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SUFFICIENT CONDITIONS FOR
CONVERGENCE ALMOST EVERYWHERE

OF MULTIPLE TRIGONOMETRIC
FOURIER SERIES WITH LACUNARY

SEQUENCE OF PARTIAL SUMS

Abstract

Sufficient conditions for the convergence (almost everywhere) of mul-
tiple trigonometric Fourier series of functions f in the classes Lp, p > 1,
are obtained in the case where rectangular partial sums Sn(x; f) of this
series have numbers n = (n1, . . . , nN ) ∈ ZN , N ≥ 3, such that of N
components only k (1 ≤ k ≤ N − 2) are elements of some lacunary
sequences. Earlier, in the case where N − 1 components of the number
n are elements of lacunary sequences, convergence almost everywhere
for multiple Fourier series was obtained for functions in the classes Lp,
p > 1, by M. Kojima (1977), and for functions in Orlizc classes by
D. K. Sanadze, Sh. V. Kheladze (1977) and N. Yu. Antonov (2014).

Note that presence of two or more “free” components in the number
n, as follows from the results by Ch. Fefferman (1971) and M. Ko-
jima (1977), does not guarantee the convergence almost everywhere of
Sn(x; f) for N ≥ 3 even in the class of continuous functions.
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1 Introduction

1. Consider the N -dimensional Euclidean space RN , whose elements will be
denoted as x = (x1, . . . , xN ), and set (nx) = n1x1 + · · ·+nNxN . We introduce
RNσ = {(x1, . . . , xN ) ∈ RN : xj ≥ σ, j = 1, . . . , N}, σ ∈ R1, and the set
ZN ⊂ RN of all vectors with integer coordinates, and denote ZNσ = RNσ ∩ ZN .

Let a 2π-periodic (in each argument) function f ∈ L1(TN ), where TN =
{x ∈ RN : −π ≤ xj < π, j = 1, . . . , N}, be expanded in a multiple trigono-
metric Fourier series: f(x) ∼

∑
k∈ZN cke

i(kx).

For any vector n = (n1, . . . , nN ) ∈ ZN0 consider the rectangular partial
sum of this series

Sn(x; f) =
∑
|k1|≤n1

· · ·
∑

|kN |≤nN

cke
i(kx). (1)

The main purpose of our investigation is to study the behavior on TN
of the partial sum (1) as n → ∞ (i.e. min

1≤j≤N
nj → ∞) depending on the

class of functions f , as well as on the restrictions imposed on the components
n1, . . . , nN of the vector n—the “number” of Sn(x; f).

2. In the case N = 1, A. N. Kolmogorov [8] established that for any
function f ∈ L2(T1) lim

λ→∞
Sn(λ)(x; f) = f(x) almost everywhere (a.e.) on

T1, where {n(λ)}, n(λ) ∈ Z1
1, λ = 1, 2, . . . , is a lacunary sequence. (A se-

quence {n(s)}, n(s) ∈ Z1
1, is called lacunary, if n(1) = 1 and n(s+1)

n(s) ≥ q > 1,
s = 1, 2, . . . .) This result was extended by J. Littlewood and R. Paley [11] on
the classes Lp(T1), p > 1. Later R. Gosselin [4] and V. Totik [17] established
that in L1(T1) this result is not true. Further, S. V. Konyagin [9] showed,
first, that the positive result is true for any function f ∈ L(log+ L)(T1),
and, second, he strengthened the negative result of V. Totik [17] by prov-
ing that for any function Φ(u) = o(u log+ log+ u) as u → ∞ and for any
sequence {n(ν)}, n(ν) ∈ Z1

0, n(ν) → ∞ as ν → ∞, there exists a func-
tion f ∈ Φ(L)(T1) for which lim

ν→∞
|Sn(ν)(x; f)| = +∞ everywhere on T1.

