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Abstract

Some new types of limit theorems for topological group-valued mea-
sures are proved in the context of filter convergence for suitable classes
of filters. We investigate (s)-boundedness, σ-additivity and regular-
ity properties of topological group-valued measures. We consider also
Schur-type theorems, using the sliding hump technique, and prove some
convergence theorems in the particular case of positive measures. We
deal with the notion of uniform filter exhaustiveness, by means of which
we prove some theorems on existence of the limit measure, some other
kinds of limit theorems and their equivalence, using known results on ex-
istence of countably additive restrictions of strongly bounded measures.
Furthermore we pose some open problems.
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1 Introduction

The theory of filter convergence has been the object of several recent studies.
The concept of filter convergence was introduced in [44]. An interesting case of
filter convergence is the statistical convergence, introduced by H. Fast ([43]),
H. Steinhaus ([52]) and I. Schoenberg ([48]). These topics have been several
applications in the very recent literature (see also [26, 31, 39, 40]). Among
them we recall, for instance, Functional Analysis (see for instance [2, 8, 9, 20,
21, 23, 24, 25]), Approximation Theory of positive operators, signal sampling,
image and audio-video reconstruction (see also [4, 5, 12, 13, 16, 27]).

This paper is a free continuation of the research initiated in [14], where
some aspects of filter convergence of sequences of topological group-valued
measures are investigated. Here we deal with topological group-valued mea-
sures. Among the studies in the classical case we quote, for instance, [35, 41,
42]. In [35, 42] there are also some results about equivalence between classi-
cal versions of limit theorems. A survey on the literature about these topics
can be found in [36] and in the bibliography therein. In [14] some Nikodým
and Brooks-Jewett-type theorems are given with respect to filter convergence
for topological group-valued measures. Here we give different types of limit
theorems in this framework. In general, it is impossible to obtain results anal-
ogous to the classical ones, even for positive real-valued measures (see also [20,
Example 3.4], [22, Remark 3.8]). Different versions of such kind of theorems
are established in [2] for real-valued measures and [21, 22] for (`)-group-valued
measures. We deal with some basic properties of filter convergence and topo-
logical group-valued measures and some relations between them, and prove
some Schur-type and limit theorems. As a particular case, we consider posi-
tive measures, and in this context we give some limit theorems by considering
a larger class of filters. Some topics about topological groups can be found,
for instance, in [33, 47].

Observe that, in the context of topological groups, it is sufficient to deal
with a suitable basis of neighborhoods of zero, which allows us to give a direct
approach to our theorems. Similar results are proved in [21] in the context of
(`)-groups and Riesz spaces, where one considers order sequences or regulators,
playing a role similar to that of neighborhoods of zero. In lattice groups, among
the more frequently used tools we recall the Fremlin lemma, which allows to
replace countably many regulators by a single one and is useful in particular in
matrix-diagonal processes (see also [1, 20]), and the Maeda-Ogasawara-Vulikh
representation theorem, by means to which several properties of lattice group-
valued measures can be studied, by investigating the corresponding ones of
real-valued measures.
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In the setting of topological groups it is possible to use different techniques,
since we deal with a different kind of structure. To prove equivalence results
between filter limit theorems, we apply some results about existence of suitable
σ-additive restrictions of (s)-bounded measures, like in [41, 42], and without
considering the Stone Isomorphism technique, though it is possible to get
Stone-type extensions also for (s)-bounded topological group-valued measures
(see also [49, 50]). In the lattice group setting (see [15]) it is dealt with the
Stone extensions, since the nature of the convergence in such groups is not
necessarily topological, and hence it is not advisable to argue with σ-additive
restrictions. However, the Drewnowski-type technique here used is in general
easier to handle than the Stone Isomorphism technique. Finally, we pose some
open problems.

2 Preliminaries

We begin with recalling the basic properties of filters.
Let Z 6= ∅ be any set. A filter F of Z is a nonempty collection of subsets

of Z with ∅ 6∈ F , A ∩ B ∈ F whenever A, B ∈ F , and such that for each
A ∈ F and B ⊃ A we get B ∈ F . A filter of Z is said to be free iff it contains
the Fréchet filter Fcofin of all cofinite subsets of Z.

Let Q be a countable set and F be a filter of Q. A subset of Q is F-
stationary iff it has nonempty intersection with every element of F . We denote
by F∗ the family of all F-stationary subsets of Q. If I ∈ F∗, then the trace
F(I) of F on I is the family {F ∩ I : F ∈ F}.

Observe that F(I) is a filter of I. Indeed, if F1, F2 ∈ F(I), then (F1 ∩
F2) ∩ I = (F1 ∩ I) ∩ (F2 ∩ I) ∈ F , and hence F1 ∩ F2 ∈ F(I).

Let now F ∈ F and F ∩ I ⊂ F ′ ⊂ I, and set F ∗ := F ′ ∪ F : then F ∗ ∈ F
and F ∗ ∩ I ⊃ F ∩ I. It is easy to see that F ′ ⊂ F ∗ ∩ I. To prove the converse
inclusion, note that F ∗∩I = (F ′∩I)∪(F∩I) ⊂ F ′. Hence, F ′ = F ∗∩I ∈ F(I),
and thus we get the claim.

A free filter F of N is a P -filter iff for every sequence (An)n in F there is
a sequence (Bn)n in F , such that the symmetric difference An4Bn is finite

for all n ∈ N and

∞⋂
n=1

Bn ∈ F .

A filter F of Q is said to be diagonal iff for every sequence (An)n in F and
for each I ∈ F∗ there exists a set J ⊂ I, J ∈ F∗ such that the set J \ An is
finite for all n ∈ N (see also [21, 22]).

Remark 2.1. Observe that every P -filter F is diagonal. Indeed, let (An)n
be a sequence in F and I ∈ F∗. As F is a P -filter, then by [3, Proposition 1]
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there exists J0 ∈ F , with the property that J0 \ An is finite for every n ∈ N.
We claim that J := I ∩ J0 ∈ F∗. Indeed, if E is any element of F , then
J0 ∩ E ∈ F . So, as I ∈ F∗, we get ∅ 6= I ∩ J0 ∩ E = J ∩ E. By arbitrariness
of E, J ∈ F∗, and thus we get the claim. Therefore, the set J satisfies the
condition requested in the definition of diagonal filter.

From now on F denotes a free filter of N, R = (R,+) is a Hausdorff
complete abelian topological group satisfying the first axiom of countability,
with neutral element 0, and J (0) denotes a basis of closed and symmetric
neighborhoods of 0 (see also [28, 29, 30]). Moreover, given k ∈ N and U ,
U1, . . . , Uk ⊂ R, put U1 + · · · + Uk := {u1 + . . . + uk: u1 ∈ U1, . . . , uk ∈ Uk},
and k U := U + · · ·+ U (k times).

A sequence (xn)n in R F-converges to x0 ∈ R iff for every U ∈ J (0),
{n ∈ N : xn − x0 ∈ U} ∈ F , and we write (F) lim

n
xn = x0. Moreover, we say

that a sequence (Bn)n of subsets of R F-converges to 0 iff for each U ∈ J (0)
the set {n ∈ N : Bn ⊂ U} belongs to F , and we write (F) lim

n
Bn = 0. We say

that lim
n
xn = x0 (resp. lim

n
Bn = 0) iff (Fcofin) lim

n
xn = x0

(resp. (Fcofin) lim
n
Bn = 0). Furthermore, we denote by

∞∑
n=1

Bn the set of all

elements b ∈ R of the type b =

∞∑
k=1

bk := lim
n

n∑
k=1

bk as bk varies in Bk, k ∈ N.

Note that the F-limit is unique, since R is Hausdorff (see also [45]).

Observe that filter convergence satisfies the following property.

(U) If each subsequence of a given sequence (xn)n has a sub-subsequence
which F-converges to x0, then (F) lim

n
xn = x0.

Otherwise, there exist U ∈ J (0) with Z(U) := {n ∈ N : xn − x0 ∈ U} 6∈ F .
Since F is free, the set Y(U) := N \ Z(U) is infinite, say Y(U) := {n1 <
n2 < . . . < nk < . . .}. Thus the subsequence (xnk

)k does not have any sub-
subsequence, F-convergent to x0.

Note that, in general, property (U) is not true in the lattice context: for
instance, this is the case of the space L0(X,B, µ) of all µ-measurable real-
valued functions with identification up to µ-null sets, endowed with the almost
everywhere convergence, where µ : B → [0,+∞] is a σ-additive and σ-finite
measure (see also [53]).

We now prove a Cauchy criterion for filter convergence. Similar results in
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the context of topological spaces can be found in [34] (see also [37], for the
classical case).

Theorem 2.2. Let R and F be as above, x ∈ R and (xn)n be a sequence in
R. Then the following are equivalent:

(j) (F) lim
n
xn = x;

(jj) for every U ∈ J (0) there is r ∈ N with {n ∈ N : xn − xr ∈ U} ∈ F ;
(jjj) for every U ∈ J (0) there is F ∈ F with xn − xr ∈ U whenever n,

r ∈ F .

Proof. (jj) =⇒ (j)
Choose arbitrarily U ∈ J (0), let U0 ∈ J (0) be with 3U0 ⊂ U , and (Up)p

be a decreasing countable basis of closed symmetric neighborhoods of 0. For
each p, q ∈ N there are rp, rq ∈ N with

{n ∈ N : xn − xrp ∈ Up} ∩ {n ∈ N : xn − xrq ∈ Uq} ∈ F .

So there exists np,q ∈ N with xnp,q
− xrp ∈ Up, xnp,q

− xrq ∈ Uq, so that
xrp − xrq ∈ Up +Uq. Thus the sequence (xrp)p is Cauchy in R in the classical
sense and so it converges to an element x ∈ R, since R is complete. If q ≥ p,
we get xrp − xrq ∈ 2Up. Taking the limit as q tends to +∞, we obtain
xrp − x ∈ 2Up, since Up is closed.

