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QUASI-CONTINUITY OF HORIZONTALLY
QUASI-CONTINUOUS FUNCTIONS

Abstract

Let X be a Baire space, Y a topological space, Z a regular space and
f : X × Y → Z be a horizontally quasi-continuous function. We will
show that if Y is first countable and f is quasi-continuous with respect
to the first variable, then every horizontally quasi-continuous function
f : X × Y → Z is jointly quasi-continuous. This will extend Martin’s
Theorem of quasi-continuity of separately quasi-continuous functions for
non-metrizable range. Moreover, we will prove quasi-continuity of f for
the case Y is not necessarily first countable.

1 Introduction

Let X and Y be topological spaces. A function f : X → Y is called quasi-
continuous at x ∈ X if for every neighborhoods U of x and W of f(x), there
is an open subset U ′ of U such that f(U ′) ⊆W .

The notion of quasi-continuity was first used by Kempisty [6] to extend
some results of Hahn and Baire on points of joint continuity of real-valued,
separately continuous functions. This notion turned out to have an important
place in the investigations of points of joint continuity and quasi-continuity of
two variables functions [2, 7, 12, 13, 14, 17]. In particular, Martin [9] proved
the following.

Theorem 1. Let X be a Baire space, Y be second countable and Z be a metric
space. If f is a function on X×Y to Z which is quasi-continuous with respect
to each variable, then f is jointly quasi-continuous.
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Using an idea of Bögel[1], the authors in [11] introduced the following
concept.

Definition 2. Let X, Y and Z be topological spaces, a function f : X×Y → Z
is called horizontally quasi-continuous with respect to the second variable at a
point (x0, y0) ∈ X×Y if for each neighborhood W of f(x0, y0) in Z and for each
product of open sets U ×V ⊂ X×Y containing (x0, y0), there are a nonempty
open set U1 ⊂ U and a point y1 ∈ V such that f(U1×{y1}) ⊂W. The function
f is called horizontally quasi-continuous if it is horizontally quasi-continuous
at each point of X × Y .

In [11], the authors generalized Martin’s theorem as follows.

Theorem 3. [11, Theorem 3]. Suppose that X is a Baire space, Y satisfies
the second axiom of countability and Z is a completely regular space. If a
horizontally quasi-continuous function f : X × Y → Z is quasi-continuous
with respect to the second variable, then f is jointly quasi-continuous.

We are going to generalize the above result for the case that the range
of the function is regular, but not completely regular. In section 2, we will
show that in order to prove Theorem 3, we can assume that Z is the real line.
This means that completely regular spaces are not suitable candidate for our
purpose.

Following [15], a collection B of nonempty open sets in a topological space
is called a pseudo-base (or π-base) for this space if any nonempty open set
contains some member of B.

Note that the Stone-Čech compactification of N, the natural numbers, has
a countable dense set of isolated points, and thus has a countable pseudo-
base. Clearly, this space is not second countable. So that the class of spaces
which have a countable pseudo-base is larger than the class of second countable
spaces.

We will show that the result of Theorem 3 remains true when the range of
f is a regular space, and second countability of Y can be replaced by existence
of a countable pseudo-base for Y .

Moreover, we will prove that the set of points of joint continuity of such a
function is a residual subset of its domain provided that Z is second countable.

In 1976, Gruenhage introduced a class of topological spaces, called W -
spaces. It is known that every first countable space is a W -space, but the
converse is not true in general [4, 8]. In section 3, we apply a topological game
argument to show that if X is a Baire space, Y is a W -space and f : X×Y → Z
is a horizontally quasi-continuous function which is continuous with respect



Horizontally Quasi-Continuous Functions 337

to the second variable, where Z is a regular space, then f is jointly quasi-
continuous. It follows that if X × Y is also a Baire space, then f is jointly
continuous on a dense Gδ subset of its domain.

2 Quasi-continuity of horizontally quasi-continuous func-
tions

In this section, we first show that in order to prove Theorem 3, we may assume
that Z is equal to R. Then we will extend this result for regular space Z. We
also obtain points of joint continuity of separately quasi-continuous functions
in some special cases.

Theorem 4. Let X and Y be topological spaces. The following assertions are
equivalent:

(1) Every horizontally quasi-continuous function which is quasi-continuous
with respect to the second variable from X×Y to R is quasi-continuous.

(2) Every horizontally quasi-continuous function which is quasi-continuous
with respect to the second variable from X × Y to a completely regular
space Z is quasi-continuous.

