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DIRECTIONAL LOWER POROSITY

Abstract

We investigate differences between upper and lower porosity. In finite
dimensional Banach spaces every upper porous set is directionally upper
porous. We show the situation is very different for lower porous sets;
there exists a lower porous set in R2 which is not even a countable union
of directionally lower porous sets.

1 Introduction

There are two main types of porosity of sets in metric spaces. A set is upper
(lower) porous if for each point of the set there are nearby holes in the set, of
radius proportional to their distance away, at arbitrarily small (all sufficiently
small) scales. A set is σ-upper (lower) porous if it is a countable union of
upper (lower) porous sets.

Despite the similarity of the definitions, upper and lower porous sets can
behave very differently; in any complete metric space with no isolated points,
there exists a closed set which is upper porous but not σ-lower porous (Remark
2.8(ii) [1]).

Upper porosity is often used to estimate the size of exceptional sets arising
in differentiation theory or other areas of classical analysis. Proving an excep-
tional set is (σ-)upper porous often gives a stronger result than merely showing
it is small in the sense of category or measure. Indeed, in any complete metric
space with no isolated points, there exists a closed nowhere dense set which
is not σ-upper porous [2]. Further, in Rn, there exists a closed nowhere dense
set of Lebesgue measure zero which is not σ-upper porous [3].
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The investigation of σ-upper porous sets was started by Dolženko [4] in
1967. He proved that particular exceptional sets arising in the theory of cluster
sets are σ-upper porous. One of the first applications of σ-upper porous sets to
differentiation theory was in the study of the symmetric derivative. Suppose
f : R→ R is continuous at a dense set of points. Then, except at a set of points
which is σ-upper porous, the upper symmetric derivative is the maximum of
the left upper and right upper Dini derivatives [5]. This then implies the set
of points at which f is symmetrically differentiable but not differentiable is
σ-upper porous.

Lower porosity is perhaps best known for its implications for the Hausdorff
dimension of a set. For example, it is known that if a set in Rn is lower porous
and the size of holes is close to maximal then the Hausdorff dimension of the set
can be only slightly above n − 1 [6]. Actually a notion called mean porosity,
where holes appear on some fixed proportion of scales, already gives some
information about dimension [7]. However, as pointed out by Zaj́ıček, lower
porosity also has some applications in differentiation theory. For example,
suppose X is an Asplund space and f : X → R is a continuous convex function.
Then it follows from results in [8] that the set of points where f is not Fréchet
differentiable is σ-lower porous.

The survey papers [1] and [3] discuss many more applications of upper and
lower porosity. Since proving an exceptional set is (σ-)lower porous, rather
than (σ-)upper porous, gives a stronger result, we would like to understand
what properties of upper porosity which are useful in this context remain valid
for lower porosity. In particular, we investigate the relation between porosity
and directional porosity.

A set in a Banach space is called directionally upper/lower porous if at
each point of the set the corresponding holes lie in a fixed direction. Direc-
tional lower porosity (also called directed porosity) has applications to limits
of conformal iterated function systems and singular integrals [9]. In finite di-
mensional Banach spaces compactness of the unit sphere implies every upper
porous set is directionally upper porous. We show the situation is very differ-
ent for lower porous sets; there exists a lower porous set in R2 which is not
even a countable union of directionally lower porous sets.

2 Basic Notions

We now give relevant definitions and establish a result we will use to prove a
set is not a countable union of directionally lower porous sets.

If x is a point in a metric space and r > 0 we denote by B(x, r) the open
ball of centre x and radius r.
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Definition 2.1. Let M be a metric space. We say P ⊂M is lower porous at
x ∈ P if there exists ρ > 0 and r0 > 0 such that for every 0 < r < r0 there
exists y ∈M with d(x, y) < r such that

B(y, ρr) ∩ P = ∅.