Pick arbitrarily p ∈ N. If xn − xrp ∈ Up, then

xn − x = xn − xrp + xrp − x ∈ 3Up,

and thus

{n ∈ N : xn − x ∈ 3Up} ⊃ {n ∈ N : xn − xrp ∈ Up}.

Now, choose arbitrarily U ∈ J (0). There is p ∈ N with 3Up ⊂ 3U0 ⊂ U , and
so

{n ∈ N : xn − x ∈ U} ⊃ {n ∈ N : xn − x ∈ 3Up} ⊃ {n ∈ N : xn − xrp ∈ Up}.

Since {n ∈ N : xn − xrp ∈ Up} ∈ F , then {n ∈ N : xn − x ∈ U} ∈ F , and
hence (F) lim

n
xn = x, that is (j).

(j) =⇒ (jjj)
Suppose that (F) lim

n
xn = x, choose arbitrarily U ∈ J (0) and let U∗ ∈

J (0) be such that 2U∗ ⊂ U . Then in correspondence with U∗ there is F ∈ F
with xn−x ∈ U∗ for each n ∈ F , and so for every n, r ∈ F we get xn−xr ∈ U .
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(jjj) =⇒ (jj)
Choose arbitrarily U ∈ J (0). Then there exists F ∈ F with xn − xr ∈ U

for all n, r ∈ F . If r0 = minF , then {n ∈ N : xn − xr0 ∈ U} ⊃ F , and hence
{n ∈ N : xn − xr0 ∈ U} ∈ F , since F ∈ F .

We now consider some properties of filters.
Given an infinite set I ⊂ Q, a blocking of I is a countable partition {Dk :

k ∈ N} of I into nonempty finite subsets.
A filter F of Q is said to be block-respecting iff for every I ∈ F∗ and for

each blocking {Dk : k ∈ N} of I there is a set J ∈ F∗, J ⊂ I with ](J∩Dk) = 1
for all k ∈ N, where ] denotes the number of elements of the set into brackets.

Some examples of filters satisfying these properties and of filters lacking
them can be found in [2].

The following results will be useful in the sequel.

Proposition 2.3. (see [14, Proposition 2.1]) If F is a block-respecting filter
of N, then F(I) is a block-respecting filter of I for every I ∈ F∗.

Proposition 2.4. If F is any free filter, xn, n ∈ N, is a sequence in R,
F-convergent to x ∈ R, and J ∈ F∗, then the sequence xn, n ∈ J , F(J)-
converges to x.

Proof. Choose arbitrarily U ∈ J (0), and set F := {n ∈ N : xn ∈ U}. We
get: {n ∈ J : xn ∈ U} = F ∩ J ∈ F(J), and so the assertion follows.

We recall the next technical lemma (see [14, Lemma 2.2 α)]); for similar
results existing in the literature, see also [2, Lemma 3.3], [21, Lemma 2.2] and
[22, Lemma 3.1]).

Lemma 2.5. Let (xj,n)j,n be a double sequence in R, and F be a diagonal
filter of N.

If (F) lim
j∈N

xj,n = 0 for each n ∈ N, then for every I ∈ F∗ there exists

J ∈ F∗, J ⊂ I, with lim
j∈J

xj,n = 0 for each n ∈ N.

Also the following technical results hold (see [45, Theorem 8 (i)]).

Proposition 2.6. Let (xn)n be a sequence in R, (F)-convergent to x ∈ R. If
F is a P -filter, then there exists an element E ∈ F , with lim

n∈E
xn = x.

A consequence of Lemma 2.5 is the following

Proposition 2.7. Let (xj,n)j,n be a double sequence in R, F be any P -filter
of N, and suppose that (F) lim

j
xj,n = xn for every n ∈ N.

Then there exists B0 ∈ F such that lim
j∈B0

xj,n = xn for all n ∈ N.
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Proof. By hypothesis and Proposition 2.6 we get the existence of a sequence
(An)n in F , with lim

j∈An

xj,n = xn for all n ∈ N. As F is a P -filter, there

is a sequence of sets (Bn)n in F , such that An4Bn is finite for all n ∈ N

and B0 :=

∞⋂
n=1

Bn ∈ F . Thus, since lim
j∈An

xj,n = xn for all n ∈ N, we get also

lim
j∈Bn

xj,n = xn, and a fortiori lim
j∈B0

xj,n = xn, for all n.

We now recall some main properties of topological group-valued measures,
submeasures and Fréchet-Nikodým topologies.

Let Σ be a σ-algebra of parts of an abstract infinite set G. We say that a
finitely additive measure m : Σ→ R is (s)-bounded on Σ iff

lim
k
m(Ck) = 0 for each disjoint sequence (Ck)k in Σ. (1)

A finitely additive measure m : Σ→ R is said to be σ-additive on Σ iff

m
( ∞⋃
k=1

Ck

)
=

∞∑
k=1

m(Ck) := lim
i

( i∑
k=1

m(Ck)
)

(2)

for every disjoint sequence (Ck)k in Σ.

A submeasure η : Σ→ [0,+∞] is a set function with η(∅) = 0, η(A) ≤ η(B)
whenever A, B ∈ Σ, A ⊂ B, and η(A∪B) ≤ η(A) + η(B) whenever A, B ∈ Σ
and A ∩B = ∅.

A submeasure η is order continuous iff lim
k
η(Hk) = 0 for every decreasing

sequence (Hk)k in Σ with

∞⋂
k=1

Hk = ∅.

For every σ-algebra L ⊂ Σ, set mL(A) :=
⋃
{m(B) : B ∈ L, B ⊂ A}, A ∈

L. Moreover, put

m+(A) := mΣ(A) =
⋃
{m(B) : B ∈ Σ, B ⊂ A}, A ∈ Σ.

Given two finitely additive measures m : Σ→ R, λ : Σ→ [0,+∞], we say that
m is λ-absolutely continuous or shortly λ-continuous on Σ, iff lim

k
m+(Hk) = 0

for every decreasing sequence (Hk)k in Σ such that lim
k
λ(Hk) = 0.

We will see that m is λ-continuous if and only if lim
n
m+(An) = 0 for any

arbitrary sequence (An)n in Σ with lim
n
λ(An) = 0. Note that, in the lattice
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group setting, this property is in general not true (see [6, Remark 1.13.1]). We
first extend [41, Lemma 4.6] to the topological group context.

Lemma 2.8. Let m : Σ → R be an (s)-bounded measure and (Ek)k be any
arbitrary sequence of elements of Σ.

Then for every U ∈ J (0) there is q ∈ N with

m+
(
Ek \

q⋃
l=1

El

)
⊂ U for every k ≥ q.

Proof. If we deny the thesis, then it is possible to find a neighborhood
U ∈ J (0) and to construct a strictly increasing sequence (rh)h in N, with

m+(Bh) 6⊂ U for every h ∈ N, where Bh := Erh+1
\
rh⋃
l=1

El. It is not diffi-

cult to see that the Bh’s are pairwise disjoint, so getting a contradiction with
(s)-boundedness of m.

We are in position to prove the following characterization of absolute con-
tinuity, using a technique similar to that of [41, Theorem 6.1 (a)].

Theorem 2.9. Let λ : Σ → [0,+∞] be a finitely additive measure. An
(s)-bounded measure m : Σ → R is λ-absolutely continuous if and only if
lim
n
m+(An) = 0 for any sequence (An)n in Σ, such that lim

n
λ(An) = 0.

Proof. The “if” part is straightforward.
We now turn to the “only if” part. If we deny the thesis, then there exist:

a neighborhood U ∈ J (0), a decreasing sequence (Uh)h in J (0), a sequence
(An)n in Σ, with 2Uh ⊂ Uh−1 for every h ∈ N, 2U0 ⊂ U , lim

n
λ(An) = 0 and

m+(An) 6⊂ U for each n ∈ N. So, we can extract a subsequence (Ank
)k of

(An)n, with λ(Ank
) ≤ 2−k for all k ∈ N.

Let Ek := Ank
. At the first step, by Lemma 2.8 applied to the sequence

Ek, k ∈ N, in correspondence with U1 there exists k1 ∈ N, with

m+(Ek) ⊂ m+
(
Ek \

k1⋃
l=1

El

)
+m+

(
Ek ∩

( k1⋃
l=1

El

))
⊂ (3)

⊂ U1 +m+
(
Ek ∩

( k1⋃
l=1

El

))
for every k ≥ k1.

Put B1 :=

k1⋃
l=1

El. From (3) we deduce

m+(Ek ∩B1) 6⊂ U0 + U1, (4)
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otherwise we should get m+(Ek) ⊂ U0 + 2U1 ⊂ 2U0 ⊂ U , a contradiction.
Hence, from (4) we obtain m+(B1) 6⊂ U0.

Proceeding by induction, at the h+ 1-th step suppose that we have deter-
mined k1 < k2 < . . . < kh ∈ N and B1, . . . Bh ∈ Σ, with

B0 := G, Bh = Bh−1 ∩
( kh⋃
l=kh−1+1

El

)
, m+(Ek ∩Bh) 6⊂ U0 + Uh (5)

for all h ∈ N and k ≥ kh. By Lemma 2.8 applied to the sequence Ek ∩ Bh,
k = kh+ 1, kh+ 2, . . ., in correspondence with Uh+1 we find an integer kh+1 >
kh, with

m+(Ek ∩Bh) ⊂ m+
(

(Ek ∩Bh) \
kh+1⋃
l=kh+1

El

)
+

+ m+
(

(Ek ∩Bh) ∩
( kh+1⋃
l=kh+1

El

))
⊂ Uh+1 +m+(Ek ∩Bh+1) (6)

whenever k ≥ kh+1, where Bh+1 = Bh ∩
( kh+1⋃
l=kh+1

El

)
. From (6) we obtain

that m+(Ek ∩Bh+1) 6⊂ U0 +Uh+1, otherwise we should have m+(Ek ∩Bh) ⊂
U0 + 2Uh+1 ⊂ U0 + Uh, which contradicts (5). Hence, m+(Bh+1) 6⊂ U0.