Later in the paper by V. Lie [10] it was proved that for any function f ∈
L(log+ log+ L)(log+ log+ log+ L)(T1) and for any lacunary sequence {n(λ)},
n(λ) ∈ Z1

1, λ = 1, 2, . . . , lim
λ→∞

Sn(λ)(x; f) = f(x) a.e. on T1. And finally, in

2014 by F. Di Plinio [12] it was proved that the positive result is true for any
function f ∈ L(log+ log+ L)(log+ log+ log+ log+ L)(T1).

The first result for multiple Fourier series with the “lacunary sequence of
partial sums” was obtained in 1971 by P. Sjolin in [14] where it was proved

that for any lacunary sequence {n(λ1)
1 }, n(λ1)

1 ∈ Z1
1, λ1 = 1, 2, . . . , and for
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f ∈ Lp(T2), p > 1,

lim
λ1,n2→∞

S
n
(λ1)
1 ,n2

(x; f) = f(x) a.e. on T2.

(Note, that in 1970 N. R. Tevzadze [16] obtained the following result: For

any two given sequences of numbers {n(l)j }, j = 1, 2, increasing to∞, n
(l)
j ∈ Z1

1,

l = 1, 2, . . . , S
n
(l)
1 ,n

(l)
2

(x; f) converges to f(x) a.e. on T2 for f ∈ L2(T2).)

In 1977 M. Kojima [7] generalized P. Sjolin’s result by proving that, if a

function f ∈ Lp(TN ), p > 1, N ≥ 2, and {n(λj)j }, n(λj)j ∈ Z1
1, λj = 1, 2, . . . , j =

1, . . . , N − 1, are lacunary sequences, then

lim
λ1,...,λN−1,nN→∞

S
n
(λ1)
1 ,...,n

(λN−1)

N−1 ,nN
(x; f) = f(x) a.e. on TN .

(In the classes L(log+ L)3N−2(TN ) the analogous result was obtained by D. K.
Sanadze, Sh. V. Kheladze [13] in 1977; the other generalization of M. Kojima’s
result for the classes L(log+ L)N−1(log+ log+ L)(log+ log+ log+ log+ L)(TN )
was made by N. Yu. Antonov [1] in 2014.)

As M. Kojima [7, Theorem 2] has observed using Ch. Fefferman’s function
from [2], it can be easily proved that the result formulated above can not
be strengthened in the following sense: For any sequence ñ = (n3, n4, . . . ,
nN ) ∈ ZN−20 (in particular, each component nj of the vector ñ can be an
element of a lacunary sequence), there exists a continuous function f ∈ C(TN )
such that

lim
n1,n2,ñ→∞

|Sn1,n2,ñ(x; f)| = +∞ a.e. on TN .

The last result shows that even the class of functions C(TN ), N ≥ 3, is not the
“class of convergence a.e.” of multiple Fourier expansions in the case where two
components of the vector n = (n1, . . . , nN ) ∈ ZN—the “number”of Sn(x; f)—
remain “free” (in particular, these two components are not elements of any
lacunary sequences).

3. The question arises: In general, is it possible to speak about convergence
a.e. of multiple (N ≥ 3) trigonometric Fourier series of functions f in the
classes Lp, p > 1, being in the “framework” of rectangular summation, when
the “numbers” n of the partial sums Sn(x; f) of this series have two or more
“free” components?

Some answer to this question is given in the following theorems.
Let N ≥ 1, M = {1, . . . , N} and s ∈ M . Denote: Js = {j1, ..., js}, jq < jl

for q < l, and (in the case s < N) M \ Js = {m1, . . . ,mN−s}, mq < ml for
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q < l; these are nonempty subsets of the set M . We will also consider that
J0 = M \ JN = ∅.

Fix an arbitrary k, 1 ≤ k < N , N ≥ 2, and define two vectors: the vector
λ = λ[Jk] = (λj1 , . . . , λjk) ∈ Zk1 , js ∈ Jk, s = 1, . . . , k, and the vector

m = m[Jk] = (mj1 , . . . ,mjN−k) ∈ ZN−k1 , js ∈M \ Jk, s = 1, . . . , N − k.

