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Abstract

Using different types of absolute continuity, we characterize additive
interval functions which are the primitives of Pettis or strongly McShane
integrable functions.

1 Introduction and Preliminaries

There are known characterizations of additive interval functions which are
the primitives of Pettis or strongly McShane integrable functions in terms of
their scalar derivatives or derivatives, respectively, see Theorem 5.1 in [14] and
Theorem 7.4.14 in [15]. Here, we characterize these additive interval functions
in terms of their average ranges, Theorem 6 and Theorem 8.

Throughout this paper X denotes a real Banach space with its norm ||.||.
We denote by B(x, ε) the open ball with center x and radius ε > 0 and by X∗

the topological dual to X.
We denote by I the family of all non-degenerate closed subintervals of

[0, 1], by λ the Lebesgue measure on [0, 1] and by L the family of all Lebesgue

measurable subsets of [0, 1]. We will identify an interval function F̃ : I → X

with the point function F (t) = F̃ ([0, t]), t ∈ [0, 1]; and conversely, we will

identify a point function F : [0, 1]→ X with the interval function F̃ ([u, v]) =

F (v)− F (u), [u, v] ∈ I. An interval function F̃ : I → X is said to be additive
if for each nonoverlapping interval I, J ∈ I with I ∪ J ∈ I, we have

F̃ (I ∪ J) = F̃ (I) + F̃ (J).
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The intervals I and J are said to be nonoverlapping if int(I) ∩ int(J) = ∅,
where int(I) denotes the interior of I.

Let F : [0, 1] → X be a function. The function is said to be strongly
absolutely continuous (sAC) if for every ε > 0 there exists η > 0 such that for
every finite collection {Ii : i = 1, 2, ..., p} of nonoverlapping subintervals in I,
we have

p∑
i=1

λ(Ii) < η ⇒
p∑
i=1

||F̃ (Ii)|| < ε. (1.1)

Replacing (1.1) by

p∑
i=1

λ(Ii) < η ⇒ ||
p∑
i=1

F̃ (Ii)|| < ε,

we obtain the definition of absolute continuity (AC).
Let us consider t ∈ [0, 1]. We put

∆F (t, h) =
F (t+ h)− F (t)

h
, AF (t, δ) =

{
∆F (t, h) : 0 < |h| < δ

}
and

AF (t) =
⋂
δ>0

AF (t, δ),

where AF (t, δ) is the closure of AF (t, δ). The set AF (t) is said to be the
average range of F at t.

The function F is said to be differentiable at the point t if there is a vector
x ∈ X such that

lim
h→0
||∆F (t, h)− x|| = 0.

We denote x = F ′(t) the derivative of F at t.
We say that F has a scalar derivative on [0, 1] if there exists a function

f : [0, 1]→ X such that for each x∗ ∈ X∗, (x∗ ◦F )′(t) exists and (x∗ ◦F )′(t) =
(x∗ ◦ f)(t) a.e. on [0, 1] (the exceptional set may vary with x∗). The function
f is said to be a scalar derivative of F on [0, 1].

A finite collection of interval-point pairs {(Ii, ti) : i = 1, 2, ...,m} is said
to be an M-partition of [0, 1] if ti ∈ [0, 1], for all i = 1, 2, ...,m, and {Ii : i =
1, 2, ...,m} is a finite collection of pairwise nonoverlapping intervals of I such
that

m⋃
i=1

Ii = [0, 1].
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A function δ : [0, 1]→ (0,+∞) is said to be a gauge on [0, 1]. AnM-partition
π is said to be δ-fine if for each interval-point pair (I, t) ∈ π, we have

I ⊂ (t− δ(t), t+ δ(t)).

Definition 1. A function f : [0, 1] → X is said to be McShane integrable on
[0, 1] if there is a vector w ∈ X such that for every ε > 0, there a gauge δ on
[0, 1], such that for every δ-fine M-partition π of [0, 1], we have

||
∑

(I,t)∈π

f(t)λ(I)− w|| < ε.