By construction, (Bh)h is a decreasing sequence in Σ, lim
h
λ(Bh) = 0 and

m+(Bh) 6⊂ U0 for every h ∈ N, which contradicts λ-absolute continuity of
m.

A topology τ on Σ is a Fréchet-Nikodým topology iff the functions (A,B) 7→
A4B and (A,B) 7→ A ∩B from Σ× Σ (endowed with the product topology)
to Σ are continuous, and for every τ -neighborhood V of ∅ in Σ there is a
τ -neighborhood U of ∅ in Σ with the property that, if E ∈ Σ is contained in
some suitable element of U , then E ∈ V (see also [41, §1]).

Observe that a topology τ on Σ is a Fréchet-Nikodým topology if and only
if there is a family of submeasures Ξ := {ηi : i ∈ Λ}, with the property that a
base of τ -neighborhoods of ∅ in Σ is given by

D := {Uε,J := {A ∈ Σ : ηi(A) < ε for all i ∈ J} : ε > 0, J ⊂ Λ is finite}

(see also [11, 15, 41, 42]).
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Let τ be a Fréchet-Nikodým topology on Σ. A finitely additive measure
m : Σ → R is τ -continuous on Σ, iff lim

k
m+(Hk) = 0 for each decreasing

sequence (Hk)k in Σ, with τ -lim
k
Hk = ∅.

Note that, when λ is a finitely additive non-negative real-valued measure
defined on Σ and τ is the topology generated by the pseudo-λ-distance defined
by dλ(A,B) := λ(A4B), A, B ∈ Σ, then τ -continuity is equivalent to λ-
absolute continuity (see also [9, 38]).

A finitely additive measure m : Σ→ R is said to be positive iff

m+(A) = {m(A)} for every A ∈ Σ. (7)

It is readily seen that, in the classical case R = R, every positive measure in
the sense of the usual order of R is positive according to (7).

It is not difficult to see that a finitely additive measure m : Σ→ R is (s)-
bounded on Σ if and only if lim

k
m+(Ck) = 0 for all disjoint sequences (Ck)k in

Σ. Otherwise, there exist a disjoint sequence (Ck)k, a neighborhood U ∈ J (0)
and two sequences (nk)k, (Bk)k in N and Σ respectively, with lim

k
nk = +∞,

Bk ⊂ Ck and m(Bk) 6∈ U for each k ∈ N, getting a contradiction with (1),
since the Bk’s are pairwise disjoint.

We now give the following property of (s)-bounded topological group-
valued measures (see also [28, 49, 50]).

Proposition 2.10. Let m : Σ→ R be an (s)-bounded measure. Then

lim
k
m+(Hk) = 0 (8)

for each decreasing sequence (Hk)k in Σ, satisfying

m
(
B ∩

( ∞⋂
k=1

Hk

))
= 0 for every B ∈ Σ. (9)

Proof. Let m and (Hk)k be as in the hypothesis. First of all we prove that

lim
k

( ⋃
p≥q≥k

m+(Hq \Hp)
)

= 0,

that is for every U ∈ J (0) there is k ∈ N with the property that

m(E) ∈ U for any p ≥ q ≥ k and for each E ∈ Σ with E ⊂ Hq \Hp. (10)

If (10) is not true, then there are: a neighborhood U ∈ J (0), two sequences
(kh)h, (ph)h in N, with lim

h
kh = +∞, a sequence (Bh)h in Σ, with Bh ⊂
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Hkh \Hkh+ph and m(Bh) 6∈ U for every h ∈ N. Without loss of generality, we
can choose the integers kh in such a way that kh+1 > kh + ph for every h.

So, the Bh’s are pairwise disjoint, and hence we obtain a contradiction
with (s)-boundedness of m.

We now prove (8). To this aim, we claim that for each U ∈ J (0) there

exists k ∈ N with m(E) ∈ U whenever E ⊂ Hk and k ≥ k. Set H∞ :=

∞⋂
k=1

Hk,

E′ := E \ H∞ and Ep := E \ Hp, p ∈ N. Note that (Ep)p is an increasing

sequence in Σ, and that

∞⋃
p=1

Ep = E \H∞ = E′. Let k be as in (10), and

p ≥ k ≥ k. Since Ep ⊂ Hk \Hp, from (10) it follows that m(Ep) ∈ U . Since
U is closed, by (9) we get that m(E) = m(E′) = lim

p
m(Ep) ∈ U . This proves

the claim, and hence (8).

A consequence of Proposition 2.10 is the following characterization of σ-
additivity.

Theorem 2.11. A finitely additive measure m : Σ → R is σ-additive on Σ
if and only if lim

k
m+(Hk) = 0 for each decreasing sequence (Hk)k in Σ, with

∞⋂
k=1

Hk = ∅.

We now prove the following property of σ-additive topological group-valued
measures.

Theorem 2.12. Let m : Σ → R be a σ-additive measure, and (Ek)k be any
sequence in Σ. Then we get

m+
( ∞⋃
k=1

Ek

)
⊂
∞∑
k=1

m+(Ek). (11)

Proof. Set C1 := E1, Ck := Ek \
(k−1⋃
i=1

Ei

)
, k ≥ 2. Note that the Ck’s are

pairwise disjoint and

∞⋃
k=1

Ck =

∞⋃
k=1

Ek. Choose arbitrarily B ∈ Σ, B ⊂
∞⋃
k=1

Ek,

and set Bk := B ∩ Ck, k ∈ N. Taking into account σ-additivity of m, we get

m(B) =

∞∑
k=1

m(Bk) ∈
∞∑
k=1

m+(Ck) ⊂
∞∑
k=1

m+(Ek). (12)
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By (12) and arbitrariness of B we obtain (11). This ends the proof.

We now turn to a Drewnowski-type theorem on existence of σ-additive
restrictions of (s)-bounded topological group-valued measures. This will be
useful in the sequel in order to prove some equivalence results between the
filter limit theorems involved. We first recall the following

Theorem 2.13. ([32, Lemma 2.3]) Let m : Σ→ R be an (s)-bounded measure.
Then for each disjoint sequence (Ck)k in Σ there exists an infinite subset
P0 ⊂ N, with

lim
h

(⋃{
m
( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ P0

})
= 0,

and m is σ-additive on the σ-algebra generated by the sets Ck, k ∈ P0.

Theorem 2.14. Let mj : Σ → R, j ∈ N, be a sequence of finitely additive
measures. Then for any disjoint sequence (Ck)k in Σ there exists an infinite
subset P ⊂ N, with

lim
h

(⋃{
mj

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ P

})
= 0

for every j ∈ N, and each mj is σ-additive on the σ-algebra generated by the
sets Ck, k ∈ P .

Proof. By Theorem 2.13 there is an infinite subset P1 ⊂ N with

lim
h

(⋃{
m1

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ P1

})
= 0.

At the second step, an infinite subset P2 ⊂ P1 can be found, such that

lim
h

(⋃{
m2

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ P2

})
= 0.

Proceeding by induction, we find a strictly increasing (pj)j in N and a decreas-
ing sequence of infinite subsets Pj ⊂ N, with pj = minPj and

lim
h

(⋃{
mj

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ Pj

})
= 0 for every j ∈ N. (13)
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Let P := {pj : j ∈ N}. For every j ∈ N there is h′ ∈ N large enough (depending
on j), such that for each h ≥ h′ we get {k ∈ P : k ≥ h} ⊂ {k ∈ Pj : k ≥ h},
and hence⋃{

mj

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ P

}
⊂
⋃{

mj

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ Pj

}
. (14)

From (13) and (14) it follows that

lim
h

(⋃{
mj

( ⋃
k∈Y,k≥h

Ck

)
: Y ⊂ P

})
= 0 for all j ∈ N. (15)

We now turn to the last assertion. Let C∗ :=
⋃
q∈P

Cq =

∞⋃
l=1

Cpl and pick any

decreasing sequence (Hs)s in the σ-algebra L generated in C∗ by the sets Cnl
,

with

∞⋂
s=1

Hs = ∅. For every s ∈ N there exists h(s) ∈ N with Hs ⊂
⋃

l≥h(s)

Hpl .

Note that lim
s
h(s) = +∞. From this and (15) it follows that lim

s
mLj (Hs) = 0

for every j ∈ N, that is σ-additivity of every mj on L. This ends the proof.

We say that the finitely additive measures mj : Σ → R, j ∈ N, are uni-

formly (s)-bounded on Σ iff lim
k

( ∞⋃
j=1

m+
j (Ck)

)
= 0 for each disjoint sequence

(Ck)k in Σ. The mj ’s are uniformly σ-additive on Σ iff lim
k

( ∞⋃
j=1

m+
j (Hk)

)
= 0

for each decreasing sequence (Hk)k in Σ with

∞⋂
k=1

Hk = ∅. If λ is a finitely

additive measure on Σ, then the mj ’s are said to be uniformly λ-absolutely

continuous or shortly uniformly λ-continuous on Σ iff lim
k

( ∞⋃
j=1

m+
j (Hk)

)
= 0

for each decreasing sequence (Hk)k in Σ with lim
k
λ(Hk) = 0. If τ is a Fréchet-

Nikodým topology on Σ, then the mj ’s are uniformly τ -continuous on Σ

iff lim
k

( ∞⋃
j=1

m+
j (Hk)

)
= 0 for each decreasing sequence (Hk)k in Σ with τ -

lim
k
Hk = ∅.
We now recall the following property, which will be useful in the sequel in

order to prove our limit theorems in the topological group setting.
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Theorem 2.15. ([32, Corollary 3.15]) Let G be any infinite set, Σ be a
σ-algebra of subsets of G, mj : Σ → R, j ∈ N, be a sequence of uni-
formly (s)-bounded measures, and (Hk)k be any decreasing sequence in Σ,
with lim

k
m+
j (Hk) = 0 for every j ∈ N.