Proof. Since R is completely regular (1) follows from (2). Suppose that
(1) holds and f is a horizontally quasi-continuous function which is quasi-
continuous with respect to the second variable from X × Y into a completely
regular space Z. If f is not quasi-continuous at some point (a, b) ∈ X × Y ,
then by the definition, we can find neighborhoods U , V and G of a, b and
f(a, b), respectively, such that f(U ′×V ′) * G for each nonempty pair of open
sets (U ′, V ′) with U ′ × V ′ ⊂ U × V . Since Z is completely regular, there is
a continuous function g : Z → [0, 1] such that g(f(a, b)) = 1 and g(z) = 0
for each z ∈ Gc. Let G1 = {z ∈ Z : g(z) > 1

2} ⊂ G. Since g is continuous,
G1 is open in Z and f(a, b) ∈ G1. Applying (1) for g ◦ f : X × Y → R,
we can find nonempty open sets U ′ and V ′ of U and V , respectively, such
that g ◦ f(U ′ × V ′) ⊂ ( 1

2 , 1]. However, by our assumption, there is some
(x0, y0) ∈ U ′×V ′ such that f(x0, y0) ∈ Gc. It follows that 1

2 < g◦f(x0, y0) = 0.
This contradiction proves our result.

In order to give a generalization of Theorem 3, we need to the following
result.

Lemma 5. [10, Lemma 2] Let X, Y and Z be topological spaces and let
f : X ×Y → Z be horizontally quasi-continuous. If U and V are open subsets
of X and Y , respectively, A ⊆ X and U ⊆ A, then f(U × V ) ⊆ f(A× V ).
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Theorem 6. Let X be a Baire space, let Y have a countable π-base and let
Z be a regular space. If f : X × Y → Z is a horizontally quasi-continuous
function which is quasi-continuous with respect to the second variable, then f
is jointly quasi-continuous.

Proof. Let (x0, y0) ∈ X ×Y , and let U, V and G be neighborhoods of x0, y0
and f(x0, y0), respectively. Since Z is regular, we can find an open subset G1

of G such that

f(x0, y0) ∈ G1 ⊆ G1 ⊆ G.

Thanks to horizontal quasi-continuity of f , we can find a nonempty open
subset U1 of U and y1 ∈ V such that f(U1×{y1}) ⊆ G1. Let B = {Vn : n ≥ 1}
be a countable π-base for Y . For each n ≥ 1, define An = ∅ if Vn * V and let

An = {x ∈ U1 : fx(Vn) ⊆ G1},

if Vn ⊆ V . Clearly,
⋃∞
n=1An ⊆ U1. Let x ∈ U1. Then f(x, y1) ∈ G1. Since f is

quasi-continuous with respect to the second variable, we can find a nonempty
open subset W of V such that f(x, y) ∈ G1 for each y ∈ W . Choose some
Vm ∈ B such that Vm ⊆ W . Then f(x, y) ∈ G1 for each y ∈ Vm. Hence,
U1 =

⋃∞
n=1An. Since X is a Baire space, there is some k ∈ N such that

O = int(Ak) 6= ∅. Let U ′ = U1

⋂
O, V ′ = Vk and A0 = U ′ ∩ Ak. Since

O ⊆ Ak, we have O ⊆ Ak ∩O. Therefore, Ak ∩O 6= ∅. But

∅ 6= Ak ∩O ⊆ U1 ∩O = U ′.

Hence, U ′ is a nonempty open subset of X. Moreover, we have

U ′ = U1 ∩ (O ∩Ak) ⊆ Ak and f(Ak × V ′) ⊆ G1.

Therefore, by Lemma 5,

f(U ′ × V ′) ⊆ f(Ak × V ′) ⊆ G1 ⊆ G.

This proves our result.

The following result shows that in some special cases, the points of conti-
nuity of a quasi-continuous function is a residual subset of its domain.

Theorem 7. If f is a quasi-continuous function from a topological space X
into a second countable space Z, then f is continuous on a residual subset of
X. In particular, when X is a Baire space, f is continuous on a dense Gδ
subset of its domain.
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Proof. Let {Gn : n ≥ 1} be a countable base for Z. For each n ≥ 1, let An
denote the set of all x ∈ X such that f(x) ∈ Gn, but f(U) * Gn for each
neighborhood U of x.