Let X be a Banach space. We say P ⊂ X is lower porous at x ∈ P in
direction v ∈ X if the points y in the above definition can be chosen on the
line through x in direction v.

We say P is (directionally) lower porous if it is lower porous at each of its
points (in some direction).

We say a set is σ-(directionally) lower porous if it is a countable union of
(directionally) lower porous sets.

We will informally refer to the balls B(y, ρr) in Definition 2.1 as holes in
P . Note by replacing ‘for every 0 < r < r0’ in Definition 2.1 with ‘there exists
arbitrarily small 0 < r < r0’ one defines the corresponding notions of upper
porosity.

While it can be difficult to prove a set is not σ-(directionally) upper porous
the situation for lower porosity is simpler. Variants of the following lemma
and proposition are stated in a survey paper by Zaj́ıček (Proposition 2.5,
Proposition 2.6 [1]) for lower porous sets in metric spaces. We reformulate
them for directionally lower porous sets in separable Banach spaces. The
proofs are almost the same.

Lemma 2.2. Let A be a σ-directionally lower porous subset of a separable
Banach space X. Then A can be covered by countably many closed directionally
lower porous sets.

Proof. It is easy to see one can write A =
⋃∞

n=1 Pn where each set Pn has
the following property for some fixed vn ∈ X, ρn > 0 and rn > 0:

∀x ∈ Pn ∀ 0 < r < rn ∃ − r < t < r : B(x+ tvn, ρnr) ∩ Pn = ∅.

One can show by an approximation argument that the sets Pn are directionally
lower porous (possibly with slightly smaller holes). Since A ⊂

⋃∞
n=1 Pn we see

A can be covered by countably many closed directionally lower porous sets.

Proposition 2.3. Let X be a separable Banach space and let F be a closed
subset of X. Suppose there exists A ⊂ F which is dense in F such that F
is not directionally lower porous (in X) at any point of A. Then F is not
σ-directionally lower porous.
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Proof. Suppose F is σ-directionally lower porous. Then by Lemma 2.2 we
can write F ⊂

⋃∞
n=1 Pn where each set Pn is closed and directionally lower

porous.
Since F is complete, by Baire’s theorem one of the sets PN cannot be

nowhere dense in F . Since the set PN is closed it follows there is an open set
U ⊂ X such that ∅ 6= U ∩ F ⊂ PN .

Now choose y ∈ A ∩ U . Since PN is directionally lower porous it follows
that there are holes close to y, in a fixed direction and at all sufficiently small
scales, which avoid PN . Since U ∩ F ⊂ PN it follows, on all sufficiently small
scales, these holes avoid F also. This implies F is directionally lower porous
at y which contradicts y ∈ A.

3 Construction of the Lower Porous Set

We now construct a set in R2 which is lower porous but not σ-directionally
lower porous.

Suppose A ⊂ R2 and x ∈ R2. Then ∂A denotes the boundary of A, A
denotes the closure of A, and ‖x‖ is the Euclidean norm of x. If A is non
empty we also define,

d(x,A) = inf{‖x− y‖ : y ∈ A}

and, for r > 0,

B(A, r) = {x ∈ R2 : d(x,A) < r}.

Let B(∅, r) = ∅.
If v ∈ R2 we denote by (v1, v2) the coordinates of v and let v⊥ = (−v2, v1)

be the anticlockwise rotation of v through a right angle.
The lower porous set will be constructed by removing neighbourhoods of

lines in different directions. We now define an appropriate sequence of direc-
tions and give the details of the construction.

Definition 3.1. Fix a sequence (vn)∞n=1 ⊂ S1 = {v ∈ R2 : ‖v‖ = 1} with the
following properties:

• The set D = {vn : n ∈ N} is dense in S1.