Then lim
k

( ∞⋃
j=1

m+
j (Hk)

)
= 0.

Note that, by arguing analogously as in Theorem 2.9, it is possible to prove
the following

Theorem 2.16. Let λ : Σ → [0,+∞] be a finitely additive measure. A
sequence mj : Σ→ R, j ∈ N, of uniformly (s)-bounded measures is uniformly

λ-absolutely continuous if and only if lim
n

(⋃
j

m+
j (An)

)
= 0 for any sequence

(An)n in Σ, with lim
n
λ(An) = 0.

Indeed, it will be enough to consider the quantity
⋃
j

m+
j instead of m+.

Let now G, H ⊂ Σ be two lattices, such that G is closed with respect to
countable disjoint unions, and the complement of every element ofH belongs to
G. Some cases investigated in the literature are when G is a normal topological
space (resp. a locally compact Hausdorff space), G is the class of all open
subsets of G, H is the family of all closed (resp. compact) subsets of G, Σ is
the σ-algebra of all Borel subsets of G (see also [32]). We say that m : Σ→ R is
regular on Σ iff for every A ∈ Σ there exist two sequences (Gk)k in G, (Fk)k in
H, with Fk ⊂ Fk+1 ⊂ A ⊂ Gk+1 ⊂ Gk for every k and lim

k
m+(Gk \ Fk) = 0.

Observe that, if mj : Σ→ R, j ∈ N, are regular measures, then the sequences
(Gk)k, (Fk)k can be taken independently of j (see [32, Remark 3.5]). The
measures mj : Σ → R, j ∈ N, are said to be uniformly regular on Σ iff to
every A ∈ Σ there correspond two sequences (Gk)k in G, (Fk)k in H, with

Fk ⊂ Fk+1 ⊂ A ⊂ Gk+1 ⊂ Gk for every k and lim
k

( ∞⋃
j=1

m+
j (Gk \ Fk)

)
= 0.

We now prove the following relation between σ-additivity and regularity
of measures.

Theorem 2.17. Let (G, d) be a compact metric space, Σ be the σ-algebra of
all Borel sets of G, G and H be the lattices of all open and all closed subsets
of G respectively. Then a measure m : Σ → R is regular if and only if it is
σ-additive.
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Proof. We begin with the “if” part.
Let T := {A ∈ Σ : for every U ∈ J (0) there are D ∈ G, F ∈ H with F ⊂

A ⊂ D and m+(D \ F ) ⊂ U}. Observe that H ⊂ T . Indeed, pick arbitrarily
W ∈ H and for each k ∈ N set Dk := {x ∈ G : d(x,W ) < 1/k}, Wk := Dk \W .

Note that the sequence (Wk)k is decreasing, and

∞⋂
k=1

Wk = ∅. By σ-additivity

of m, for every U ∈ J (0) there is k0 ∈ N, with m+(Dk0 \W ) ⊂ U . Since
Dk0 ∈ G, W ∈ H and W ⊂ Dk0 , it follows that W ∈ T .

We now prove that T is a σ-algebra. It is easy to see that, if A ∈ T ,
then G \A ∈ T . Let now (Ak)k be a disjoint sequence of elements of T , with

A :=

∞⋃
k=1

Ak. We claim that A ∈ T .

Choose arbitrarily U ∈ J (0), let (Uk)k be a sequence in J (0), such that

2Uk ⊂ Uk−1 ⊂ U0 ⊂ U for every k and 2U0 ⊂ U . Note that

n∑
k=1

Uk ⊂ U0 for

all n ∈ N, and hence, since U0 is closed, we get also

∞∑
k=1

Uk ⊂ U0.

By hypothesis there are two sequences (Dk)k and (Fk)k in G and H respec-
tively, with Fk ⊂ Ak ⊂ Dk and m+(Dk \ Fk) ⊂ Uk for every k. Since (Fk)k is
disjoint, by σ-additivity of m there exists k0 ∈ N with

m+
(( ∞⋃

k=1

Fk

)
\
( k0⋃
k=1

Fk

))
= m+

( ∞⋃
k=k0+1

Fk

)
⊂ U1.

Set D :=

∞⋃
k=1

Dk, F :=

k0⋃
k=1

Fk. Note that F ⊂ A ⊂ D, D ∈ G, F ∈ H, and

taking into account Theorem 2.12 we get:

m+(D \ F ) ⊂ m+
(
D \

( ∞⋃
k=1

Fk

))
+m+

(( ∞⋃
k=1

Fk

)
\ F
)

⊂ m+
( ∞⋃
k=1

(Dk \ Fk)
)

+ U0 ⊂
∞∑
k=1

m+(Dk \ Fk) + U0 ⊂ 2U0 ⊂ U.

From this it follows that A ∈ T , that is the claim. Therefore, T is a
σ-algebra. Since T ⊃ H, then T = Σ. Since R satisfies the first axiom of
countability, there is a family (Uk)k, which is a basis of neighborhoods of 0.
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In correspondence with Uk and every A ∈ Σ, there are D∗k ∈ G, F ∗k ∈ H, with

F ∗k ⊂ A ⊂ D∗k and m+(D∗k \ F ∗k ) ⊂ Uk. For every k ∈ N, let Dk :=

k⋂
i=1

D∗i ,

Fk :=

k⋃
i=1

F ∗i . We get: Fk ⊂ Fk+1 ⊂ A ⊂ Gk+1 ⊂ Gk, Dk ∈ G, Fk ∈ H,

m+(Dk \ Fk) ⊂ m+(D∗k \ F ∗k ) ⊂ Uk,

and hence lim
k
m+(Dk \ Fk) = 0. Thus, m is regular on Σ. This proves the

“if” part.

We now turn to the “only if” part. Let (Ck)k be a disjoint sequence in Σ,

and set C :=

∞⋃
k=1

Ck. Fix arbitrarily U ∈ J (0), and let (Uk)k be a sequence

in J (0), with 2Uk ⊂ Uk−1 for every k and 2U0 ⊂ U . By hypothesis, m is
regular, and so in correspondence with Ck and Uk there are Dk ∈ G, Fk ∈ H,
with Fk ⊂ Ck ⊂ Dk and m+(Dk \ Ck) ⊂ m+(Dk \ Fk) ⊂ Uk. Moreover a set
K ∈ H, K ⊂ C can be found, with m+(C \K) ⊂ U0. Note that, since G is

compact, K is also compact, and hence, since K ⊂
∞⋃
k=1

Dk ∈ G, there exists

N ∈ N with K ⊂
N⋃
k=1

Dk.

Choose arbitrarily B ⊂
∞⋃

k=N+1

Ck = C \
( N⋃
k=1

Ck

)
. Since

B ∩K ⊂
( N⋃
k=1

Dk

)
\
( N⋃
k=1

Ck

)
,
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taking into account Theorem 2.12 we get:

m(B) = m(B \K) +m(B ∩K) ∈ m+(C \K) +

+ m+
(( N⋃

k=1

Dk

)
\
( N⋃
k=1

Ck

))
⊂ m+(C \K) +

+ m+
( N⋃
k=1

(Dk \ Ck)
)
⊂ m+(C \K) +

+

N∑
k=1

m+(Dk \ Ck) ⊂

⊂ m+(C \K) +

N∑
k=1

Uk ⊂ 2U0 ⊂ U,

and hence m+
( ∞⋃
k=N+1

Ck

)
⊂ U . This proves σ-additivity of m and ends the

proof.

Remarks 2.18. (a) Note that, arguing similarly as above, it is possible to
prove that, under the same hypotheses as in Theorem 2.17, given a sequence
mj : Σ→ R, j ∈ N of measures, the mj ’s are uniformly regular if and only if
they are uniformly σ-additive.

(b) Observe that, even when R = R, in general the concepts of regularity
and σ-additivity are different. Indeed, with the above notations, if G = H = Σ,
every finitely additive measure is obviously regular, but not necessarily σ-
additive. Conversely, if G = H = {∅, G}, and m : Σ → R is any σ-additive
measure such that m(∅) = 0, m(G) = 1 and there exist E ∈ Σ and α ∈ (0, 1)
with m(E) = α, then it is not difficult to see that m is not regular.

3 The Schur-type and convergence theorems

In [14] we proved some Brooks-Jewett and Nikodým-type theorems for topo-
logical-group valued measures. Here we continue this investigation, and we
prove some other versions of filter limit theorems in this setting. We begin
with a Schur-type theorem (for related results existing in the recent literature
see also [2, Theorems 2.6 and 3.5] in the Banach space setting and [21, Lemma
3.1 and Theorems 3.1, 4.1 and 4.2] for lattice group-valued measures). Note
that the hypothesis that the involved filter is block-respecting is essential, even
when R = R (see also [2, Remark 3.4]).
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Theorem 3.1. Let F be a block-respecting filter of N, mj : P(N)→ R, j ∈ N,
be a sequence of σ-additive measures, and assume that

(i) lim
j
mj({n}) = 0 for any n ∈ N, and

(ii) (F) lim
j
mj(A) = 0 for every A ⊂ N.

Then we have:
β) (F) lim

j
m+
j (N) = 0;

ββ) if F is also diagonal, then the only condition (ii) is sufficient to get
β).

Proof. We begin with proving β). If β) is not true, then there exists U ∈
J (0) such that

I∗ :=
{
j ∈ N : m+

j (N) ⊂ U
}
6∈ F . (16)

From this it follows that every element F of F is not contained in I∗, that is
F has nonempty intersection with N \ I∗: otherwise, if F ∈ F and F ⊂ I∗,
then we should have I∗ ∈ F . Thus the set I := N \ I∗ is F-stationary. Note
that I is an infinite set, since F is a free filter.

