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RELATION BETWEEN Lp-DERIVATES AND
PEANO, APPROXIMATE PEANO AND

BOREL DERIVATES OF HIGHER ORDER

Abstract

The definition of the Lp-derivative is such that it involves only the
absolute value of the function and therefore the definition of Lp-derivates
is not possible from the definition of Lp-derivative. Therefore, a special
technique is used to define them and relations between Lp-derivates and
Peano, approximate Peano and Borel derivates are studied.

1 Introduction

Let f : R→ R and let x ∈ R. If there exist polynomials P (t) , Q(t) and R(t),
depending on f and x, of degree at most k such that

f(x+ t)− P (t) = o(tk) as t→ 0, (1)∫ h

0

1

tk
[f(x+ t)−Q(t)] dt = o(h) as h→ 0, (2)

(
1

h

∫ h

0

|f(x+ t)−R(t)|pdt

) 1
p

= o(hk) as h→ 0, p > 0, (3)
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then f is said to have respectively Peano derivative, Borel derivative, and Lp-
derivative at x of order k where, we have assumed integrability of f in (2) and
f ∈ Lp in (3) in some neighbourhood of x. If akk! is the coefficient of tk in P (t),
(respectively Q(t) and R(t)) then ak is called Peano derivative (respectively
Borel derivative and Lp-derivative) of f at x of order k which is denoted by
f(k)(x) (respectively BDkf(x) and f(k),p(x)). The definition of approximate
Peano derivative of order k is the same as in (1), but in this case we take the
approximate limit instead of the ordinary limit and the notation in this case
is f(k),a(x). It is clear from the definition that in each case if the derivative of
order k ≥ 2 exists, then the derivative of order i, 0 ≤ i < k also exists.

The Lp-derivative is defined by Calderon and Zygmund [4] for studying
local properties of partial differential equations. Since then, this derivative is
extended to higher order, and several authors have discussed various properties
of this derivative [1] [2] [3] [4] [5] [6] [7] [8] [10] [11] [12] [13] [14] [15] [16]. It
is known that the Lp-derivative of order k is more general than the Peano
derivative of order k in the sense that there is a set E of positive Lebesgue
measure and a function having no limit at each point of E which has an
Lp-derivative of order k for any k and for every positive p at each point of
E [2]. Therefore it is natural to ask, what are the relations between Lp-
derivates and Peano derivates of order k? Before answering this question, one
needs the definitions of Lp- derivates of order k. Assuming the existence of
f(k)(x), BDkf(x), and f(k),a(x) one can define the four derivates of order k+1
corresponding to f(k)(x), BDkf(x), and f(k),a(x) respectively. But assuming
the existence of f(k),p(x), the definition of the Lp-derivates of order k + 1 of
f at x is not possible in this manner since the definition of f(k),p(x) involves
only the absolute value. So we are to adopt a different approach. The purpose
of this paper is to define the Lp-derivates and establish the relation between
Lp-derivates and Peano, approximate Peano and Borel derivates. It may be
noted that the relation between Peano and Borel derivates is already known
[10]. The definition of Lp-derivates will also enable us to define infinite Lp-
derivatives.

In what follows we shall use the following notations: for any function A :
R→ R, its positive and negative parts are defined as [A]+ = max[A, 0], [A]− =
max[−A, 0] respectively. Clearly,

A = [A]+ − [A]− (4)

|A| = [A]+ + [A]− (5)

If A : R→ R and B : R→ R, then

[A+B]+ ≤ [A]+ + [B]+ and [A−B]− ≤ [A]− + [B]+ (6)
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and if A ≤ B, then

[A]+ ≤ [B]+ and [B]− ≤ [A]− (7)

2 Peano and Borel derivates

Lemma 2.1. Let ψ(x, t) be a function of x, t ∈ R, t 6= 0. Then the right hand
upper limit of ψ at x as t→ 0+ is given by

ψ+(x) = inf S

where
ψ+(x) = lim sup

t→0+

ψ(x, t)

and
S = {a : a ∈ R, [ψ(x, t)− a]+ = o(1), as t→ 0+}

Proof. Let x be fixed. Suppose ψ+(x) = ∞. We show that S is empty. If
possible, let a ∈ S. Then

lim
t→0+

[ψ(x, t)− a]+ = 0.

Since ψ(x, t)−a ≤ [ψ(x, t)−a]+, lim sup
t→0+

(ψ(x, t)−a) ≤ 0 and so lim sup
t→0+

ψ(x, t) ≤

a which is a contradiction since ψ+(x) = ∞. So, S is empty. Next, suppose
that ψ+(x) is finite and let ψ+(x) < M . Then there is a δ > 0 such that
ψ(x, t) < M for 0 < t < δ. So, [ψ(x, t) −M ]+ = 0 for 0 < t < δ and hence
M ∈ S. This shows that every a > ψ+(x) is a member of S. Again let
m < ψ+(x). Then there is a sequence {tn} such that tn → 0+ as n→∞ and
ψ(x, tn) > m+ε for all n where m < m+ε < ψ+(x). Hence [ψ(x, tn)−m]+ > ε
for all n and so m /∈ S. This shows that if a < ψ+(x), then a /∈ S. There-
fore, ψ+(x) = inf S. Finally, suppose ψ+(x) = −∞. Then lim

t→0+
ψ(x, t) = −∞.