We denote w = (M)
∫

[0,1]
f . A function f : S → X is said to be McShane

integrable on E ⊂ [0, 1] if the function f.χE : [0, 1]→ X is McShane integrable
on [0, 1], where χE is the characteristic function of the set E. The McShane
integral of f over E will be denoted by (M)

∫
E
f . If f is McShane integrable

on [0, 1] then we obtain by Theorem 4.1.6 in [15] that for every E ∈ L the
function f is McShane integrable on E.

Definition 2. A function f : [0, 1] → X is said to be strongly McShane
integrable on [0, 1] if there exists a function F : [0, 1]→ X such that for every
ε > 0, there a gauge δ on [0, 1], such that for every δ-fine M-partition π of
[0, 1], we have ∑

(I,t)∈π

||f(t)λ(I)− F̃ (I)|| < ε.

The function F is said to be the primitive of f . Clearly, if f is strongly Mc-
Shane integrable on [0, 1] with the primitive F , then f is McShane integrable
on [0, 1] and we obtain by Proposition 3.6.16 in [15] that

F̃ (I) = (M)

∫
I

f for every I ∈ I.

For more information about the McShane integral we refer to [2], [4], [5],
[6]-[8], [17], [18] and [19].

Definition 3. A function f : [0, 1] → X is said to be Pettis integrable, if
x∗ ◦ f ∈ L1([0, 1]) for all x∗ ∈ X∗ and for any E ∈ L there exists an xE ∈ X
such that

x∗(xE) =

∫
E

(x∗ ◦ f)(t)dλ

whenever x∗ ∈ X∗. The vector xE is then called the Pettis integral of f on E
and we set xE = (P )

∫
E
f(t)dλ.

We refer to [11], [12], [13], [16] and [14] for Pettis integrability.
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2 Main Results

The main results are Theorem 6 and Theorem 8. Lemma 4 and Example 5
highlight the local relation between the differential and the average range.

Lemma 4. Let F : [0, 1] → X be a function and let t0 ∈ [0, 1]. If F is
differentiable at t0, then

AF (t0) = {F ′(t0)}. (2.1)

Proof. First, we will show that F ′(t0) ∈ AF (t0). To see this, we choose a
sequence (hk) of real numbers such that

0 < |hk| <
1

k
for all k ∈ N.

Then
lim
k→∞

||∆F (t0, hk)− F ′(t0)|| = 0

and since

∆F (t0, hk) ∈ AF (t0,
1

n
)

for all k ∈ N such that k ≥ n, it follows that

F ′(t0) ∈
∞⋂
n=1

AF (t0,
1

n
) =

⋂
δ>0

AF (t0, δ) = AF (t0).

Secondly, we will show that AF (t0) ⊂ {F ′(t0)}. Assume that x ∈ AF (t0)
is given. Then, for each n ∈ N, we have

B(x,
1

n
)
⋂
AF (t0,

1

n
) 6= ∅.

Therefore, there is a sequence (h′n) of real numbers such that

0 < |h′n| <
1

n
and ∆F (t0, h

′
n) ∈ B(x,

1

n
) for all n ∈ N.

Hence
lim
n→∞

||∆F (t0, h
′
n)− x|| = 0,

and we infer that x = F ′(t0).

The following example shows that there is a function F : [−1, 1] → lp,
p > 1, such that AF (0) = {(0)} but F is not differentiable at t = 0.
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Example 5. Let F : [−1, 1]→ lp be a function given as follows

F (t) =

{
(0, ..., 0, ...) if t 6= 1

n
(0, ..., 0, 1

n , 0, ...) if t = 1
n

t ∈ [−1, 1] n = 1, 2, 3, ...

Since

∆F (0, h) =

{
(0, ..., 0, ...) if h 6= 1

n
(0, ..., 0, 1, 0, ...) if h = 1

n

we have
diam(AF (0, δ)) = 2

1
p for all δ > 0. (2.2)

We claim that
AF (0) = {(0, ..., 0, ...)}. (2.3)

Let us consider an arbitrary element x0 ∈ AF (0). Since

AF (0) =

∞⋂
k=1

AF (0,
1

k
)

then there is a sequence (hk) ⊂ R such that for each k ∈ N, we have

0 < |hk| <
1

k
and ||∆F (0, hk)− x0||lp <

1

k
.

Therefore
lim
k→∞

||∆F (0, hk)− x0||lp = 0.