Let now (Uk)k be a decreasing sequence in J (0), with 2U0 ⊂ U , and
2Uk ⊂ Uk−1 for every k ∈ N (such a sequence does exist, see also [29]).

Put n0 := 1. By σ-additivity of m1, there exists an integer l(1) > 1
such that m+

1 (]l(1),+∞[) ⊂ U1 (here and in the sequel, the intervals and
halflines involved are meant in N). Moreover, by (i), there is n1 > l(1) with
ms(L) ∈ U1 for all s ≥ n1 and for each finite subset L ⊂ [1, l(1)], and hence
m+
s ([1, l(1)]) ⊂ U1 for any s ≥ n1.

Subsequently, by σ-additivity of m1, . . . ,mn1
, we find a natural number

l(n1) > n1, with m+
r (]l(n1),+∞[) ⊂ U2 for every r ≤ n1, and also an integer

n2 > l(n1) for which m+
s ([1, l(n1)]) ⊂ U2 whenever s ≥ n2.

By induction, we construct two strictly increasing sequences (nh)h and
(l(nh))h, such that, for any h ∈ N, nh−1 < l(h) < nh, m+

r (]l(nh),+∞[) ⊂ Uh+1

for each r ≤ nh, and m+
s ([1, l(nh)]) ⊂ Uh+1 whenever s ≥ nh+1. Observe that

the nh’s can be chosen in such a way that the sets I ∩ [nh−1, nh[, h ∈ N, are
nonempty, so forming a blocking of I. Therefore there exists an F-stationary
set J ⊂ I, such that J intersects each interval [nh, nh+1[ in exactly one point.
So we can write J = {j0, j1, j2, . . .}. Since J ∈ F∗, then at least one of the two
sets J1 := {j1, j3, j5, . . .} and J2 := {j0, j2, j4, . . .} is F-stationary. Without
loss of generality, suppose that J1 ∈ F∗. Now, for each fixed natural number
h, we have

m+
j2h−1

([l(n2h,+∞[) ⊂ U2h ⊂ U2, m+
jh

([1, l(n2h−2]) ⊂ U2h−1 ⊂ U1. (17)
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From this and since m+
j2h−1

(N) 6⊂ U , for each index h we get

m+
j2h−1

(]l(n2h−2), l(n2h)]) 6⊂ U0 : (18)

otherwise, from (17) and (18) we should have m+
j2h−1

(N) ⊂ U0+U1+U2 ⊂ U0+

2U1 ⊂ 2U0 ⊂ U , a contradiction. By (18) there is a set Qh ⊂]l(n2h−2), l(n2h)]
with

mj2h−1
(Qh) 6∈ U0. (19)

Note that the Qh’s are pairwise disjoint. Set now H :=

∞⋃
h=1

Qh. For each index

h we have

mj2h−1
(H) = mj2h−1

(H ∩ [1, l(n2h−2)]) +mj2h−1
(H∩]l(n2h),+∞[) +

+ mj2h−1
(H∩]l(n2h−2), l(n2h)]) =

= mj2h−1
(H ∩ [1, l(n2h−2)]) +mj2h−1

(H∩]l(n2h),+∞[) +

+ mj2h−1
(Qh),

and so we see that

mj2h−1
(H)−mj2h−1

(Qh) ∈ U1 + U2. (20)

Thanks to (20), we obtain mj2h−1
(H) 6∈ U2 for all h, otherwise mj2h−1

(Qh) ∈
U1 + U2 + U2 ⊂ U1 + U1 ⊂ U0, which contradicts (19). But by (ii), in
correspondence with U2 there exists an element F ∈ F with mj(H) ∈ U2

for all j ∈ F , and, since J1 is F-stationary, we get that F has at least an
element j∗ in common with J1. So we have contemporarily mj∗(H) 6∈ U2 and
mj∗(H) ∈ U2, a contradiction. This proves β).

ββ) Let F be a diagonal and block-respecting filter of N. If the thesis
is not true, then, proceeding analogously as in β), we get the existence of a
neighborhood U ∈ J (0) and of an infinite F-stationary set I ⊂ N, with

m+
j (N) 6⊂ U for every j ∈ I. (21)

Since R satisfies the first axiom of countability, by (ii) and Lemma 2.5, in
correspondence with I there is J ∈ F∗, J ⊂ I, with lim

j∈J
mj({n}) = 0 for

every n ∈ N. Moreover, from (ii) and Proposition 2.4 it follows also that
(F(J)) lim

j∈J
mj(A) = 0 for every A ⊂ N. Furthermore observe that, since J ∈

F∗ and F is block-respecting, then F(J) is block-respecting too. By β) applied
to the sequence mj : P(N) → R, j ∈ J , and to the filter F(J) of J , we get
(F(J)) lim

j∈J
m+
j (N) = 0, contradicting (21). This ends the proof of ββ).
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The following result will be useful in the sequel.

Theorem 3.2. Let F be a diagonal filter of N, mj : P(N) → R, j ∈ N, be a
sequence of σ-additive measures, and suppose that (F) lim

j
m+
j (N) = 0.

Then for every I ∈ F∗ there is J ⊂ I, J ∈ F∗, with

lim
k

(⋃
j∈J

m+
j ([k,+∞[)

)
= 0.

Proof. For every j, k ∈ N, let xj,k := m+
j (N). SinceR satisfies the first axiom

of countability, by Lemma 2.5 it follows that for every I ∈ F∗ there exists
J ⊂ I, J ∈ F∗, with lim

j∈J
m+
j (N) = 0. So, if U ∈ J (0) is chosen arbitrarily

and U0 ∈ J (0) is such that 2U0 ⊂ U , there is a natural number j, without
loss of generality j ∈ J , with mj(A) ∈ U0 for every j ≥ j, j ∈ J , and A ⊂ N.
By σ-additivity of the mj ’s, in correspondence with j ∈ N there exists kj ∈ N
with mj(A) ∈ U0 for every A ⊂ [k,+∞[. If k∗ := max{k1, . . . , kj−1}, then we
get

mj(A) ∈ U0 ⊂ U for each A ⊂ [k∗,+∞[ and j ∈ [1, j − 1]. (22)

Moreover, we have

mj(A) ∈ 2U0 ⊂ U for every A ⊂ [k∗,+∞[ and j ≥ j, j ∈ J. (23)

The assertion follows from (22) and (23).

We now prove a Vitali-Hahn-Saks-type theorem, as a consequence of The-
orems 3.1 and 3.2.

Theorem 3.3. Let F be a diagonal and block-respecting filter of N, τ be a
Fréchet-Nikodým topology on Σ, mj : Σ → R, j ∈ N, be a sequence of τ -
continuous measures, with

(F) lim
j
mj(A) = 0 for every A ∈ Σ. (24)

Then for each decreasing sequence (Hk)k in Σ with τ -lim
k
Hk = ∅ and for every

F-stationary set I ⊂ N there is an F-stationary set J ⊂ I, with

lim
k

(⋃
j∈J

mLj (Hk)
)

= 0,

where L is the σ-algebra generated by the Hk’s in H1.
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Proof. Let I and (Hk)k be as in the hypotheses, set Ck := Hk \ Hk+1 for

every k ∈ N and put H∞ :=

∞⋂
k=1

Hk. Since the mj ’s are τ -continuous, we get

lim
k
m+
j (Hk) = 0 for all j ∈ N. (25)

For all A ∈ P(N) and j ∈ N, set

νj(A) = mj

(⋃
k∈A

Ck

)
.

We claim that the νj ’s are σ-additive. We get:

m+
j (Hk) =

⋃
{mj(B) : B ∈ Σ, B ⊂ Hk} =

=
⋃
{mj(B \H∞) : B ∈ Σ, B ⊂ Hk} =

=
⋃
{mj(C) : C ∈ Σ, C ⊂ Hk \H∞} = (26)

= m+
j (Hk \H∞) = m+

j

( ∞⋃
l=k

Cl

)
for every j, k ∈ N. By arguing analogously as in (26), it is possible to prove
also that

mLj (Hk) = mKj

( ∞⋃
l=k

Cl

)
, (27)

where K is the σ-algebra generated by the Ck’s in H1 (see also [19, Theorem

3.2], [18, Lemma 2.4]). From (25) and (26) it follows that lim
k
m+
j

( ∞⋃
l=k

Cl

)
= 0

for every decreasing sequence (Hk)k in Σ with τ -lim
k
Hk = ∅. From this, since

ν+
j ([k,+∞[) :=

⋃
{νj(D) : D ⊂ [k,+∞[} ⊂ m+

j

( ∞⋃
l=k

Cl

)
for every j, k ∈ N,

we get

lim
k
ν+
j ([k,+∞[) = 0, j ∈ N. (28)

We now are in position to prove σ-additivity of the νj ’s. Let (Ak)k be a

decreasing sequence in P(N) with

∞⋂
k=1

Ak = ∅. Without loss of generality, we
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can and do assume that Ak ) Ak+1 for every k. Hence, Ak ⊂ [k,+∞[ and
so ν+

j (Ak) ⊂ ν+
j ([k,+∞[) for all j, k ∈ N. From this and (28) we have

lim
k
ν+
j (Ak) = 0, getting σ-additivity of νj , for every j ∈ N.

Moreover, observe that, since the mj ’s satisfy (24), then the νj ’s fulfil
condition (ii) of Theorem 3.1. Since F is diagonal and block-respecting, by
ββ) of Theorem 3.1 we get (F) lim

j
m+
j (N) = 0 for every A ⊂ N. From this

and Theorem 3.2, taking into account (27), it follows that for every I ∈ F∗
there is J ⊂ I, J ∈ F∗, with

0 = lim
k

(⋃
j∈J

ν+
j ([k,+∞[)

)
=

= lim
k

(⋃
j∈J

mKj

( ∞⋃
l=k

Cl

))
= lim

k

(⋃
j∈J

mLj (Hk)
)
.