Let a ∈ R. Then there is a δ > 0 such that ψ(x, t) < a for 0 < t < δ. so
[ψ(x, t)− a]+ = 0 for 0 < t < δ. Hence a ∈ S. Thus, every member of R is a
member of S and hence inf S = −∞.

Corollary 2.2. Let f : R → R and x ∈ R be fixed. If the Peano derivative
f(r−1)(x), r being a fixed positive integer, exists finitely, then the right hand

upper Peano derivate f
+

(r)(x) is given by

f
+

(r)(x) := lim sup
t→0+

r!

tr

[
f(x+ t)−

r−1∑
i=0

ti

i!
f(i)(x)

]
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= inf

{
a : a ∈ R;

[
f(x+ t)−

r−1∑
i=0

ti

i!
f(i)(x)− at

r

r!

]
+

= o(tr) as t→ 0+

}

Proof. Putting ψ(x, t) =
r!

tr

[
f(x+ t)−

r−1∑
i=0

ti

i!
f(i)(x)

]
in Lemma 2.1 we have

f
+

(r)(x) =inf

{
a : a ∈ R;

[
r!

tr

(
f(x+ t)−

r−1∑
i=0

ti

i!
f(i)(x)

)
−a

]
+

= o(1) as t→ 0+

}

=inf

{
a : a ∈ R;

[
f(x+ t)−

r−1∑
i=0

ti

i!
f(i)(x)− at

r

r!

]
+

= o(tr) as t→ 0+

}

Corollary 2.3. Let f : R→ R and x ∈ R be fixed. Let f be integrable in some
neighborhood of x. If the Borel derivative BDr−1f(x), exists finitely, then the

right hand upper Borel derivate BD
+

r f(x) is given by

BD
+

r f(x) := lim sup
h→0+

1

h

∫ h

0

r!

tr

[
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)

]
dt

= inf

{
a : a ∈ R;

[
1

h

∫ h

0

r!

tr

(
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)− at

r

r!

)
dt

]
+

= o(1) as h→ 0+

}

Proof. Putting ψ(x, h) =
1

h

∫ h

0

r!

tr

[
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)

]
dt in Lemma
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2.1, we have

BD
+

r f(x) =inf

{
a : a ∈ R;

[
1

h

∫ h

0

r!

tr

(
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)

)
dt− a

]
+

= o(1) as h→ 0+

}

=inf

{
a : a ∈ R;

[
1

h

∫ h

0

r!

tr

(
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)− at

r

r!

)
dt

]
+

= o(1) as h→ 0+

}

3 Lp-derivates

Theorem 3.1. Let f : R → R and let x ∈ R. Let f ∈ Lp, 1 ≤ p < ∞, in
some neighbourhood of x and let the Lp-derivative fr−1,p(x) exist where r is a
positive integer. If

E+(f) :=

a : a ∈ R;

(
1

h

∫ h

0

([Φ(t)− at
r

r!
]+)pdt

) 1
p

= o(hr) as h→ 0+

 (8)

and

E−(f) :=

a : a ∈ R;

(
1

h

∫ h

0

([Φ(t)− at
r

r!
]−)pdt

) 1
p

= o(hr) as h→ 0+

 (9)

where

Φ(t) = f(x+ t)−
r−1∑
i=0

ti

i!
f(i),p(x)

then

inf E+(f) ≥ supE−(f). (10)

Moreover, if

inf E+(f) = supE−(f) = λ say, λ is finite, (11)
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then (
1

h

∫ h

0

|Φ(t)− λtr/r!|p dt

) 1
p

= o(hr) as h→ 0+ (12)

and conversely, if (12) holds for some λ then (11) holds.

Proof. If the set E+(f) is empty, we take inf E+(f) = ∞ and if E−(f) is
empty, we take supE−(f) = −∞. So, we prove (10) if E+(f) and E−(f) are
non empty.

We write for t > 0, W (a, t) := Φ(t) − atr/r!. Let α = inf E+(f) and
β = supE−(f). Let a1 ∈ E+(f) and a1 < a2. Then W (a2, t) < W (a1, t) and
so by (7) [W (a2, t)]+ ≤ [W (a1, t)]+ and hence for h > 0 we have

∫ h

0

([W (a2, t)]+)pdt ≤
∫ h

0

([W (a1, t)]+)pdt

which shows that a2 ∈ E+(f). From this we conclude that if a > α then
a ∈ E+(f). Again if b1 ∈ E−(f) and b2 < b1 then W (b2, t) > W (b1, t) and so
by (7) [W (b2, t)]− ≤ [W (b1, t)]− and hence

∫ h

0

([W (b2, t)]−)pdt ≤
∫ h

0

([W (b1, t)]−)pdt,

which shows that b2 ∈ E−(f). So, if b < β, then b ∈ E−(f).