• The sequence (vn)∞n=1 contains arbitrarily long strings of each of its
terms. More precisely, for each v ∈ D and N ≥ 1 there exists n ≥ N
such that

vn+1 = vn+2 = . . . = vn+N = v.
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Definition 3.2. For n ∈ N and k ∈ Z let Lk
n denote the line in direction vn

translated by the vector (k/26n)v⊥n from the origin.
We define H0 = ∅ and, for n ≥ 1,

Cn =

∞⋃
k=−∞

Lk
n \B(Hn−1, 1/2

6n),

Hn = Hn−1 ∪
⋃

x∈Cn

B(x, 1/26(n+1)).

Finally we define

H =

∞⋃
n=1

Hn

and
P = R2 \H.

Intuitively P corresponds to a construction similar to that of the Cantor
set in which the points removed are close to lines which rotate throughout the
construction. At each stage of the construction we take care not to remove
points too close to those previously removed.

The set P should be lower porous because every point of P will see a nearby
line with removed points at every scale.

At many points P should not be directionally lower porous because, for
each direction, there are arbitrarily long sequences of scales in which holes are
constructed only centred on well separated lines in that direction.

We now prove formally that P is lower porous but not σ-directionally lower
porous.

4 The Set P is Lower Porous

To show P is lower porous we show that, for n ≥ 1, each point of P is relatively
close to ∂Hn and then that close to ∂Hn there is a large ball which is disjoint
from P . We now prove several lemmas which make this argument precise.

Lemma 4.1. The sequence of sets ∂Hn is increasing and contained inside P .
In particular, P 6= ∅.

Proof. Suppose x ∈ ∂Hn. Then every neighbourhood of x meets Hn and
hence, since Hn ⊂ Hn+1, every neighbourhood of x meets Hn+1. Since
d(x,Hn+1 \Hn) > 0 and every neighbourhood of x meets R2 \Hn it follows
that every neighbourhood of x meets R2 \Hn+1. Hence x ∈ ∂Hn+1.
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If x ∈ ∂Hn for some n ≥ 1 then x /∈ Hm for any m ≥ 1. Consequently
x ∈ P .

Lemma 4.2. Suppose x /∈ Hn. Then there exists a point z ∈ ∂Hn such that
‖x− z‖ < 1/26n−1.

Proof. There exists y ∈
⋃∞

k=−∞ Lk
n with ‖x− y‖ ≤ 1/26n+1.

If y /∈ B(Hn−1, 1/2
6n) then B(y, 1/26(n+1)) ⊂ Hn and there is z ∈ ∂Hn

with ‖y − z‖ = 1/26(n+1). In particular z ∈ ∂Hn and ‖x− z‖ < 1/26n.
If y ∈ B(Hn−1, 1/2

6n) \ Hn−1 it is clear there exists z ∈ ∂Hn−1 with
‖y − z‖ < 1/26n. Hence, by Lemma 4.1, z ∈ ∂Hn and ‖x− z‖ < 1/26n−1.

If y ∈ Hn−1 then, since x /∈ Hn−1, there is z ∈ ∂Hn−1 ⊂ ∂Hn on the line
segment joining x and y. In this case ‖x− z‖ ≤ 1/26n+1.

Lemma 4.3. Suppose x ∈ Hn. Then there exists a point y ∈ R2 such that
‖x− y‖ ≤ 1/26(n+1) and B(y, 1/26(n+1)) ⊂ Hn.

Proof. The lemma follows from the fact Hn is a union of balls of radii at
least 1/26(n+1).

We now combine the previous lemmas to show P is lower porous.

Theorem 4.4. The set P is lower porous.

Proof. Let x ∈ P and n ≥ 1. Then x /∈ Hn so by Lemma 4.2 there exists
y ∈ ∂Hn with ‖x− y‖ < 1/26n−1.

By Lemma 4.3 there is z ∈ R2 with ‖y − z‖ ≤ 1/26(n+1) such that
B(z, 1/26(n+1)) ⊂ Hn.

It follows ‖x− z‖ < 1/26n−2 and B(z, 1/26(n+1)) ∩ P = ∅. Thus for each
n ≥ 1 there is a hole relatively close to x of radius 1/26(n+1).