This concludes the proof.

Similarly as Theorem 3.3, it is possible to prove the following Nikodým
convergence-type theorem (note that in this case σ-additivity of the νj ’s is a
direct consequence of σ-additivity of the mj ’s and (2) ).

Theorem 3.4. Let F be as in Theorem 3.3, mj : Σ → R, j ∈ N, be a
sequence of σ-additive measures, satisfying condition (24). Then for each

decreasing sequence (Hk)k in Σ with

∞⋂
k=1

Hk = ∅ and for every I ∈ F∗ there

exists J ∈ F∗, J ⊂ I, with

lim
k

(⋃
j∈J

mLj (Hk)
)

= 0.

In the following theorems, which are formulated for positive topological
group-valued measures, the involved filter is required to be only diagonal, and
not necessarily block-respecting. A meaningful example of such a filter is the
class of all subsets of N having asymptotic density 1, which is also a P -filter
(see also [2]).

The next theorem extends [17, Theorem 2.5] to the setting of topological
group-valued measures.

Theorem 3.5. Let G be any infinite set, Σ ⊂ P(G) be a σ-algebra, mj : Σ→
R, j ∈ N, be a sequence of positive (s)-bounded measures, F be a diagonal
filter of N. Assume that m0(E) := (F) lim

j
mj(E) exists in R for every E ∈ Σ,

and that m0 is σ-additive and positive on Σ.
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Then for every set I ∈ F∗ and for every disjoint sequence (Ck)k in Σ there
exists J ∈ F∗, J ⊂ I, with

lim
k

(⋃
j∈J

m+
j (Ck)

)
= lim

k

(⋃
j∈J

mj(Ck)
)

= 0.

Proof. Let I ∈ F∗, (Ck)k be any disjoint sequence in Σ, and K be the σ-

algebra generated by the Ck’s in

∞⋃
k=1

Ck. For every B ∈ K there exists P ⊂ N

with B =
⋃
k∈P

Ck. Since F is diagonal, by Lemma 2.5 there is J ∈ F∗, J ⊂ I,

with

m0

(⋃
k∈E

Ck

)
= lim

j
mj

(⋃
k∈E

Ck

)
(29)

for every E ∈ Ifin∪{N}, where Ifin is the (countable) class of all finite subsets
of N. Moreover, by σ-additivity of m0, we get

lim
k

(
m+

0

( ∞⋃
l=k

Cl

))
= 0. (30)

Choose arbitrarily U ∈ J (0), and let U0 ∈ J (0) be such that 5U0 ⊂ U : such
a neighborhood does exist (see also [28]). In correspondence with U0 there

exists k0 ∈ N with m0

( ⋃
k>k0

Ck

)
∈ U0 and therefore, by positivity of m0,

m0

( ⋃
k>k0,k∈P

Ck

)
∈ U0. Moreover there is j0 ∈ J , j0 = j0(U, k0) such that

for every j ∈ J with j ≥ j0 we have:

mj

( ⋃
k≤k0,k∈P

Ck

)
−m0

( ⋃
k≤k0,k∈P

Ck

)
∈ U0,mj

( ⋃
k≤k0

Ck

)
−m0

( ⋃
k≤k0

Ck

)
∈ U0,

mj

( ∞⋃
k=1

Ck

)
−m0

( ∞⋃
k=1

Ck

)
∈ U0,

and hence

mj

( ⋃
k>k0

Ck

)
−m0

( ⋃
k>k0

Ck

)
∈ 2U0.
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Choose arbitrarily B ∈ K. Taking into account positivity of the mj ’s and of
m0, for every j ∈ J , j ≥ j0, we have:

mj(B)−m0(B) = mj

(⋃
k∈P

Ck

)
−m0

(⋃
k∈P

Ck

)
∈

∈
{
mj

( ⋃
k≤k0,k∈P

Ck

)
−m0

( ⋃
k≤k0,k∈P

Ck

)}
+ m+

0

( ⋃
k>k0,k∈P

Ck

)
+m+

j

( ⋃
k>k0,k∈P

Ck

)
⊂

⊂
{
mj

( ⋃
k≤k0,k∈P

Ck

)
−m0

( ⋃
k≤k0,k∈P

Ck

)}
+ m+

0

( ⋃
k>k0

Ck

)
+m+

j

( ⋃
k>k0

Ck

)
⊂

⊂
{
mj

( ⋃
k≤k0,k∈P

Ck

)
−m0

( ⋃
k≤k0,k∈P

Ck

)}
+

{
mj

( ⋃
k>k0

Ck

)
−m0

( ⋃
k>k0

Ck

)}
+ 2m+

0

( ⋃
k>k0

Ck

)
⊂ 5U0 ⊂ U.

Thus, lim
j∈J

mj(B) = m0(B) for all B ∈ K. Therefore, the finitely additive R-

valued measures mj , j ∈ J , satisfy the hypotheses of the classical version of
the Brooks-Jewett theorem on K for topological group-valued measures (see
[29, Theorem 2.6], [32, Theorem 2.4]). In particular, we get

lim
k

(⋃
j∈J

m+
j (Ck)

)
= lim

k

(⋃
j∈J

mj(Ck)
)

= 0.

This ends the proof.

We now turn to a Vitali-Hahn-Saks-type theorem, extending [17, Theorem
2.6].

Theorem 3.6. Let G, Σ, F be as in Theorem 3.5, τ be a Fréchet-Nikodým
topology on Σ, mj : Σ → R, j ∈ N, be a sequence of positive finitely additive
(s)-bounded and τ -continuous measures. Assume that m0(E) := (F) lim

j
mj(E)

exists in R for each E ∈ Σ, and that m0 is σ-additive and positive on Σ.
Then for every set I ∈ F∗ and for each decreasing sequence (Hk)k in Σ

with τ -lim
k
Hk = ∅ there exists a set J ∈ F∗, J ⊂ I, with

lim
k

(⋃
j∈J

m+
j (Hk)

)
= lim

k

(⋃
j∈J

mj(Hk)
)

= 0.
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Proof. Let τ , I, (Hk)k be as in the hypotheses, put H∞ :=

∞⋂
k=1

Hk, Ck :=

Hk \Hk+1, k ∈ N, and let L be the σ-algebra generated by the Ck’s and H∞
in H1. Proceeding analogously as in Theorem 3.5, by virtue of [29, Theorem
2.6] and [32, Theorem 2.4], we get the existence of a set J ⊂ I, J ∈ F∗, with
the property that the mj ’s, j ∈ J , are uniformly (s)-bounded on L. Moreover,
by τ -continuity and positivity of the mj ’s, we get lim

k
m+
j (Hk) = 0 for every

j ∈ N. By Theorem 2.15 applied to the sequence of measures mj : Σ → R,
j ∈ J , we obtain that

0 = lim
k

(⋃
j∈J

m+
j (Hk)

)
= lim

k

(⋃
j∈J

mj(Hk)
)
,

that is the assertion.

Analogously as in Theorem 3.6 it is possible to prove the following Nikodým-
type theorem.

Theorem 3.7. Let G, Σ, F be as in Theorem 3.6, mj : Σ → R, j ∈ N, be
a sequence of positive σ-additive measures. If m0(A) := (F) lim

j
mj(A) exists

in R for each A ∈ Σ, and m0 is σ-additive and positive on Σ, then for each

I ∈ F∗ and for every decreasing sequence (Hk)k in Σ with

∞⋂
k=1

Hk = ∅ there

exists J ∈ F∗, J ⊂ I, with

lim
k

(⋃
j∈J

m+
j (Hk)

)
= lim

k

(⋃
j∈J

mj(Hk)
)

= 0.

We now turn to a Dieudonné-type theorem, extending [18, Theorems 3.8,
3.10] to the context of topological groups.

Theorem 3.8. Let G, Σ, F be as in Theorem 3.6, G, H ⊂ Σ be as above,
mj : Σ → R, j ∈ N, be a sequence of positive regular measures, such that
m0(E) := (F) limjmj(E) exists in R for every E ∈ Σ, and m0 is σ-additive
and positive.

Furthermore, let A ∈ Σ and (Gk)k, (Fk)k be two sequences in G, H respec-
tively, with Fk ⊂ Fk+1 ⊂ A ⊂ Gk+1 ⊂ Gk for every k ∈ N, and

lim
k
mj(Gk \ Fk) = 0 for every j ∈ N. (31)

Then for each I ∈ F∗ there is J ∈ F∗, with

lim
k

(⋃
j∈J

m+
j (Gk \ Fk)

)
= 0. (32)
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Proof. Let A, (Gk)k, (Fk)k be as in the hypothesis, L be the σ-algebra
generated by the sets Gk \ Fk, k ∈ N, and I ∈ F∗. Since the mj ’s are (s)-
bounded, then, arguing analogously as in the proof of Theorem 3.5, by [29,
Theorem 2.6] and [32, Theorem 2.4] we find a set J ⊂ I, J ∈ F∗, such that
the mj ’s, j ∈ J , are uniformly (s)-bounded on L. Moreover, by hypothesis
and taking into account positivity of the mj ’s, we have lim

k
m+
j (Gk \ Fk) = 0

for every j ∈ N. From this and Theorem 2.15 applied to the mj ’s, j ∈ J , we
get (32).

4 Uniform filter exhaustiveness and equivalence between
filter limit theorems

In this section we deal with the tool of uniform filter exhaustiveness for se-
quences of measures, by means of which it is possible to prove some results of
existence of limit measures and some versions of convergence theorems, by con-
sidering a subsequence, indexed by a suitable element of the filter involved, on
which it is possible to apply some classical versions of limit theorems. We prove
also equivalence between filter Brooks-Jewett, Vitali-Hahn-Saks, Nikodým and
Dieudonné-type theorems, extending results of [42].