These facts will be used in the following arguments. If possible let α <
β. Choose α < γ1 < γ2 < β. Then γ1, γ2 ∈ E+(f)

⋂
E−(f). Since γ1 ∈

E+(f)
⋂
E−(f), by (8) and (9)

(
1

h

∫ h

0

([W (γ1, t)]+)pdt

) 1
p

= o(hr) as h→ 0+ (13)

and (
1

h

∫ h

0

([W (γ1, t)]−)pdt

) 1
p

= o(hr) as h→ 0+ (14)
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So, by (5) and by Minkowski’s inequality we get using (13) and (14)( 1

h

∫ h

0

(|W (γ1, t)|)pdt
) 1

p

=

(
1

h

∫ h

0

([W (γ1, t)]+ + [W (γ1, t)]−)pdt

) 1
p

≤

(
1

h

∫ h

0

([W (γ1, t)]+)pdt

) 1
p

+

(
1

h

∫ h

0

([W (γ1, t)]−)pdt

) 1
p

= o(hr) as h→ 0+.

This shows that γ1 is the Lp-derivative of f at x of order r. Similarly γ2 is
the Lp-derivative of f at x of order r. But this is a contradiction, since the
Lp-derivative, if it exists, is unique [[10] ; p55]. So, α ≥ β and (10) is proved.

For the second part, suppose that (11) holds. Let ε > 0 be arbitrary. Let
h > 0 and 0 ≤ t ≤ h. Then

W (λ, t) = Φ(t)− λt
r

r!
= Φ(t)− (λ+ ε)

tr

r!
+ ε

tr

r!
= W (λ+ ε, t) + ε

tr

r!
.

So, by (6) if t > 0 then

[W (λ, t)]+ ≤ [W (λ+ ε, t)]+ + [ε
tr

r!
]+ = [W (λ+ ε, t)]+ + ε

tr

r!
.

Applying Minkowski’s inequality, and since λ+ ε ∈ E+(f) this gives(
1

h

∫ h

0

([W (λ, t)]+)pdt

) 1
p

≤

(
1

h

∫ h

0

([W (λ+ ε, t)]+)pdt

) 1
p

+

(
1

h

∫ h

0

(ε
tr

r!
)pdt

) 1
p

= o(hr) +
ε

r!

hr

(rp+ 1)
1
p

.

So

lim
h→0+

1

hr

(
1

h

∫ h

0

([W (λ, t)]+)pdt

) 1
p

≤ ε

r!

1

(rp+ 1)
1
p

(15)

Again

W (λ, t) = Φ(t)− λt
r

r!
= Φ(t)− (λ− ε) t

r

r!
− ε t

r

r!
= W (λ− ε, t)− ε t

r

r!
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and so by (6) if t > 0 then

[W (λ, t)]− ≤ [W (λ− ε, t)]− + [ε
tr

r!
]+ = [W (λ− ε, t)]− + ε

tr

r!
.

Applying Minkowski’s inequality, since λ− ε ∈ E−(f)(
1

h

∫ h

0

([W (λ, t)]−)pdt

) 1
p

≤

(
1

h

∫ h

0

([W (λ− ε, t)]−)pdt)

) 1
p

+

(
1

h

∫ h

0

(ε
tr

r!
)pdt

) 1
p

= o(hr) +
ε

r!

hr

(rp+ 1)
1
p

.

So

lim
h→0+

1

hr

(
1

h

∫ h

0

([W (λ, t)]−)pdt

) 1
p

≤ ε

r!

1

(rp+ 1)
1
p

. (16)

Applying (5) and Minkowski’s inequality and using (15) and (16) we have

lim
h→0+

1

hr

(
1

h

∫ h

0

|W (λ, t)|pdt

) 1
p

= lim
h→0+

1

hr

(
1

h

∫ h

0

([W (λ, t)]+ + [W (λ, t)]−)pdt

) 1
p

≤ lim
h→0+

1

hr

( 1

h

∫ h

0

([W (λ, t)]+)pdt

) 1
p

+

(
1

h

∫ h

0

([W (λ, t)]−)pdt

) 1
p


≤ 2ε

r!

1

(rp+ 1)
1
p

.

Since ε is arbitrary,

lim
h→0+

1

hr

(
1

h

∫ h

0

|W (λ, t)|pdt

) 1
p

= 0

and since W (λ, t) = Φ(t)− λ t
r

r! this gives(
1

h

∫ h

0

(
|Φ(t)− λt

r

r!
|
)p

dt

) 1
p

= o(hr) as h→ 0+
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completing the proof of (12).
To prove the converse, suppose that (12) holds, then by (5)(

1

h

∫ h

0

([W (λ, t)]+)pdt

) 1
p

≤

(
1

h

∫ h

0

|W (λ, t)|pdt

) 1
p

= o(hr) (17)

as h→ 0+ and(
1

h

∫ h

0

([W (λ, t)]−)pdt

) 1
p

≤

(
1

h

∫ h

0

|W (λ, t)|pdt

) 1
p

= o(hr) (18)

as h→ 0+. From (17) and (18) λ ∈ E+(f)
⋂
E−(f). So applying (10), (11) is

proved. This completes the proof of Theorem 3.1.