Hence
lim
k→∞

x∗(∆F (0, hk)) = x∗(x0) for all x∗ ∈ (lp)
∗. (2.4)

Fix an arbitrary x∗ ∈ (lp)
∗. Since (lp)

∗ = lq, there is a sequence (an) ∈ lq
such that

x∗(x) =

+∞∑
n=1

anxn for all x = (xn) ∈ lp,

and since

x∗(∆F (0, hk)) =

{
0 if hk 6= 1

n
an if hk = 1

n

(n > k),

we obtain
lim
k→∞

x∗(∆F (0, hk)) = 0.

Hence, by (2.4), it follows that

x∗(x0) = 0 for all x∗ ∈ (lp)
∗,
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because x∗ was arbitrary. Therefore, we obtain by Hahn-Banach Theorem that

x0 = (0, ..., 0, ...)

and consequently (2.3) holds true.
Assume by contradiction that F is differentiable at t = 0. Then, we obtain

by Lemma 4 that F ′(0) = (0, ..., 0, ...). Hence

lim
n→∞

||∆F (0,
1

n
)− (0, ..., 0, ...)||lp = 0.

On the other hand

lim
n→∞

||∆F (0,
1

n
)− (0, ..., 0, ...)||lp = 1,

because for each n ∈ N, we have ||∆F (0, 1
n )− (0, ..., 0, ...)||lp = 1. This contra-

diction shows that F is not differentiable at t = 0.

Theorem 6. Let F : [0, 1]→ X be a function. Then the following statements
are equivalent.

(i) F is the primitive of a Pettis integrable function f , i.e.,

F̃ (I) = (P )

∫
I

f(t)dλ for all I ∈ I,

(ii) F is AC and f is a scalar derivative of F on [0, 1],

(iii) F is AC and there exists a function f : [0, 1] → X such that for each
x∗ ∈ X∗, we have (x∗ ◦ f)(t) ∈ Ax∗◦F (t) a.e. on [0, 1] (the exceptional
set may vary with x∗).

Proof. (i)⇔ (ii) By Theorem 5.1 in [14], this equivalence holds true.
(ii)⇒ (iii) Assume that F is AC and f is a scalar derivative of F on [0, 1].

Fix an arbitrary x∗ ∈ X∗. Then, there exists Z(x∗) ⊂ [0, 1] with λ(Z(x∗)) = 0
such that (x∗ ◦ F )′(t) exists and

(x∗ ◦ F )′(t) = (x∗ ◦ f)(t) for all t ∈ [0, 1] \ Z(x∗).

Hence, we obtain by Lemma 4 that

(x∗ ◦ f)(t) ∈ Ax∗◦F (t) for all t ∈ [0, 1] \ Z(x∗)

and since x∗ was arbitrary it follows that (iii) holds.
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(iii) ⇒ (ii) Assume that (iii) holds and let x∗ be an arbitrary element of
X∗. Then, there is a subset Z(x∗) ⊂ [0, 1] with λ(Z(x∗)) = 0 such that

(x∗ ◦ f)(t) ∈ Ax∗◦F (t) for all t ∈ [0, 1] \ Z(x∗)

Since x∗ ◦ F is AC, there exists Z
(x∗)
1 ∈ [0, 1] with λ(Z

(x∗)
1 ) = 0, such that

(x∗ ◦ F )′(t) exists for all t ∈ [0, 1] \ Z(x∗)
1 . Therefore, we obtain by Lemma 4

that

(x∗ ◦ F )′(t) = (x∗ ◦ f)(t) for all t ∈ [0, 1] \ (Z(x∗) ∪ Z(x∗)
1 ).

Since x∗ was arbitrary, the last result yields that f is a scalar derivative of F
on [0, 1].

The following lemma makes it possible to present clearly Theorem 8. We
refer to [1] for the notions used in this lemma.

Lemma 7. Let F : [0, 1]→ X be a function. If F is sAC, then there exists an
unique countable additive vector measure FL : L → X of bounded variation,
λ-continuous and such that

F̃ (I) = FL(I) for all I ∈ I. (2.5)

Proof. Let I0 be the set of all subintervals I ⊂ [0, 1] having one of two forms
[0, b] or (a, b] where 0 < a < b ≤ 1. For such intervals, place

F̃0([0, b]) = F̃ ([0, b]) and F̃0((a, b]) = F̃ ([a, b]).