Further, by the symbol n(λ,m) = n(λ,m)[Jk] = (n1, . . . , nN ) ∈ ZN1 we will
denote the N -dimensional vector, whose components nj with indices j ∈ Jk are

elements of some (single) lacunary sequences; i.e. for j ∈ Jk : nj = n
(λj)
j ∈ Z1

1,

n
(λj+1)

j

n
(λj)

j

≥ qj > 1, λj = 1, 2, . . . , and n
(λj)
j →∞ as λj →∞, we set

q = q(Jk) = (qj1 , . . . , qjk) ∈ Rk, js ∈ Jk, s = 1, . . . , k. (2)

In its turn, the components nj with indices j ∈ M \ Jk are of the form nj =
n0 ·mj , where mj are components of the vector m[Jk] and n0 ∈ Z1

0.

Theorem 1. Let Jk be an arbitrary “sample” from M , 1 ≤ k ≤ N−2, N ≥ 3.
Then for any function f ∈ Lp(TN ), 1 < p <∞, and for any vector m[Jk]

lim
λj→∞,j∈Jk,

nj=n0·mj,j∈M\Jk,n0→∞

Sn(λ,m)[Jk](x; f) = f(x) almost everywhere on TN ;

moreover,∥∥∥∥∥∥∥ sup
λj>0,j∈Jk,

nj=n0·mj,j∈M\Jk,n0>0

|Sn(λ,m)[Jk](x; f)|

∥∥∥∥∥∥∥
Lp(TN )

≤ C‖f‖Lp(TN ), (3)

where the constant C does not depend on the function f , C = C(p,m[Jk], q),
and the quantity q is defined in (2).

In its turn, by the symbol n(λ,m(ν)) = n(λ,m(ν))[Jk] = (n1, . . . , nN ) ∈ ZN1
we will denote the N -dimensional vector, whose components nj with indices

j ∈ Jk are, as before, the elements of some (single) lacunary sequences, n
(λj)
j ∈

Z1
1, λj = 1, 2, . . . , and components nj with indices j ∈M \ Jk are of the form

nj = mj = nj(ν), where nj(ν) ∈ Z1
0, ν = 1, 2, . . . .

Theorem 2. Let Jk be an arbitrary “sample” from M , 1 ≤ k ≤ N − 2,
N ≥ 3. Then for any function f ∈ L2(TN ) and for any sequences nj(ν) ∈ Z1

0,
ν = 1, 2, . . . , nj(ν)→∞ as ν →∞, j ∈M \ Jk,

lim
λj→∞,j∈Jk,

nj(ν),j∈M\Jk,ν→∞

Sn(λ,m(ν))[Jk](x; f) = f(x) almost everywhere on TN ;
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moreover,∥∥∥∥∥∥∥ sup
λj>0,j∈Jk,

nj(ν),j∈M\Jk,ν>0

|Sn(λ,m(ν))[Jk](x; f)|

∥∥∥∥∥∥∥
L2(TN )

≤ C‖f‖L2(TN ), (4)

where the constant C does not depend on the function f , C = C(Jk, q), and
the quantity q is defined in (2).

2 Proofs

In order to prove Theorem 1 it is necessary to prove the following lemma. In
the proof of this lemma, some ideas represented in [14] and [7] are used.

Lemma 1. Let J1 = {r}, 1 ≤ r ≤ N . Then, for any function f ∈ Lp(TN ),
1 < p <∞, N ≥ 3, and for any vector m[J1]∥∥∥∥∥∥ sup

λr>0,r∈J1,
nj=n0·mj,j∈M\J1,n0>0

|Sn(λ,m)[J1](x; f)|

∥∥∥∥∥∥
Lp(TN )

≤ C‖f‖Lp(TN ), (5)

where the constant C does not depend on the function f , C = C(p,m[J1], q),
and the quantity q is defined in (2).