Theorem 3.1 now helps us to define upper and lower Lp-derivates.

Definition 3.2. Let f(r−1),p(x) exist. Then the right upper and right lower Lp

derivates of f at x of order r, denoted by f
+

(r),p(x) and f+
(r),p

(x) respectively,

are defined by

f
+

(r),p(x) := inf

{
a ∈ R :

(
1

h

∫ h

0

([
f(x+ t)−

r−1∑
i=0

ti

i!
f(i),p(x)−at

r

r!

]
+

)p
dt

) 1
p

= o(hr) as h→ 0+

}
and

f+
(r),p

(x) := sup

{
a ∈ R :

(
1

h

∫ h

0

([
f(x+ t)−

r−1∑
i=0

ti

i!
f(i),p(x)−at

r

r!

]
−

)p
dt

) 1
p

= o(hr) as h→ 0+

}
The definitions of the left upper and left lower Lp-derivates of f at x of order
r are now obtained by considering f(t) = g(−t) for all t ∈ R and apply-
ing the above definitions for g. In fact, it can be verified that f(i),p(x) =
(−1)ig(i),p(−x) for i = 0, 1, 2, ..., r − 1 and so the left upper and left lower
Lp-derivates of f at x of order r are defined by

f
−
(r),p(x) = g+(r),p(−x) if r is even

= −g+
(r),p

(−x) if r is odd
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and

f−
(r),p

(x) = g+(r),p(−x) if r is even

= −g+(r),p(−x) if r is odd

The both sided upper and lower derivates are

f (r),p(x) = max[f
+

(r),p(x), f
−
(r),p(x)]

and
f
(r),p

(x) = min[f+
(r),p

(x), f−
(r),p

(x)]

If f (r),p(x) = f
(r),p

(x), the common value is the Lp-derivative of f at x of

order r, possibly infinite. In view of Theorem 3.1 it is clear that this definition
agrees with the previous one given in [[10], p. 55].

4 Relation between approximate Peano derivates , Lp-
derivates and Peano derivates

Theorem 4.1. If the Lp-derivative f(r−1),p(x) exists , 1 ≤ p < ∞, then
the approximate Peano derivative f(r−1),a(x) also exists and they are equal.
Moreover

f+
(r),p

(x) ≤ f+
(r),a

(x) ≤ f+(r),a(x) ≤ f+(r),p(x) (19)

with similar relations for left derivates.

Proof. If r=1 then the theorem is true [[8], Theorem 2]. We suppose that
the theorem is true for r = i and prove it for r = i+1. Let r = i+1 . Suppose
that f(i),p(x) exists. Then f(i−1),p(x) exists [[10], p 56]. Since the result is
true for r = i, f(i−1),a(x) exists and

f+
(i),p

(x) ≤ f+
(i),a

(x) ≤ f+(i),a(x) ≤ f+(i),p(x). (20)

Since f(i),p(x) exists , (20) shows that f(i),a(x) exists and f(i),p(x) = f(i),a(x).
We are to prove that

f+
(i+1),p

(x) ≤ f+
(i+1),a

(x) ≤ f+(i+1),a(x) ≤ f+(i+1),p(x) (21)

Let f
+

(i+1),a(x) = α, f
+

(i+1),p(x) = β. If possible, suppose α > β. Choose
α > γ > β. Then by definition of α the set

E =

{
t : t > 0;

(i+ 1)!

ti+1

[
f(x+ t)−

i∑
k=0

tk

k!
f(k),a (x)

]
> γ

}
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has positive upper density in the right of the point t = 0 . Hence there is
δ > 0 and a sequence {hn} such that hn → 0+ as n→∞ and

µ(E ∩ [0, hn])

hn
> δ for all n.

Hence
µ(E ∩ [0, hn]) > δhn for all n. (22)

Also, by the definition of β, there is σ, β ≤ σ < γ such that 1

h

∫ h

0

[f(x+ t)−
i∑

k=0

tk

k!
f(k),p(x)− σ ti+1

(i+ 1)!

]
+

p

dt


1
p

= o(hi+1)

as h→ 0+. So 1

hn

∫ hn

0

[f(x+ t)−
i∑

k=0

tk

k!
f(k),p(x)−σ ti+1

(i+ 1)!

]
+

p

dt


1
p

= o(hi+1
n ) (23)

as n→∞. Also, for fixed n we have by (7)∫ hn

0

[f(x+ t)−
i∑

k=0

tk

k!
f(k),p(x)− σ ti+1

(i+ 1)!

]
+

p

dt

≥
∫ hn

0

[f(x+ t)−
i∑

k=0

tk

k!
f(k),p(x)− γ ti+1

(i+ 1)!