Let A consist of all finite unions of such intervals. It is clear that A is an
algebra and that if a set E ∈ A has the form

E = I1 ∪ I2 ∪ ... ∪ In,

where Ii are disjoint intervals of type described, then

F̃0(I1) + F̃0(I2) + ...+ F̃ (In),

is independent of the particular family of disjoint intervals I1, I2, ..., In, whose
union is E. Thus, we may define the vector FA (E) by the equation

FA (E) = F̃0(I1) + F̃0(I2) + ...+ F̃0(In).

Clearly, FA : A → X is a unique vector measure such that

FA (I) = F̃0(I) = F̃ (I) for all I ∈ I0, (2.6)
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where I is the closure of I. Since F is sAC, it easy to see that FA is of bounded
variation and

lim
λ(A)→0:A∈A

FA (A) = 0. (2.7)

Let us consider a sequence (An) of pairwise disjoint members of A such
that ∪∞n=1An ∈ A . Denote A = ∪∞n=1An. Since

lim
n→∞

λ(A \ ∪ni=1Ai) = 0

we obtain by (2.7) that

lim
n→∞

||FA (A)− ∪ni=1FA (Ai)|| = lim
n→∞

||FA (A \ ∪ni=1Ai)|| = 0.

Thus, FA is a countable additive measure on A, and since it is of bounded
variation we obtain by Proposition I.1.15 in [1] that FA is also strongly ad-
ditive. Consequently, by Caratheodory-Hahn-Kluvanek extension theorem in
[10] or by Theorem I.5.2 in [1], FA has a unique countable additive extension
FB : B → X.

Claim 1. The vector measure FB is λ-continuous. To see this, let us
consider the semimetric space B(λ) consisting of members of B equipped
with the semimetric

ρ(B1, B2) = λ(B1∆B2),

where B1∆B2 = (B1\B2)∪(B2\B1). By Lemma III.7.1 in [3], A (λ) consisting
of elements of A is dense in B(λ). By (2.7) and

FA (B1)− ϕA (B2) = FA (B1 \B1 ∩B2)− FA (B2 \B1 ∩B2),

the function FA : A → X is uniformly continuous. Consequently, FB is the
unique uniformly continuous extension of FA . Hence

lim
λ(B∆∅)→0:B∈B

||FB(B)|| = 0.

Therefore, by Theorem I.2.1 in [1], it follows that FB is λ-continuous.

Claim 2. The vector measure FB is of bounded variation. Let {Bi : i =
1, 2, ...,m} be a finite collection of pairwise disjoint members of B and let
ε > 0 be given. Since A is dense in B(λ) and FB is uniformly continuous, for
each Bi there is an Ai such that for each i = 1, 2, ...,m, we have

||FB(Bi)− FA (Ai)|| <
ε

2 ·m2
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and since FA is of bounded variation there exists M > 0 such that

m∑
i=1

||FB(Bi)|| <
m∑
i=1

||FA (Ai)||+
ε

2
< M + ε

This means that FB is of bounded variation.
It is known that

L = {B ∪ Z ′ : B ∈ B and Z ′ ⊂ Z for some Z ∈ Z },

where Z = {Z ∈ B : λ(Z) = 0}.
Claim 3. The vector measure FB has a countable additive extension FL :

L → X that is of bounded variation and λ-continuous. Indeed, let us define
FL : L → X as follows

FL(B ∪ Z ′) = FB(B) for all B ∪ Z ′ ∈ L.

This is well defined, since if B1∪Z ′1 = B2∪Z ′2, then λ(B1\B2) = λ(B2\B1) = 0
and from this it follows that

FB(B1) = FB(B1 \B2) + FB(B1 ∩B2) =

FB(B1 ∩B2) =

FB(B2 \B1) + FB(B1 ∩B2) = FB(B2).

Clearly, FL is of bounded variation, λ-continuous and a countable additive
vector measure such that FL(B) = FB(B) for all B ∈ B.