Proof. To simplify the notation let us consider that r = 1. Introduce the
following notation. Let x̃ = (x2, x3, . . . , xN ) ∈ TN−1,

T̃N−1 =
{
x̃ ∈ TN−1 : g(x1) = f(x1, x̃) ∈ Lp(T1)

}
; (6)

it is obvious that

µN−1T̃N−1 = µN−1TN−1 = (2π)N−1; (7)

here µN−1 is the (N − 1)-dimensional Lebesgue measure.

Fix an arbitrary point x̃ ∈ T̃N−1 and expand the function g(x1) in the
(single) trigonometric Fourier series

g(x1) ∼
∑
k∈Z1

cke
ikx1 . (8)

Consider the partial sums of this series Sm(x1; g) with the numbers m =

n
(λ1)
1 ∈ Z1

1, λ1 = 1, 2, . . . , where
{
n
(λ1)
1

}
is a lacunary sequence; set n

(0)
1 = 0
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and define the following difference

∆λ1
(x1; g) =

{
S0(x1; g) for λ1 = 0,
S
n
(λ1)
1

(x1; g)− S
n
(λ1−1)
1

(x1; g) for λ1 = 1, 2, . . . .

Let us split the series in (8) into two series:

∞∑
λ1=0

∆2λ1+1(x1; g),

∞∑
λ1=0

∆2λ1
(x1; g). (9)

For the further proof of Lemma 1 we need the following theorem [19, Ch.
15, Theorem (4.11)].

Theorem A. Let a function ϕ(t) ∈ Lp(T1), 1 < p < ∞, and let {n(λ)},
n(λ) ∈ Z1

1, n(λ+1)/n(λ) ≥ q > 1, λ = 1, 2, . . . , be a lacunary sequence, and
{wλ}, wλ ∈ Z1

0, be any sequence, consisting only of the numbers 0 or 1; then
the series

∞∑
λ=0

wλ∆λ(t;ϕ)

is the Fourier series of some function ϕ1(t) ∈ Lp(T1) and

‖ϕ1‖Lp(T1) ≤ C‖ϕ‖Lp(T1),

where the constant C = C(q) does not depend on the function ϕ.

From Theorem A it follows that trigonometric series (9) are Fourier series
of some functions g1(x1) = f1(x1, x̃) and g2(x1) = f2(x1, x̃), g1, g2 ∈ Lp(T1)
(here we took account of notation (6)), and for these functions the following
inequalities are true

‖g1‖Lp(T1) ≤ C‖g‖Lp(T1), ‖g2‖Lp(T1) ≤ C‖g‖Lp(T1). (10)

In its turn, taking into account Hunt’s result [6] for the one-dimensional
trigonometric Fourier series, we have

g1(x1) =

∞∑
λ1=0

∆2λ1+1(x1; g), g2(x1) =

∞∑
λ1=0

∆2λ1
(x1; g) for a.e. x1 ∈ T1.

Hence, in view of definition of the functions g, g1 and g2 (also notation
(6)) we get

f(x1, x̃) = g(x1) = g1(x1) + g2(x1) = f1(x1, x̃) + f2(x1, x̃) for a.e. x1 ∈ T1.
(11)
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In its turn, taking into account that, according to the assumption of the lemma,
f ∈ Lp(TN ), in view of estimates (7), (10) and arbitrariness of the choice of

x̃ ∈ T̃N−1, we obtain the following estimates:

‖fj‖Lp(TN ) ≤ C‖f‖Lp(TN ), j = 1, 2. (12)

Further, by the symbol n0m we denote the vector n0m = n0m[J1] = (n0m2,

. . . , n0mN ) ∈ ZN−10 . We denote the functions Gn0m(x1, x̃), G
(1)
n0m(x1, x̃) and

G
(2)
n0m(x1, x̃) as follows:

Gn0m(x1, x̃) = Sn0m(x̃; f(x1, ·)), G(1)
n0m(x1, x̃) = Sn0m(x̃; f1(x1, ·))

and
G(2)
n0m(x1, x̃) = Sn0m(x̃; f2(x1, ·)). (13)

From equality (11) we get

Sn(λ,m)[J1](x; f) = S
n
(λ1)
1

(x1;Gn0m(·, x̃))

= S
n
(λ1)
1

(x1;G(1)
n0m(·, x̃)) + S

n
(λ1)
1

(x1;G(2)
n0m(·, x̃)).