]
+

p

dt

≥
∫
E∩[0,hn]

[f(x+ t)−
i∑

k=0

tk

k!
f(k),p(x)− γ ti+1

(i+ 1)!

]
+

p

dt = C,

(24)

say. Then C > 0 . For, if C = 0, then by (5) and the property of Lebesgue
integral, the integrand of the last expression in (24) would vanish a.e. on
E ∩ [0, hn]. This is a contradiction since E has positive upper density in the
right of the point t = 0. Therefore

1

hi+1
n

 1

hn

∫ hn

o

[f(x+ t)−
i∑

k=0

tk

k!
f(k),p(x)− σ ti+1

(i+ 1)!

]
+

p

dt


1
p

≥ 1

hi+1
n

C
1
p

(
1

hn

) 1
p

= C
1
p

1

h
i+1+ 1

p
n

→∞ as n→∞
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which contradicts (23). This proves the last inequality in (21). The proof of
the first inequality in (21) is similar. Thus, (21) is proved and so (19) is proved
by induction.

Remark 4.2. In [5], Evans proved that if f is the Lp-derivative of a function
F of order n and if φ is a primitive of F , then f is the Peano derivative of φ
of order n + 1 and hence concluded that f has all the properties of a Peano
derivative. The above theorem gives directly that every Lp-derivative is the
approximate Peano derivative of the same function and of the same order and
hence satisfies all the properties of approximate Peano derivative [9].

Theorem 4.3. If f ∈ Lp in some neighbourhood of x and if the Peano deriva-
tive f(r−1)(x) exists finitely then for any p , 1 ≤ p <∞

f+
(r)

(x) ≤ f+
(r),p

(x) ≤ f+(r),p(x) ≤ f+(r)(x). (25)

Proof. Since f(r−1)(x) exists, the Lp-derivative f(r−1),p(x) exists and f(i)(x) =
f(i),p(x) for 0 ≤ i ≤ r − 1 (see [[10], p 130]). Let

E+(f) =

{
a ∈ R :

(
1

h

∫ h

0

([
f(x+ t)−

r−1∑
i=0

ti

i!
f(i),p(x)− at

r

r!

]
+

)p
dt

) 1
p

= o(hr) as h→ 0+

}

and

F+(f) =

{
a ∈ R :

[
f(x+ t)−

r−1∑
i=0

ti

i!
f(i)(x)− at

r

r!

]
+

= o(tr) as t→ 0+

}

We show that F+(f) ⊂ E+(f) let a ∈ F+(f). Let

V (t) = f(x+ t)−
r−1∑
i=0

ti

i!
f(i)(x)− at

r

r!

and ε > 0. Then since a ∈ F+(f) there is δ > 0 such that 1
tr [V (t)]+ < ε for

0 < t < δ, and so [V (t)]+ < εtr for 0 < t < δ. Hence(
1

h

∫ h

0

([V (t)]+)pdt

) 1
p

< ε
hr

(rp+ 1)
1
p

for 0 < h < δ.
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Since ε is arbitrary(
1

h

∫ h

0

([V (t)]+)pdt

) 1
p

= o(hr) as h→ 0+. (26)

Since f(i)(x) = f(i),p(x) for 0 ≤ i ≤ r − 1, (26) shows that a ∈ E+(f). So,

F+(f) ⊂ E+(f). Hence from the definition of f
+

(r),p(x) and from Corollary 2.2

f
+

(r),p(x) = inf E+(f) ≤ inf F+(f) = f
+

(r)(x)

proving the last inequality in (25). The proof of the first inequality in (25) is
similar.

Theorem 4.4. If f(r−1),p(x) exists and 1 ≤ q < p <∞ then f(r−1),q(x) exists
and

f+
(r),p

(x) ≤ f+
(r),q

(x) ≤ f+(r),q(x) ≤ f+(r),p(x). (27)

Proof. Since f(r−1),p(x) exists, f(r−1),q(x) exists and f(i),p(x) = f(i),q(x) for
0 ≤ i ≤ r − 1 (see [[10]; p 58]) and so for any a ∈ R

r−1∑
i=0

ti

i!
f(i),q(x) + a

tr

r!
=

r−1∑
i=0

ti

i!
f(i),p(x) + a

tr

r!
= ψ(t), say.

Since f ∈ Lp, f(x+ t)− ψ(t) ∈ Lp for fixed x and so [f(x+ t)− ψ(t)]+ ∈ Lp.
Hence ([f(x+ t)− ψ(t)]+)

q ∈ L p
q
. Since 1 ∈ L p

p−q
, by Holder’s inequality

∫ h

0

([f(x+ t)− ψ(t)]+)qdt ≤

(∫ h

0

([f(x+ t)− ψ(t)]+)
p
dt

) q
p

h
p−q
p .

Hence(
1

h

∫ h

0

([f(x+ t)− ψ(t)]+)
q
dt

) 1
q

≤

(
1

h

∫ h

0

([f(x+ t)− ψ(t)]+)
p
dt

) 1
p

which shows that{
a ∈ R :

(
1

h

∫ h

0

([
f(x+ t)−

r−1∑
i=0

ti

i!
f(i),p(x)− at

r

r!