Claim 4. The vector measure FL is unique. Suppose that there is another
vector measure GL : L → X that is of bounded variation, λ-continuous and a
countable additive extension of FB to L. Let B ∪ Z ′ be an arbitrary element
of L. We can assume that B ∩Z ′ = ∅ (otherwise, replace Z ′ by Z ′ \B). Since
the vector measure GL is λ-continuous and λ(Z ′) = 0, we obtain

GL(B ∪ Z ′) = GL(B) +GL(Z ′) = GL(B) = FB(B) = FL(B ∪ Z ′).

Hence, we infer that FL is unique.
Claim 5. The vector measure FL satisfies (2.5). Indeed, since I ⊂ B, we

obtain by (2.6) that

FB(I) = F̃ (I) for all I ∈ I,

and since FL is an extension of FB to L, it follows that FL satisfies (2.5) and
the proof is finished.
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Theorem 8. Let F : [0, 1]→ X be a function. Then the following statements
are equivalent.

(i) F is the primitive of a strongly McShane integrable function f , i.e.,

F̃ (I) = (M)

∫
I

f for all I ∈ I, (2.8)

(ii) F is sAC, F ′(t) exists and F ′(t) = f(t) a.e. on [0, 1],

(iii) F is sAC and there exists a function f : [0, 1] → X such that f(t) ∈
AF (t) a.e. on [0, 1].

Proof. (i)⇔ (ii) By Theorem 7.4.14 in [15], this equivalence holds true.
(ii)⇒ (iii) Assume that (ii) holds. Then, there is a subset Z ⊂ [0, 1] with

λ(Z) = 0 such that F ′(t) exists and F ′(t) = f(t) for all t ∈ [0, 1] \ Z. Hence,
by Lemma 4, f(t) ∈ AF (t) for all t ∈ [0, 1] \ Z.

(iii) ⇒ (ii) Assume that F is sAC and f(t) ∈ AF (t) for all t ∈ [0, 1] \ Z,
where Z ⊂ [0, 1] with λ(Z) = 0. Since

x∗(AF (t)) ⊂ Ax∗◦F (t) for all x∗ ∈ X∗ and t ∈ [0, 1] \ Z,

we obtain by Theorem 6 that f is Pettis integrable on [0, 1] and

F̃ (I) = (P )

∫
I

f(t)dt for all I ∈ I.

Claim 1. The function f is strongly measurable. Since F is sAC the
function F is continuous on [0, 1], and because this the set {F (t) : t ∈ [0, 1]} ⊂
X is compact and therefore separable. If Y ⊂ X is the closed linear subspace
spanned by the set {F (t) : t ∈ [0, 1]}, then Y is separable. Since ∆F (t, h) ∈ Y
for all t ∈ [0, 1] and h 6= 0, we obtain that AF (t) ⊂ Y for all t ∈ [0, 1] \ Z.
Thus, we have f(t) ∈ Y for all t ∈ [0, 1] \ Z. This means that f is almost
everywhere separable valued, and since f is Pettis integrable on [0, 1], we
obtain by the Pettis measurability theorem, Theorem II.1.2 in [1], that f is
strongly measurable.

Claim 2. The function f is Bochner integrable on [0, 1]. We set

ν(E) = (P )

∫
E

f(t)dt for all E ∈ L.

Since ν is a countable additive vector measure such that

ν(I) = F̃ (I) for all I ∈ I,
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and since F is sAC, we obtain by Lemma 7 that ν is of bounded variation.
Hence, if (Ek) is a sequence of pairwise disjoint members of L such that
∪+∞
k=1Ek = [0, 1], then∫

∪n
k=1Ek

||f(s)||dt ≤ |ν|(S) < +∞ for all n ∈ N.

By the Monotone Convergence Theorem, the last result yields that the function
||f(.)|| is Lebesgue integrable on [0, 1]. Therefore, we obtain by Theorem II.2.2
in [1] that f is Bochner integrable. Since the Bochner and Pettis integrals
coincide whenever they coexist, we have

ν(E) = (B)

∫
E

f(t)dλ for every E ∈ L,

and consequently

F̃ (I) = (B)

∫
I

f(t)dλ for every I ∈ I.

Hence, by Theorem 7.4.15 in [15], F ′(t) exists and F ′(t) = f(t) a.e. on [0, 1].
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