(14)

The following theorem [19, Ch. 13, Lemma (1.19)] holds.

Theorem B. Let trigonometric Fourier series of a function ϕ(t), ϕ ∈ L1(T1),

ϕ(t) ∼
∑
k∈Z1

cke
ikt,

satisfy the following condition: there exist two sequences {n(ν)} and {m(ν)},
n(ν), m(ν) ∈ Z1

1, ν = 1, 2, . . . , n(ν) →∞ as ν →∞, such that, first,

n(ν) +m(ν) ≤ n(ν+1),

second,

ck = 0 for n(ν) < |k| ≤ n(ν) +m(ν),

and third,

n(ν) +m(ν)

n(ν)
≥ q > 1, ν = 1, 2, . . . .

Then the partial sums Sn(ν)(t;ϕ) and Sn(ν)+m(ν)(t;ϕ) converge a.e. to ϕ(t),
and we have the inequality

sup
ν>0

{
|Sn(ν)(t;ϕ)|+ |Sn(ν)+m(ν)(t;ϕ)|

}
≤ C sup

n>0
|σn(t;ϕ)|,
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where the constant C = C(q) does not depend on the function ϕ, and σn(t;ϕ)
are the Cezaro means,

σn(t;ϕ) =
1

n+ 1

n∑
r=0

Sr(t;ϕ).

Remark. The series, which satisfy the first two conditions are called (see,
e.g., [5, Ch. VI, p. 73] or [18, Ch. III, p. 79]) “the series with infinitely many
gaps”.

Note that in view of the definition of the functions fj(x1, x̃), j = 1, 2 in

(11), for any fixed x̃ ∈ T̃N−1 the Fourier coefficients of the function f1(x1, x̃)

(over the variable x1): ck(f1) = 0 for n
(2λ1+1)
1 < |k| ≤ n

(2λ1+2)
1 ; and the

Fourier coefficients of the function f2(x1, x̃) (over the variable x1): ck(f2) = 0

for n
(2λ1)
1 < |k| ≤ n

(2λ1+1)
1 . In its turn, taking account of the definition of

the functions G
(j)
n0m(x1, x̃), j = 1, 2 (see (13)), the Fourier coefficients of the

function G
(1)
n0m(x1, x̃) (over the variable x1): ck(G

(1)
n0m) = 0 for n

(2λ1+1)
1 <

|k| ≤ n
(2λ1+2)
1 ; and the Fourier coefficients of the function G

(2)
n0m(x1, x̃) (over

the variable x1): ck(G
(2)
n0m) = 0 for n

(2λ1)
1 < |k| ≤ n

(2λ1+1)
1 . Hence, both

functions G
(j)
n0m(x1, x̃), j = 1, 2 (over the variable x1) satisfy conditions of

Theorem B.

Hence, the following estimates hold true:

sup
λ1>0

|S
n
(λ1)
1

(x1;G(j)
n0m(·, x̃))| ≤ C sup

n1>0
|σn1(x1;G(j)

n0m(·, x̃))|, j = 1, 2. (15)

The result of the following theorem [18, Ch. 4, Theorem (7.8)] permits to
estimate the right part in inequality (15).

Theorem C. Let a function ϕ(t) ∈ Lp(T1), 1 < p <∞. Then∥∥∥∥sup
n>0
|σn(t;ϕ)|

∥∥∥∥
Lp(T1)

≤ C‖ϕ‖Lp(T1),

where the constant C does not depend on the function ϕ.