]
+

)p
dt

) 1
p

= o(hr) as h→ 0+

}
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is a subset of{
a ∈ R :

(
1

h

∫ h

0

([
f(x+ t)−

r−1∑
i=0

ti

i!
f(i),q(x)− at

r

r!

]
+

)q
dt

) 1
q

= o(hr) as h→ 0+

}
.

Hence from the definition f
+

(r),q(x) ≤ f+(r),p(x), this completes the proof of the
last inequality of (27). The proof of the first inequality of (27) is similar.

Theorem 4.5. If the Peano derivative f(r−1)(x) exists and 1 ≤ q < p < ∞
then

f+
r

(x) ≤ f+
(r),p

(x) ≤ f+
(r),q

(x) ≤ f+
(r),a

(x) ≤ f+(r),a(x)

≤ f+(r),q(x) ≤ f+(r),p(x) ≤ f+(r)(x).

The proof follows from Theorem 4.1, Theorem 4.3, and Theorem 4.4.

5 Relation between Borel derivates and Lp-derivates

Theorem 5.1. If f(r−1),p(x) , 1 ≤ p <∞, exists then BDr−1f(x) exists and
they are equal. Moreover

f+
(r),p

(x) ≤ BD+
r f(x) ≤ BD+

r f(x) ≤ f+(r),p(x). (28)

Proof. The first part of the theorem is proved in [[10], p 140]. We prove (28).
Let f(r−1),p(x) exists. Then BDr−1f(x) exists and BDr−1f(x) = f(r−1),p(x).
Let

G+(f) =

{
a ∈ R :

1

h

∫ h

0

r!

tr

[
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)− at

r

r!

]
+

dt

= o(1) as h→ 0+

}
and

E+(f) =

{
a ∈ R :

(
1

h

∫ h

0

([
f(x+ t)−

r−1∑
i=0

ti

i!
f(i),p(x)− at

r

r!

]
+

)p
dt

) 1
p

= o(hr) as h→ 0+

}
.
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We show that E+(f) ⊂ G+(f). Let a ∈ E+(f). We write

U(t) = f(x+ t)−
r−1∑
i=0

ti

i!
f(i),p(x)− at

r

r!
.

Then since a ∈ E+(f)(∫ h

0

([U(t)]+)
p
dt

) 1
p

= o(hr)h
1
p as h→ 0+. (29)

Applying Holder’s inequality we get from (29)

∫ h

0

[U(t)]+dt ≤

(∫ h

0

([U(t)]+)
p
dt

) 1
p

h1−
1
p = o(hr)h as h→ 0+. (30)

Hence there is a δ > 0 such that

1

tr+1

∫ t

0

[U(ξ)]+dξ < 1 for 0 < t < δ.

Integrating this we have∫ h

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt < h for 0 < h < δ. (31)

Let h, 0 < h < δ, be fixed . By (30), for any ε > 0∫ ε

0

[U(ξ)]+dξ = o(εr+1) as ε→ 0+.

Hence
1

εr+1

∫ ε

0

[U(ξ)]+dξ → 0 as ε→ 0+.

So, there is δ1, 0 < δ1 < h, such that

1

εr+1

∫ ε

0

[U(ξ)]+dξ < 1 for 0 < ε < δ1,

which gives ∫ ε

0

[U(ξ)]+dξ < εr+1 for 0 < ε < δ1.
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Hence ∫ h

ε

1

tr+1

∫ ε

0

[U(ξ)]+dξdt ≤
∫ h

ε

εr+1

tr+1
dt =

εr+1

r

(
1

εr
− 1

hr

)
for 0 < ε < δ1. So, letting ε→ 0+

lim
ε→0+

∫ h

ε

1

tr+1

∫ ε

0

[U(ξ)]+dξdt = 0. (32)

Also by (31) ∫ ε

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt < ε for 0 < ε < δ.

Hence letting ε→ 0+

lim
ε→0+

∫ ε

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt = 0. (33)

Now∫ h

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt =

(∫ ε

0

+

∫ h

ε

)
1

tr+1

∫ t

0

[U(ξ)]+dξdt

=

∫ ε

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt+

∫ h

ε

1

tr+1

(∫ ε

0

+

∫ t

ε

)
[U(ξ)]+dξdt

=

∫ ε

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt+

∫ h

ε

1

tr+1

∫ ε

0

[U(ξ)]+dξdt

+

∫ h

ε

1

tr+1

∫ t

ε

[U(ξ)]+dξdt.