Let F be a free filter of N, Σ be a σ-algebra of parts of an infinite set G,
and λ : Σ → [0,+∞] be a finitely additive measure, such that Σ is separable
with respect to the Fréchet-Nikodým topology generated by λ (shortly, λ-
separable). Let B := {Fi : i ∈ N} be a countable λ-dense subset of Σ. Assume
that mj : Σ→ R, j ∈ N, is a sequence of finitely additive measures.

We say that the mj ’s are λ-uniformly F-exhaustive on Σ iff for every
U ∈ J (0) there exist δ > 0 and V ∈ F with mj(E)−mj(F ) ∈ U whenever
E,F ∈ Σ with |λ(E)− λ(F )| ≤ δ and for any j ∈ V .

We now prove the following result about extensions of filter limit measures
in the topological group setting (for similar results existing in the (`)-group
context see also [10, Theorem 3.3], [11, Theorem 3.8, Lemma 3.9, Theorem
3.10], [15, Lemma 3.1]).

Theorem 4.1. Let (mj)j be a sequence of finitely additive measures, λ-
uniformly F-exhaustive on Σ, such that m(Fi) := (F)lim

j
mj(Fi) exists in

R for every i ∈ N. Then,

(γ) there is a finitely additive extension m0 : Σ→ R of m, with

(F)lim
j
mj(E) = m0(E) for all E ∈ Σ.
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(γγ) Moreover, if F is a P -filter, then there is a set M0 ∈ F such that

lim
j∈M0

mj(E) = m0(E) for every E ∈ Σ.

Proof. Choose arbitrarily E ∈ Σ and U ∈ J (0), and let U0 ∈ J (0) be
with 3U0 ⊂ U . By hypothesis, there exist δ > 0 and V ∈ F such that, if
|λ(E) − λ(F )| ≤ δ and j ∈ V , then mj(E) −mj(F ) ∈ U0. By λ-separability
of Σ, there is i ∈ N with |λ(E) − λ(Fi)| ≤ δ. By Theorem 2.2, there is a set

W (i) ∈ F with mj(Fi) −ml(Fi) ∈ U whenever j, l ∈ W (i). In particular we
get

mj(E)−ml(E) = mj(E)−mj(Fi) +mj(Fi)−ml(Fi) +

+ ml(Fi)−ml(E) ∈ 3U0 ⊂ U

for every j, l ∈ V ∩W (i). By Theorem 2.2, there is a set function m0 : Σ→ R,
extending m, with (F) lim

j
mj(E) = m0(E). It is not difficult to see that m0

is finitely additive on Σ. This proves (γ).
(γγ) Let (Up)p be a base of neighborhoods of 0. By λ-uniform F-ex-

haustiveness, for every p ∈ N there are a δ > 0 and a set M ′p ∈ F , with
mj(E)−mj(F ) ∈ U whenever E, F ∈ Σ with |λ(E)− λ(F )| ≤ δ and j ∈M ′p.
Since F is a P -filter, in correspondence with M ′p there exists Mp ∈ F such that

Mp4M ′p is finite for each p ∈ N and M :=

∞⋂
p=1

Mp ∈ F . Let Zp := M \M ′p,

p ∈ N. Note that Zp is finite for every p ∈ N, and so we get mj(E)−mj(F ) ∈
Up whenever E, F ∈ Σ with |λ(E) − λ(F )| ≤ δ and j ∈ M \ Zp. Moreover,
thanks to Proposition 2.7, there is a set B0 ∈ F such that for every j, p ∈ N
there exists j ∈ B0 with mj(Fi) − m(Fi) ∈ Up whenever j ≥ j, j ∈ B0.
Without loss of generality, we can take j ∈ B0 ∩ M . Set M0 := B0 ∩ M :
we get M0 ∈ F . The sequence mj , j ∈ M0, is λ-uniformly Fcofin-exhaustive,
and lim

j∈M0

mj(Fi) = m(Fi) for every i ∈ N. From this and (γ) applied to mj ,

j ∈M0 and Fcofin, we find a finitely additive extension m0 of m, defined on Σ,
with lim

j∈M0

mj(E) = m0(E) for each E ∈ Σ. Thus M0 is the requested set.

The next step is to give some sufficient conditions on an F-convergent
sequence mj , j ∈ N, of topological group-valued measures, to get the exis-
tence of a set M0 ∈ F such that the subsequence mj , j ∈ M0, is uniformly
(s)-bounded (resp. uniformly σ-additive, uniformly τ -continuous, uniformly
regular). These results yield also sufficient conditions for (s)-boundedness
(resp. σ-additivity, τ -continuity, regularity) of the limit measure.
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Observe that in this framework, even when R = R, the hypothesis of λ-
uniform F-exhaustiveness in general cannot be dropped (see also [15, Remark
3.8 (c)]). However, without requiring filter exhaustiveness, it is possible to
prove the following theorem on the existence of the filter limit measure, which
extends [9, Theorem 4.12] to the topological group context.

Theorem 4.2. Let Σ ⊂ P(G) be a σ-algebra, L be an algebra of sets gen-
erating Σ, and suppose that mj : Σ → R, j ∈ N, is a sequence of uniformly
σ-additive measures, such that (F) lim

j
mj(E) exists in R for each E ∈ L.

Then (F) lim
j
mj(E) exists in R for all E ∈ Σ.

Proof. Let Π := {E ∈ Σ : (F) lim
j
mj(E) exists inR}. By hypothesis, L ⊂ Π.

If we show that Π is a monotone class, then Π = Σ, and so the result will be
proved.

Let (Er)r be a monotone sequence of elements of Π with lim
r
Er = E ∈ Σ

in the set-theoretic sense, choose arbitrarily U ∈ J (0), and let (Ur)r be a
family of elements of J (0), with 2Ur ⊂ Ur−1 for each r and 2U0 ⊂ U . For
every r ∈ N, since Er ∈ Π, the sequence (mj(Er))j is F-convergent, and so
by Theorem 2.2 there exists Wr ∈ F with mp(Er) −mq(Er) ∈ Ur whenever
p, q ∈ Wr. Moreover, since the mj ’s are uniformly σ-additive, there is r ∈ N
with mj(Er)−mj(E) ∈ U1 for all j ∈ N. Thus for every p, q ∈Wr we get:

mp(E)−mq(E) = [mp(E)−mp(Er)] + [mp(Er)−mq(Er)] +

+ [mq(Er)−mq(E)] ∈ 2U1 + Ur ⊂ 2U1 + U0 ⊂ 2U0 ⊂ U.

By Theorem 2.2, the limit (F) lim
j
mj(E) exists in R. The assertion follows

from arbitrariness of E ∈ Σ.

We now introduce the following condition, which will be useful in the se-
quel.

A sequence of finitely additive measures mj : Σ → R, j ≥ 0, together
with λ, satisfies property (∗) with respect to R and F iff it is λ-uniformly
F-exhaustive on Σ and (F) lim

j
mj(E) = m0(E) for any E ∈ Σ.

The next result is an immediate consequence of Lemma 4.1 (γγ).

Lemma 4.3. Let mj : Σ → R, j ∈ N, satisfy together with λ property (∗)
with respect to R and F .

Then there exists a set M0 ∈ F such that the measures mj, j ∈ M0, and
m0 satisfy together with λ property (∗) with respect to R and Fcofin.
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We now deal with equivalence between filter limit theorems in the (`)-group
setting. We begin with recalling the following Brooks-Jewett-type theorem in
the topological group context (for similar versions in the lattice group setting,
see also [7, Theorem 3.1], [11, Theorem 3.4]).

Theorem 4.4. (see [29, Theorem 2.6], [32, Theorem 2.4]) Let mj : Σ → R,
j ∈ N, be a sequence of (s)-bounded measures, convergent pointwise on Σ to a
measure m0.

Then the measures mj, j ∈ N, are uniformly (s)-bounded and m0 is (s)-
bounded on Σ.

We now prove the following filter limit theorems for topological group-
valued measures and their equivalence (for similar results in the (`)-group
setting, see [15, §3]). Note that in our context, since we deal with topological
group-valued measures, we can use a Drewnowski-type approach, considering
suitable σ-additive restrictions of (s)-bounded measures. In the lattice group
setting, since the convergence does not have always a topological nature, it is
not advisable to apply such an argument, and the tool of the Stone Isomor-
phism technique is used (see [15]), though it is possible to construct Stone-
type extensions even for topological group-valued measures (see for instance
[49, 50]).

In what follows, let us assume that:
H) λ : Σ→ [0,+∞] is a finitely additive measure, Σ is a λ-separable σ-algebra,
F is a P -filter of N, m0, mj : Σ → R, j ∈ N, are finitely additive measures,
satisfying together with λ property (∗) with respect to R and F on Σ, and Σ0

is a sub-σ-algebra on Σ.

Theorem 4.5. (Brooks-Jewett (BJ) ) If the mj’s are (s)-bounded on Σ0, then
there exists a set M0 ∈ F , such that the measures mj, j ∈M0, are uniformly
(s)-bounded on Σ0.

Theorem 4.6. (Vitali-Hahn-Saks (VHS) ) If every mj is (s)-bounded and
τ -continuous on Σ0, then there exists a set M0 ∈ F , such that the measures
mj, j ∈M0, are uniformly (s)-bounded and uniformly τ -continuous on Σ0.

Theorem 4.7. (Nikodým (N) ) If each mj is σ-additive on Σ0, then there is
M0 ∈ F , such that the measures mj, j ∈M0, are uniformly σ-additive on Σ0.

Theorem 4.8. (Dieudonné (D) ) If each mj is (s)-bounded and regular on
Σ0, then there is M0 ∈ F with the property that the measures mj, j ∈M0, are
uniformly (s)-bounded and uniformly regular on Σ0.