Applying Theorems B and C, we can estimate S
n
(λ1)
1

(x1;G
(j)
n0m(·, x̃)), j =
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1, 2. We have∥∥∥∥∥ sup
λ1,n0>0

|S
n
(λ1)
1

(x1;G(j)
n0m(·, x̃))|

∥∥∥∥∥
Lp(TN )

≤ C
∥∥∥∥ sup
n1>0

|σn1
(x1; sup

n0>0
|Sn0m(x̃; fj(x1, ·))|)|

∥∥∥∥
Lp(TN )

≤ C
∥∥∥∥ sup
n0>0

|Sn0m(x̃; fj(x1, ·))|
∥∥∥∥
Lp(TN )

, j = 1, 2. (16)

If a function ϕ(t) ∈ Lp(Tκ), 1 < p <∞, κ ≥ 2, then the following estimate
[3] holds: ∥∥∥∥sup

n>0
|Sδ1n,...,δκn(t;ϕ)|

∥∥∥∥
Lp(Tκ)

≤ C(p; δ1, . . . , δκ)‖ϕ‖Lp(Tκ), (17)

where δ1, . . . , δκ ∈ Z1
1 are the fixed numbers, n ∈ Z1

0.
From (16) and (17) we obtain∥∥∥∥∥ sup
λ1,n0>0

|S
n
(λ1)
1

(x1;G(j)
n0m(·, x̃))|

∥∥∥∥∥
Lp(TN )

≤ C(p,m[J1])‖fj‖Lp(TN ), j = 1, 2.

(18)
Further, from equality (14) and estimates (12) and (18) it follows that∥∥∥∥∥ sup

λ1,n0>0
|Sn(λ,m)[J1](x; f)|

∥∥∥∥∥
Lp(TN )

≤ C(p,m[J1], q)‖f‖Lp(TN ).

Thus, taking account of our assumptions, we prove estimate (5).

Proof of Theorem 1. Note that the convergence a.e. of the partial sums
Sn(λ,m)[Jk](x; f) can be deduced from the majorant estimate (3) by means of
the standard argumentation; e.g., [15, p. 58-59]. So, in order to prove the
theorem, it is sufficient to prove the validity of this estimate. In its turn, the
proof of estimate (3) will be conducted by induction on N , N ≥ 3.

The first step of induction is N = 3. In this case we must prove that for
any J1 = {r}, 1 ≤ r ≤ 3, for any function f ∈ Lp(T3), 1 < p < ∞, and for
any vector m[J1]∥∥∥∥∥∥ sup

λr>0,
nj=n0·mj,j∈M\J1,n0>0

|Sn(λ,m)[J1](x; f)|

∥∥∥∥∥∥
Lp(T3)

≤ C(p,m[J1], q)‖f‖Lp(T3).

(19)
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As we see, the validity of estimate (19) follows from the validity of Lemma 1;
i.e., of estimate (5) for N = 3.

Further, suppose that estimate (3) is true for some N = l, l ≥ 3; i.e., for
any Jk from M = {1, . . . , l}, 1 ≤ k ≤ l − 2, for any function f ∈ Lp(Tl),
1 < p <∞, and for any vector m[Jk]∥∥∥∥∥∥∥ sup

λj>0,j∈Jk,
nj=n0·mj,j∈M\Jk,n0>0

|Sn(λ,m)[Jk](x; f)|

∥∥∥∥∥∥∥
Lp(Tl)

≤ C(p,m[Jk], q)‖f‖Lp(Tl). (20)

Let us prove that estimate (3) is true for N = l + 1, i.e., for any Jd in
M = {1, . . . , l + 1}, 1 ≤ d ≤ l − 1, for any function f ∈ Lp(Tl+1), 1 < p <∞,
and for any vector m[Jd]∥∥∥∥∥∥∥ sup

λj>0,j∈Jd,
nj=n0·mj,j∈M\Jd,n0>0

|Sn(λ,m)[Jd](x; f)|

∥∥∥∥∥∥∥
Lp(Tl+1)

≤ C(p,m[Jd], q)‖f‖Lp(Tl+1).

