a topological vector space, Theory Stoch. Process., 14(2) (2008), 35-41.
[10] A. B. Kharazishvili, Topics in Measure Theory and Real Analysis, Atlantis Press, Amsterdam-Paris, 2009.
[11] K. Kuratowski, Topology, 1, Academic Press, London-New York, 1966.
[12] R. Laver, On the consistency of Borel's conjecture, Acta Math., 137 (1976), 151-169.
[13] A. W. Miller, Special subsets of the real line, Handbook of Set-Theoretic Topology, North-Holland Publ. Co., Amsterdam, 1984, 201-233.
[14] J. C. Morgan II, Point Set Theory, Marcel Dekker, Inc., New York, 1990.
[15] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
[16] W. F. Pfeffer and K. Prikry, Small spaces, Proc. London Math. Soc., 58(3) (1989), 417-438.
[17] O. Zindulka, Dimension zero vs. measure zero, Proc. Amer. Math. Soc., 128(6) (2000), 1769-1778.
A. Kharazishvili

[^0]: Mathematical Reviews subject classification: Primary: 28A05, 28D05; Secondary: 03E25
 Key words: Absolute null set, Bernstein set, generalized Luzin set, Hamel basis
 Received by the editors May 19, 2015
 Communicated by: Krzysztof Ciesielski