To prove Theorem 4.5 (BJ), observe that there exists M0 ∈ F , satisfying
the thesis of Lemma 4.3. The assertion of (BJ) follows by applying Theorem
4.4 to the sequence mj , j ∈M0.
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We now prove equivalence between (BJ), (VHS), (N) and (D).
We begin with the implication (BJ) =⇒ (VHS). Let mj : Σ → R, j ∈ N,

be a sequence of measures, fulfilling together with λ property (∗) with respect
to R and F , (s)-bounded and τ -continuous on Σ0. By (BJ), there is M0 ∈ F
such that the measures mj , j ∈ M0, are uniformly (s)-bounded on Σ0. So,

lim
k

( ⋃
j∈M0

m+
j (Ck)

)
= 0 for every disjoint sequence (Ck)k in Σ0.

Fix arbitrarily any decreasing sequence (Hk)k in Σ0, with τ -limkHk = ∅.
By τ -continuity of each mj , j ∈ N, on Σ0, we get lim

k
m+
j (Hk) = 0 for every

j ∈ N.
By Theorem 2.15, we obtain

lim
k

 ⋃
j∈M0

m+
j (Hk)

 = 0, (33)

so getting uniform τ -continuity of the mj ’s, j ∈M0, on Σ0. Thus, (BJ) implies
(VHS).

The proof of (BJ) =⇒ (D) is similar to that of (BJ) =⇒ (VHS).
We now prove (VHS) =⇒ (N). Let τ be the Fréchet-Nikodým topology

generated by the class of all order continuous submeasures defined on Σ0. If

(Hk)k is any decreasing sequence in Σ0 with τ -limkHk = ∅ and H∞ =

∞⋂
k=1

Hk,

then we have η(H∞) = 0 for each order continuous submeasure η defined on
Σ0, and so it follows that H∞ = ∅. Thus we obtain that, if (mj)j is a sequence
of measures, σ-additive on Σ0, then they are τ -continuous on Σ0. Since every
mj is also (s)-bounded on Σ0, then by (VHS) they are uniformly τ -continuous
on Σ0, and so also uniformly σ-additive. Thus, (VHS) implies (N).

We prove (N) =⇒ (BJ). Let mj : Σ → R, j ∈ N, be a sequence of (s)-
bounded measures, satisfying together with λ property (∗) with respect to F
and R.

Pick arbitrarily a disjoint sequence (Ck)k in Σ0, and choose any subse-
quence (Ckr )r of (Ck)k. By Theorem 2.14, there is a sub-subsequence (Ckrs )s,
such that every mj is σ-additive on the σ-algebra L generated by (Ckrs )s.

By (N) used with F and the sub-σ-algebra L, where L ⊂ Σ0 ⊂ Σ, we find a
set M∗ ∈ F , such that the measures mj |L, j ∈M∗, are uniformly σ-additive,

and hence also uniformly (s)-bounded, on L. So we get that

lim
s

( ⋃
j∈M∗

mj(Ckrs )
)

= 0. (34)
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By arbitrariness of the subsequence (Ckr )r and property (U) used with F =
Fcofin, from (34) it follows that

lim
k

( ⋃
j∈M∗

mj(Ck)
)

= 0, (35)

and hence (N) implies (BJ).
We now prove (D) =⇒ (BJ). Let mj : Σ → R, j ≥ 0 satisfy, together

with λ, property (∗) with respect to R and F , and (s)-bounded on Σ0, Of
course, if we take G = H = Σ0, then we get that the mj ’s are regular on Σ0

(with respect to this choice of G and H). By (D), there exists a set M0 ∈ F ,
such that the measures mj , j ∈M0, are uniformly (s)-bounded and uniformly
regular on Σ0. This proves that (D) implies (BJ).

Open problems:
(a) Prove similar Schur and limit theorems using m+ instead of mL and/or

without assuming either “good” properties for the limit measure or filter uni-
form exhaustiveness.

(b) Investigate similar results by considering weaker notions of (s)-boun-
dedness and σ-additivity.

(c) Study similar theorems by considering some other classes of filters.
(d) Investigate some other properties of filter exhaustiveness, weak filter

convergence and filter (α)-convergence in the topological group setting (see
also [9]).

(e) Investigate similar topics by dropping the hypothesis that the topo-
logical group involved satisfies the first axiom of countability (in this context
some like classical properties do not hold, see also [46, 51]).

5 Conclusions

We have seen that several versions of limit theorems, which were proved with
respect of filter convergence in the lattice group setting in [10, 11, 15, 17,
18, 21], hold even for filter convergence in topological group-valued measures.
After having investigated some classes of filters and their properties, and ex-
amined some features of filter convergence, we have studied some properties
of topological group-valued measures, and in particular some relations be-
tween regularity and σ-additivity, some aspects of absolute continuity and
some Drewnowski-type theorems on existence of countably additive restric-
tions of (s)-bounded measures.

We have investigated three kinds of limit theorems. First, we have consid-
ered some particular classes of filters and Schur-type theorems for measures
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defined on the class of all subsets of N and we have deduced, as consequences,
some Vitali-Hahn-Saks, Nikodým and Dieudonné-type theorems.

We have examined in particular positive measures, showing that in this
case it is possible to prove some versions of these kinds of theorems under
weaker assumptions on the filter involved.

Finally we have dealt with the powerful tool of filter exhaustiveness, which
has allowed us to find a sub-sequence of the original sequence of measures,
indexed by a suitable element of the filter involved, to which it is possible to
apply the classical theorems in [29] and [32], obtaining some results about the
existence of limit measures and further convergence theorems. Their equiv-
alence has been proved, using a Drewnowski-type result about the existence
of σ-additive restrictions of (s)-bounded measures. This is possible, because
topological convergence satisfies property (U), which in general is not fulfilled
in lattice groups (see also [15, 26, 53]).
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Dieudonné-type theorems in (`)-groups, Kybernetika, 46(6) (2010), 1049–
1060.



Some New Types of Filter Limit Theorems 171

[8] A. Boccuto, P. Das and X. Dimitriou, A Schur-type theorem for I-
convergence and maximal ideals, Int. J. Pure Applied Math., 81(3)
(2012), 517–529.

[9] A. Boccuto, P. Das, X. Dimitriou and N. Papanastassiou, Ideal exhaus-
tiveness, weak convergence and weak compactness in Banach spaces, Real
Anal. Exchange, 37(2) (2012), 389–410.

[10] A. Boccuto and X. Dimitriou, Ideal exhaustiveness and limit theorems for
(l)-groups, Acta Math. (Nitra), 14 (2011), 65–70.

[11] A. Boccuto and X. Dimitriou, Some new results on ideal limit theorems
with respect to ideal convergence in (`)-groups, Atti Semin. Math. Fis.
Univ. Modena e Reggio Emilia, 58 (2011), 163–174.

[12] A. Boccuto and X. Dimitriou, Modular convergence theorems for inte-
gral operators in the context of filter exhaustiveness and applications,
Mediterr. J. Math., 10(2) (2013), 823–842.

[13] A. Boccuto and X. Dimitriou, Modular filter convergence theorems for
Urysohn integral operators and applications, Acta Math. Sin. (Engl. Ser.),
29(6) (2013), 1055–1066.

[14] A. Boccuto and X. Dimitriou, Limit theorems for topological group-valued
measures with respect to filter convergence, Acta Math. (Nitra), 16 (2013),
37–43.

[15] A. Boccuto and X. Dimitriou, Ideal limit theorems and their equivalence
in (`)-group setting, J. Math. Research, 5(2) (2013), 43–60.

[16] A. Boccuto and X. Dimitriou, Rates of approximation for general
sampling-type operators in the setting of filter convergence, Appl. Math.
Comput., (2014), to appear.

[17] A. Boccuto, X. Dimitriou and N. Papanastassiou, Brooks-Jewett-type the-
orems for the pointwise ideal convergence of measures with values in (`)-
groups, Tatra Mt. Math. Publ., 49 (2011), 17–26.

[18] A. Boccuto, X. Dimitriou and N. Papanastassiou, Some versions of limit
and Dieudonné-type theorems with respect to filter convergence for (`)-
group-valued measures, Cent. Eur. J. Math., 9(6) (2011), 1298–1311.

[19] A. Boccuto, X. Dimitriou and N. Papanastassiou, Limit theorems in (`)-
groups with respect to (D)-convergence, Real Anal. Exchange, 37 (2012),
249–278.



172 A. Boccuto and X. Dimitriou

[20] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems
for I-convergence in (`)-groups, Math. Slovaca, 62(5) (2012), 269–298.

[21] A. Boccuto, X. Dimitriou and N. Papanastassiou, Schur lemma and limit
theorems in lattice groups with respect to filters, Math. Slovaca, 62(6)
(2012), 1145–1166.

[22] A. Boccuto, X. Dimitriou and N. Papanastassiou, Uniform boundedness
principle, Banach-Steinhaus and approximation theorems for filter con-
vergence in Riesz spaces, Proceedings of International Conference on
Topology and its Applications ICTA 2011, Cambridge Sci. Publ. (2012),
45–58.

[23] A. Boccuto, X. Dimitriou and N. Papanastassiou, Ideal convergence and
divergence of nets in (`)-groups, Czech. Math. J., 62(137) (2012), 1073–
1083.

[24] A. Boccuto, X. Dimitriou and N. Papanastassiou, Schur and matrix theo-
rems with respect to I-convergence, Proceedings of the 13th PanHellenic
Conference on Mathematical Analysis held in Ioannina 28-29 May 2010
(2014), in press.

[25] A. Boccuto, X. Dimitriou, N. Papanastassiou and W. Wilczyński, Ideal
exhaustiveness, continuity and (α)-convergence for lattice group-valued
functions, Int. J. Pure Appl. Math., 70(2) (2011), 211–227.
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