(21)
If d = 1, then estimate (21) follows from the result of Lemma 1.
Consider now d ≥ 2, and, to simplify the notation, let us assume that the

sample Jd is of the form Jd = {1, 2, . . . , d}. In this case, the vector n(λ,m)[Jd] is

of the form: n(λ,m)[Jd] = (n
(λ1)
1 , n

(λ2)
2 , . . . , n

(λd)
d , n0md+1, . . . , n0ml+1) ∈ Zl+1

0 .

Denote ñ(λ,m) = ñ(λ,m)[Jd] = (n
(λ2)
2 , . . . , n

(λd)
d , n0md+1, . . . , n0ml+1) ∈ Zl0.

Let the set T̃l be defined analogously to (6), precisely,

T̃l =
{
x̃ = (x2, x3, . . . , xl+1) ∈ Tl : g(x1) = f(x1, x̃) ∈ Lp(Tl)

}
. (22)

It is obvious that

µlT̃l = µlTl = (2π)l;

here µl is the l-dimensional Lebesgue measure. Fixing an arbitrary point
x̃ ∈ T̃l, by the same argumentation as in Lemma 1 (see (9) – (11)), we define
two functions g1(x1) = f1(x1, x̃) and g2(x1) = f2(x1, x̃), g1, g2 ∈ Lp(T1), for
which

f(x1, x̃) = g(x1) = g1(x1) + g2(x1) = f1(x1, x̃) + f2(x1, x̃) for a.e. x1 ∈ T1.
(23)

In account of Theorem A, the estimates hold true:

‖fj‖Lp(Tl+1) ≤ C‖f‖Lp(Tl+1), j = 1, 2. (24)
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Further, analogously to (13) we define the following functions:

Gñ(λ,m)(x1, x̃) = Sñ(λ,m)(x̃; f(x1, ·)), G
(1)

ñ(λ,m)(x1, x̃) = Sñ(λ,m)(x̃; f1(x1, ·))

and

G
(2)

ñ(λ,m)(x1, x̃) = Sñ(λ,m)(x̃; f2(x1, ·)).

From equality (23) we have

Sn(λ,m)[Jd](x; f) = S
n
(λ1)
1

(x1;Gñ(λ,m)(·, x̃))

= S
n
(λ1)
1

(x1;G
(1)

ñ(λ,m)(·, x̃)) + S
n
(λ1)
1

(x1;G
(2)

ñ(λ,m)(·, x̃)).
(25)

In view of the definition of the functions fj(x1, x̃) (see (23), (24)), for

any fixed x̃ ∈ T̃l (see (22)) the Fourier series of the functions G
(j)

ñ(λ,m)(x1, x̃),
j = 1, 2, over the variable x1 satisfy the conditions of Theorem B. Thus, we
have

sup
λ1>0

|S
n
(λ1)
1

(x1;G
(j)

ñ(λ,m)(·, x̃))| ≤ C sup
n1>0

|σn1(x1;G
(j)

ñ(λ,m)(·, x̃))|, j = 1, 2.

The same as in the proof of Lemma 1, we use Theorems B and C to estimate

S
n
(λ1)
1

(x1;G
(j)

ñ(λ,m)(·, x̃)), j = 1, 2. We have∥∥∥∥∥ sup
λ1,...,λd,n0>0

|S
n
(λ1)
1

(x1;G
(j)

ñ(λ,m)(·, x̃))|

∥∥∥∥∥
Lp(Tl+1)

≤ C

∥∥∥∥∥ sup
n1>0

|σn1(x1; sup
λ2,...,λd,n0>0

|Sñ(λ,m)(x̃; fj(x1, ·))|)|

∥∥∥∥∥
Lp(Tl+1)

≤ C

∥∥∥∥∥ sup
λ2,...,λd,n0>0

|Sñ(λ,m)(x̃; fj(x1, ·))|

∥∥∥∥∥
Lp(Tl+1)

= C

∥∥∥∥∥ sup
λ2,...,λd,n0>0

|S
n
(λ2)
2 ,...,n

(λd)

d ,n0md+1,...,n0ml+1
(x̃; fj(x1, ·))|

∥∥∥∥∥
Lp(Tl+1)

,

(26)

j = 1, 2.