(34)

Letting ε→ 0+, we get from (32), (33) and (34)∫ h

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt = lim
ε→0+

∫ h

ε

1

tr+1

∫ t

ε

[U(ξ)]+dξdt. (35)

For 0 < ε < h, integrating by parts∫ h

ε

1

tr
[U(t)]+dt =

1

hr

∫ h

ε

[U(t)]+dt+ r

∫ h

ε

1

tr+1

∫ h

ε

[U(ξ)]+dξdt. (36)

Letting ε→ 0+, in (36) we get from (35),∫ h

0

1

tr
[U(t)]+dt =

1

hr

∫ h

0

[U(t)]+dt+ r

∫ h

0

1

tr+1

∫ t

0

[U(ξ)]+dξdt. (37)
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From (30) and (37)∫ h

0

1

tr
[U(t)]+dt =

1

hr
· o(hr) · h+ r

∫ h

0

1

tr+1
· o(tr+1)dt

= o(h) + ro(h) = o(h) as h→ 0+. (38)

Since f(i),p(x) = BDif(x) for i = 0, 1, ...r − 1, (38) gives∫ h

0

1

tr

[
f(x+ t)−

r−1∑
i=0

ti

i!
BDif(x)− at

r

r!

]
+

dt = o(h) as h→ 0+.

This shows that a ∈ G+(f) and therefore E+(f) ⊂ G+(f). Hence inf G+(f) ≤
inf E+(f). Hence, from Corollary 2.3 and from the definition of f

+

(r),p(x),

BD
+

r f(x) ≤ f
+

(r),p(x), proving the last inequality in (28). The proof of the
first inequality is similar.

Now we show that the theorem analogous to Theorem 4.1 does not hold
when a Lp-derivative is replaced by a Borel derivative.

Theorem 5.2. For every r ≥ 1 and for every x ∈ R there is a function
f : R → R such that the Borel derivative BDrf(x) exists finitely, but the
approximate Peano derivative f(r),a does not exist.

Proof. Let r and x be fixed. Without loss of generality we may take x = 0.
Divide the interval [0, 1) by the points 1, 12 ,

1
22 , ...,

1
2n , ... to get the collection

of intervals {In = [ 1
2n+1 ,

1
2n ) : n = 0, 1, 2, ...}. Choose n and fix it. Divide the

interval In by the points 1
2n+1 = a1 < b1 = a2 < b2 = ... = a2n < b2n = 1

2n

into 2n equal subintervals Ji = [ai, bi), i = 1, 2, ..., 2n. Define fn(t) = 1
2nr for

t ∈ J2i and fn(t) = −y2i−1, y2i−1 > 0, for t ∈ J2i−1 such that∫
J2i−1

fn(t)

tr
dt+

∫
J2i

fn(t)

tr
dt = 0, i = 1, 2, · · · , n. (39)

Clearly this gives ∫
In

fn(t)

tr
dt = 0 for n = 0, 1, 2, . . . . (40)

Let fn(t) = 0 for t /∈ In. Now that fn is defined on R for each n, define

f(t) =

∞∑
n=0

fn(t). From (39)

−y2i−1
∫ b2i−1

a2i−1

dt

tr
+

1

2nr

∫ b2i

a2i

dt

tr
= 0
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and so

y2i−1 =
1

2nr

∫ b2i
a2i

dt
tr∫ b2i−1

a2i−1

dt
tr

. (41)

Now

1 <
b2i
a2i−1

=
a2i−1 + 2 1

2n
1

2n+1

a2i−1
= 1 +

1

a2i−1

1

n2n+1
(42)

and

a2i−1 =

∞∑
k=n+1

| Ik | +
1

2n
· 1

2n+1
(2i− 2)

=

∞∑
k=n+1

1

2k+1
+

i− 1

n2n+1
=

1

2n+1
+

i− 1

n2n+1
=
n+ i− 1

n2n+1
.

(43)

From (43)

1

a2i−1
· 1

n2n+1
=

n2n+1

n+ i− 1
· 1

n2n+1
=

1

n+ i− 1
→ 0 as n→∞,

and therefore we get from (42)

log
b2i
a2i−1

→ 0 as n→∞. (44)

Let r = 1, Then from (41)

y2i−1 =
1
2n log b2i

a2i

log b2i−1

a2i−1

. (45)

Since b2i = a2i + 1
2n ·

1
2n+1 ,

b2i
a2i

= 1 + 1
a2i
· 1
2n ·

1
2n+1 . Similarly, b2i−1

a2i−1
=

1 + 1
a2i−1

· 1
2n ·

1
2n+1 . Hence, 1 < b2i

a2i
< b2i−1

a2i−1
. and so by (45) y2i−1 <

1
2n . Hence

| fn(t) |≤ 1

2n
for all n and for all t ∈ J2i−1 ∪ J2i. (46)

Let 0 < h < 1. Then h ∈ In for some n. If h ∈ J2i−1 ∪ J2i, then by (39), (40),
(44), (46) ∣∣∣∣∣ 1h

∫ h

0

f(t)

t
dt

∣∣∣∣∣ =

∣∣∣∣∣ 1h
∫ h

a2i−1

fn(t)

t
dt

∣∣∣∣∣ ≤ 1

2n
· 1

h

∫ b2i

a2i−1

dt

t

≤ 1

2n
· 2n+1 · log

b2i
a2i−1

→ 0 as n→∞
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Now as h→ 0+, n→∞ and so this gives∫ h

0

f(t)

t
dt = o(h) as h→ o+

Since f(0) = 0, this shows that BD1f(0) exists and BD1f(0) = 0.