Clearly,
⋃∞
n=1An is the set of points of discontinuity of f . We will show

that int(An) = ∅ for each n ≥ 1. For some n ≥ 1, let U be a nonempty open
subset of An and take some point x ∈ U ∩ An. By the definition, f(x) ∈ Gn.
By quasi-continuity of f , we can find a nonempty open subset U1 of U such
that f(U1) ⊆ Gn. Hence, U1 ∩ An = ∅. This contradiction proves our claim.
Therefore, f is continuous on the residual set X \

⋃∞
n=1An.

Since for each n ≥ 1, Dn = X \ (An) is a dense open subset of X, if X
is a Baire space, then D =

⋂∞
n=1Dn is a dense Gδ subset of X. Clearly, f is

continuous at each point of D.

The following result follows immediately from Theorems 6 and 7.

Corollary 8. Let X be a Baire space, let Y have a countable π-base and let
Z be a regular second countable space. If f : X × Y → Z is a horizontally
quasi-continuous function which is quasi-continuous with respect to the second
variable, then f is jointly continuous on a residual subset of X × Y . In par-
ticular, if X × Y is Baire, then f is jointly continuous on a dense Gδ subset
of X × Y .

Definition 9. Let {Gn : n ≥ 1} be a sequence of open covers of a topological
space Z. This sequence is called a weak development for Z if Gn ∈ Gn for each
n ≥ 1 and z ∈

⋂∞
n=1 Gn implies that the set {

⋂n
k=1Gk : n ≥ 1} is a base at

z. A topological space with a weak development is called a weakly developable
space.

Corollary 10. Let X be a Baire space, let Y have a countable π-base and let
Z be a regular weakly developable space. If f : X × Y → Z is a horizontally
quasi-continuous function which is quasi-continuous with respect to the second
variable and X×Y is Baire, then f is jointly continuous on a dense Gδ subset
of X × Y .

Proof. In [5, Theorem 4.1] it is shown that every quasi-continuous function
from a Baire space into a weakly developable space is continuous on a dense
Gδ subset of its domain, so that the result follows from Theorem 6.
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3 Topological games and horizontally quasi-continuous
functions

In order to state the main result of this section, we need the following topolog-
ical games. We begin with the Banach-Mazur game [3, 16] which characterizes
Baire spaces.

The Banach-Mazur game BM(X). Let (X, τ) be a topological space.
The Banach-Mazur game BM(X) is played between two players α and β as
follows:

Player β starts a game by selecting a nonempty open set U1 of X; then
player α chooses a non-empty open set V1 ⊂ U1. When (Ui, Vi) , 1 ≤ i ≤ n−1,
have been defined, player β picks a nonempty open set Un ⊂ Vn−1 and α
answers to his/her move by selecting a nonempty open set Vn ⊂ Un. The
player α wins the game if (

⋂∞
n=1 Vn) is not empty. Otherwise, the player β is

said to have won the play.
By a strategy for player α in BM(X), we mean a sequence of mappings

s = {sn}, which is defined inductively as follows:
The domain of s1 is the set of all open sets and it assigns to each nonempty

open subset U of X a nonempty open set V ⊂ U . For n > 1, the domain of
sn is the set of all partial plays (U1, s1(U1), . . . , Un) and it assigns to such a
partial play a nonempty open set Vn which is also a subset of Un.

An s-play is a play in which α selects his/her moves according to the
strategy s. The strategy s for the player α is said to be a winning strategy
if every s-play is won by α. A space X is called α-favorable if there exists a
winning strategy for α in BM(X). It is known that a topological space X is
Baire if and only if the player β does not have a winning strategy in BM(X).

In 1976, Gruenhage [4] defined a generalization of first countable spaces by
means of a two person game:

The topological game G(Y, y0). Let Y be a topological space and y0 ∈ Y .
The topological game G(Y, y0) is played by two players O and P as follows. In
step n ≥ 1, O selects a neighborhood Hn of y0 and P responds by choosing a
point yn ∈ Hn. We say O wins the game g = (Hn, yn)n≥1 if yn → y0. If

g1 = (H1, y1), · · · , gn = (H1, y1, · · · , Hn, yn)

are the first “n” moves of some play (of the game), we call gn the nth (partial
play) of the game. As above, a strategy s and winning strategy for one of the
players can be defined.