Because {n(λj)j }, n(λj)j ∈ Z1
1, λj = 1, 2, . . . , j = 2, . . . , d, are lacunary

sequences, and also 1 ≤ d− 1 ≤ l− 2, and the functions fj(x1, x̃) ∈ Lp(Tl+1),
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j = 1, 2, 1 < p <∞, in order to estimate the right part of (26) we can use the
inductive proposition; i.e., the majorant estimate (20), namely∥∥∥∥∥ sup
λ2,...,λd,n0>0

|S
n
(λ2)
2 ,...,n

(λd)

d ,n0md+1,...,n0ml+1
(x̃; fj(x1, ·))|

∥∥∥∥∥
p

Lp(Tl+1)

=

∫
T1


∫
Tl

{
sup

λ2,...,λd,n0>0
|S
n
(λ2)
2 ,...,n

(λd)

d ,n0md+1,...,n0ml+1
(x̃; fj(x1, ·))|

}p
dx̃

 dx1

≤ C
∫
T1


∫
Tl

|fj(x1, x̃)|pdx̃

 dx1 = C‖fj‖pLp(Tl+1)
, j = 1, 2.

From this and from (26) we have∥∥∥∥∥ sup
λ1,...,λd,n0>0

|S
n
(λ1)
1

(x1;G
(j)

ñ(λ,m)(·, x̃))|

∥∥∥∥∥
Lp(Tl+1)

≤ C‖fj‖Lp(Tl+1), j = 1, 2.

(27)
Further, from equality (25) and estimates (24) and (27) it follows the va-

lidity of estimate (21): ∥∥∥∥∥∥ sup
λj>0,j∈Jd,

n0>0

|Sn(λ,m)[Jd](x; f)|

∥∥∥∥∥∥
Lp(Tl+1)

≤ C‖f1‖Lp(Tl+1) + C‖f2‖Lp(Tl+1) ≤ C‖f‖Lp(Tl+1).

In view of the induction method, we get that estimate (3) is true for
any N ≥ 3 and any k (the number of lacunary components in the vector
n(λ,m)[Jk] ∈ ZN0 ), 1 ≤ k ≤ N − 2.

The proof of Theorem 2 can be conducted by the same scheme, as the proof
of Theorem 1. Instead of Lemma 1, the validity of the following statement
can be proved.

Lemma 2. Let J1 = {r}, 1 ≤ r ≤ N . Then for any function f ∈ L2(TN )∥∥∥∥∥∥ sup
λr>0,r∈J1,

nj=nj(ν),j∈M\J1,ν>0

|Sn(λ,m(ν))[J1](x; f)|

∥∥∥∥∥∥
L2(TN )

≤ C(J1, q)‖f‖L2(TN ),

where the constant C(J1, q) does not depend on the function f .
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Lemma 2 is proved analogously to Lemma 1 with the difference that, in-
stead of inequality (17), the following majorant estimate [7, Theorem 1] is used:
For any function ϕ(t) ∈ L2(Tκ), κ ≥ 2, and for any sequences nj(ν) ∈ Z1

0,
ν = 1, 2, . . . , nj(ν)→∞ as ν →∞, j = 1, . . . , κ,∥∥∥∥sup

ν>0
|Sn1(ν),n2(ν),...,nκ(ν)(t;ϕ)|

∥∥∥∥
L2(Tκ)

≤ C‖ϕ‖L2(Tκ),

where the constant C does not depend on the function ϕ.
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