Now let r ≥ 2. Then 1
tr−1 is a strictly convex function in (0, 1). Therefore,

for any n and any i, since a2i−1 < b2i−1 = a2i < b2i, we have 1
2 ( 1
ar−1
2i−1

+ 1
br−1
2i

) >

1
ar−1
2i

and hence

1

ar−12i−1
− 1

br−12i−1
>

1

ar−12i

− 1

br−12i

. (47)

From (47) and (41)

y2i−1 =
1

2nr
·

1
ar−1
2i

− 1
br−1
2i

1
ar−1
2i−1

− 1
br−1
2i−1

<
1

2nr

So

| fn(t) |≤ 1

2nr
for all n and for all t ∈ J2i−1 ∪ J2i. (48)

If 0 < h < 1, then h ∈ J2i−1 ∪ J2i for some n and some i. So applying (39),
(40) and (48)∣∣∣∣∣ 1h

∫ h

0

f(t)

tr
dt

∣∣∣∣∣ =

∣∣∣∣∣ 1h
∫ h

a2i−1

fn(t)

tr
dt

∣∣∣∣∣ ≤ 1

2nr
· 1

h

∫ b2i

a2i−1

dt

tr

≤ 1

2nr
· 2n+1 1

r − 1
·

(
1

ar−12i−1
− 1

br−12i

) (49)

From (43), a2i−1 = n+i−1
n2n+1 . Similarly b2i = n+i

n2n+1 and so

1

ar−12i−1
− 1

br−12i

=

(
n2n+1

n+ i− 1

)r−1
−
(
n2n+1

n+ i

)r−1
= (n2n+1)r−1

(
1

(n+ i− 1)r−1
− 1

(n+ i)r−1

)
= (n2n+1)r−1

(n+ i)r−1 − (n+ i− 1)r−1

(n+ i− 1)r−1(n+ i)r−1

=
(n2n+1)r−1

(n+ i− 1)r−1

(
1−

(
n+ i− 1

n+ i

)r−1)
(50)
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From (49) and (50)∣∣∣∣∣ 1h
∫ h

0

f(t)

tr
dt

∣∣∣∣∣ ≤ 1

2nr
· 2n+1 · 1

r − 1
· (n2n+1)r−1

1− (n+i−1n+i )r−1

(n+ i− 1)r−1

=
(2n+1)r

2nr
· 1

r − 1
· nr−1 ·

1− (n+i−1n+i )r−1

(n+ i− 1)r−1

= 2r · 1

r − 1

(
n

n+ i− 1

)r−1(
1−

(
n+ i− 1

n+ i

)r−1)
→ 0

as n→∞. Therefore ∫ h

0

f(t)

tr
dt = o(h) as h→ 0+

and so BDrf(0) exists and BDrf(0) = 0.

Now we are to show that the approximate Peano derivative f(r),a(x) of f
at x of order r does not exist. Let r = 1. If t ∈ (0, 1) then there is an n such
that t ∈ In. If t ∈ J2i for some i, 1 ≤ i ≤ n, then f(t) = fn(t) = 1

2n and since
1

2n+1 ≤ t < 1
2n ,

f(t)
t > 1

2n · 2
n = 1 and hence

∞⋃
n=0

n⋃
i=1

J2i ⊂
{
t : t ∈ (0, 1);

f(t)

t
> 1

}
. (51)

If t ∈ J2i−1 for some i, 1 ≤ i ≤ n, then f(t) = fn(t) = −y2i−1 < 0 and so
f(t)
t < 0 and hence

∞⋃
n=0

n⋃
i=1

J2i−1 ⊂
{
t : t ∈ (0, 1);

f(t)

t
< 0

}
(52)

Both the sets in the left hand side of (51) and (52) have positive right upper

density at 0. So f
+

(1),a(0) ≥ 1 and f+
(1),a

(0) ≤ 0, and therefore, f(1),a(0) does

not exist.

Now suppose that r ≥ 2. Let 1 ≤ k < r and 0 < t < 1. Then t ∈ In for
some n and so by (48), since 1

2n+1 ≤ t < 1
2n ,∣∣∣∣f(t)

tk

∣∣∣∣ =

∣∣∣∣fn(t)

tk

∣∣∣∣ ≤ 1

2nr
· 2(n+1)k =

2k

2n(r−k)
→ 0 as n→∞
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and so lim
t→0+

f(t)

tk
= 0. This shows that f(k)(0) exists and is zero for k =

1, 2, ..., r − 1. As in the case of r = 1, f(t)
tr > 1

2nr · 2nr = 1 for t ∈ J2i

and f(t)
tr = −y2i−1

tr < 0 for t ∈ J2i−1 and so f
+

(r),a(0) ≥ 1 and f+
(r),a

(0) ≤ 0.

Therefore, f(r),a(0) does not exist.
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