For sufficiently small r > 0 there is n ≥ 1 such that 1/26(n+1) ≤ r ≤ 1/26n.
Hence for any sufficiently small scale we can find a relatively large hole which
is close to x. It follows P is lower porous at x.

5 The set P is not σ-Directionally Lower Porous

Notice P is a closed set. To show P is not σ-directionally lower porous it
suffices, by Proposition 2.3, to show P is not directionally lower porous at
points of a dense set. We now construct a dense set consisting of points with
useful properties and then show P is not lower porous at such points.

Given s ≥ 1 define

As = {x ∈ P : B(x, 1/26s+5) ∩B(Hs, 1/26(s+1)) = ∅}.
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Lemma 5.1. Suppose w ∈ P and n ≥ 1. Then for all sufficiently large s ≥ 1
there exists z ∈ As with ‖w − z‖ < 1/26(n−1).

Proof. Since w ∈ P implies w /∈ Hn we can find, using Lemma 4.2, x ∈ ∂Hn

with ‖w − x‖ < 1/26n−1. Choose 1 ≤ m ≤ n such that x ∈ ∂Hm \ ∂Hm−1.

By moving x slightly if necessary we may assume that points in Hm that are
sufficiently close to x lie in a half plane whose boundary meets x. This implies
that, for each sufficiently large s, we can find y ∈ R2 with ‖x− y‖ < 1/26s+2

such that

B(y, 1/26s+3) ∩Hm = ∅.

By Definition 3.2 we see, if m < s,

d(x,Hs \Hm) ≥ 1/26s − 1/26(s+1) ≥ 1/26s+1.

This inequality implies

B(y, 1/26s+3) ∩Hs = ∅.

Clearly then

B(y, 1/26s+4) ∩B(Hs, 1/26(s+1)) = ∅.

Using Definition 3.2 we can find z ∈ ∂Hs+1 ⊂ P with ‖y − z‖ ≤ 1/26(s+1). It
follows

B(z, 1/26s+5) ∩B(Hs, 1/26(s+1)) = ∅

so z ∈ As.

By the triangle inequality we observe ‖w − z‖ < 1/26(n−1).

For v ∈ D and N ≥ 1, let Gv,N be the set of x for which there is n ≥ N
with x ∈ An and vn+1 = . . . = vn+N = v.

Proposition 5.2. For each v ∈ D and N ≥ 1 the set Gv,N is dense and open
in P .

Proof. For each n ≥ 1 the set An is open; henceGv,N , as a union of open sets,
is open. That Gv,N is dense follows from Lemma 5.1 because, by Definition
3.1, there is arbitrarily large n ≥ N such that vn+1 = . . . = vn+N = v.

Proposition 5.3. Suppose v ∈ D. The set P is not directionally lower porous
in direction v at points of the set

⋂∞
N=1Gv,N .
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Proof. To simplify notation suppose, without loss of generality, v = (0, 1).
The proof for the general case is the same up to a rotation.

Suppose x ∈
⋂∞

N=1Gv,N and P is directionally lower porous at x in direc-
tion v.

By Definition 2.1 there exists ρ > 0 and r0 > 0 such that for every 0 <
r < r0 there exists −r < t < r such that

B(x+ tv, ρr) ∩ P = ∅. (5.1)

Choose N such that 1/26N < r0. Then, as x ∈ Gv,N , there exists n ≥ N
such that vn+1 = . . . = vn+N = v and x ∈ An.