We call y ∈ Y a W -point in Y if O has a winning strategy in the game
G(Y, y). A space Y in which each point of Y is a W -point is called a W -space.
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We also define Y to be a w-space if for each y ∈ Y , P fails to have a winning
strategy in G(Y, y). It is known that every first countable space is a W -space
[4, Theorem 3. 3]. However, the converse in not true in general [8, Example
2. 7].

Now, we are ready to state the main result of this section.

Theorem 11. Let X be a Baire space, Y be a W -space, Z be a regular space
and f : X × Y → Z be a horizontally quasi-continuous function which is con-
tinuous with respect to the second variable. Then f is jointly quasi-continuous.

Proof. Suppose that f is not quasi-continuous at some point (x0, y0) in
X × Y . Then there are neighborhoods U,H and G of x0, y0 and f(x0, y0),
respectively, such that f(U ′×H ′) * G for all nonempty open subsets U ′ of U
and V ′ ⊆ H ′.

Since Z is regular, we can find some open subset G1 of Z such that

f(x0, y0) ∈ G1 ⊆ G1 ⊂ G.

By horizontal quasi-continuity of f , there is a nonempty open subset U1 of U
and y′0 ∈ H such that f(U1 × {y′0}) ⊆ G.

In order to get a contradiction, we simultaneously define a strategy t = {tn}
for β in BM(X) and a strategy s = {sn} for the player P in G(Y, {y′0}) as
follows.

Let t1(∅) = U1 be the first move of the player β and V1 be the answer of
the player α to this movement. If H1 is the first choice of the player O in
G(Y, {y′0}), then by our assumption, we can find some (x1, y

′
1) ∈ V1× (H1∩H)

such that f(x1, y
′
1) /∈ G. There is a nonempty open subset U2 of V1 and

y1 ∈ H ∩H1 such that f(U2 × {y1}) ⊆ Z \ G1, since f is horizontally quasi-
continuous. Define t2(U1, V1) = U2 and s1(H1) = y1.

In general, in step n, let the partial plays H1, y1, . . . ,Hn and U1, V1, . . . , Vn
be specified such that f(Ui,×{yi}) ⊆ Z \ G1 for each 1 ≤ i ≤ n. By our
assumption, f(Vn × (Hn ∩H)) * G. Therefore, we can find some (xn, y

′
n) ∈

Vn × (Hn ∩H) such that f(xn, y
′
n) ∈ Z \ G1. By horizontal quasi-continuity

of f , we can find some nonempty open subset Un+1 of Vn and yn ∈ H ∩Hn

such that f(Un × {yn}) ⊆ Z \ G1. Let tn+1(U1, V1, . . . , Vn) = Un+1 and
sn(H1, . . . ,Hn) = yn. Hence, strategies t and s are inductively defined.

Since X is a Baire space, α wins some t-play, say p = (Un, Vn)n. Hence⋂
n≥1 Un 6= ∅. Let x∗ be a point in

⋂
n≥1 Un. Let g = (Hn, yn)n be the

corresponding s-play. Since Y is a W -space, O wins the game g. Hence,
yn → y′0. Thanks to continuity of y 7→ f(x∗, y) at y′0 and the fact that
f(x∗, y′0) ∈ G1, there is a neighborhood H ′ of y′0 such that f(x∗, y) ∈ G1 for
each y ∈ H ′. Since yn → y′0, we can find some n0 ∈ N such that yn ∈ H ′ for
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each n ≥ n0. Hence, f(x∗, yn) ∈ G1 for each n ≥ n0. However, for each n ≥ 1,
we have f(x∗, yn) ∈ Z \G1. This contradiction proves our result.

Definition 12. Let X be a topological space and let F be a family of nonempty
closed and separable subspaces of X. Then F is called rich [8] if the following
conditions are satisfied:

(i) For every separable subspace Y of X, there exists an F ∈ F such that
Y ⊆ F.

(ii) For every increasing sequence {Fn}n≥1 in F ,
⋃
n≥1 Fn ∈ F .

Corollary 13. Let X be a Baire space, Y be a W -space, Z be a regular
weakly developable space and f : X×Y → Z be a horizontally quasi-continuous
function which is continuous with respect to the second variable. If Y possesses
a rich family F of Baire subspaces, then f is jointly continuous on a dense
Gδ subset of X × Y .

Proof. In [8, Theorem 4], it is shown that if a W -space has a rich family of
W -spaces, then for every Baire space X, the product space X ×Y is Baire, so
that the result follows from Theorem 11 and [5, Theorem 4.1].
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