We now show if t is relatively small then x + tv /∈ Hn+N and hence there
are points of P close to x+ tv. To do this we analyse the structure of Hn+N

close to x.
Choose s1 < 0 < s2, with |s1| and |s2| minimal, such that

x+ (s1, 0) ∈ Lk1
n+1

and
x+ (s2, 0) ∈ Lk2

n+1

for some k1, k2 ∈ Z.
Notice, by Definition 3.2, it follows |s1|, |s2| ≤ 1/26(n+1).
Hence if

R = [x1 + s1, x1 + s2]× [x2 − 1/26(n+1), x2 + 1/26(n+1)]

then
R ⊂ B(x, 1/26n+5)

so, since x ∈ An,

R ∩B(Hn, 1/26(n+1)) = ∅.

The following claim gives information about Hn+N which we will need to
finish the proof. Note that the structure of Hm+1 ∩ R depends on Hm \ R
in addition to Hm ∩ R. We will only use the information in the first part of
the claim but adding the second point allows us to prove the claim easily by
induction.

Claim 5.4. Fix n+ 1 ≤ m ≤ n+N . Then the following statements hold:

• If y, y + tv ∈ R then y ∈ Hm if and only if y + tv ∈ Hm.

• If z ∈ Hm \R and z + tv ∈ R \Hm for some t ∈ R then

d(z,R) ≥ 1/26m − 1/26(m+1).
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Proof of claim. Notice, by Definition 3.2 and the definition of R, that if
y ∈ Hn+N with x1 + s1 ≤ y1 ≤ x1 + s2 then y ∈ B(z, 1/26(m+1)) for some
n+ 1 ≤ m ≤ n+N and z ∈ Cm on a line Lk

m that meets R. Thus it suffices
to analyse which points on lines Lk

m meeting R lie in Cm.
We prove the claim by induction with respect to m.
Let m = n+ 1. In this case, by the definition of R,

Hm ∩R =
(
B(Lk1

n+1, 1/2
6(n+2)) ∪B(Lk2

n+1, 1/2
6(n+2))

)
∩R

so the first part of the claim is clearly true. It follows from Definition 3.2
and the definition of R that there are no points z ∈ Hn+1 \Hn satisfying the
assumptions in the second part of the claim. Since

R ∩B(Hn, 1/26(n+1)) = ∅

it follows the second part of the claim holds for m = n+ 1.
Suppose the claim holds for some n+ 1 ≤ m ≤ n+N −1; we show it holds

with m replaced by m+ 1. First notice vm+1 = v. Suppose x+ (s, 0) ∈ Lk
m+1

for some s1 < s < s2 and k ∈ Z.
If x+(s, 0) ∈ Hm then, by the first part of the claim for m, x+(s, t) ∈ Hm

for all |t| ≤ 1/26(n+1). Hence if x+ (s, t) ∈ Cm+1 then

|t| ≥ 1/26(n+1) + 1/26(m+1).

Consequently if z ∈ B(x+ (s, t), 1/26(m+2)) ⊂ Hm+1 then

d(z,R) ≥ 1/26(m+1) − 1/26(m+2).

On the other hand, suppose x+ (s, 0) /∈ Hm. Then it follows from the fact
x+ (s, 0) ∈ Lk

m+1 and Definition 3.2 that

d(x+ (s, 0), Hm) ≥ 1/26(m+1).

Further, using both parts of the claim for m,

d(x+ (s, t), Hm) ≥ 1/26(m+1)

for all |t| ≤ 1/26(n+1). Hence x+ (s, t) ∈ Cm+1 and

B(x+ (s, t), 1/26(m+2)) ⊂ Hm+1

for all |t| ≤ 1/26(n+1).
The above analysis of Hm+1 \Hm, together with the validity of the claim

for m, implies the claim holds for m+ 1.
Hence by induction the claim holds for all n+ 1 ≤ m ≤ n+N .
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Suppose |t| ≤ 1/26(n+1). Then, since x /∈ Hn+N , applying the claim with
m = n+N gives x+ tv /∈ Hn+N . Applying Lemma 4.2 shows there is y ∈ P
such that

‖x+ tv − y‖ < 1/26(n+N)−1.

That is,
B(x+ tv, 1/26(n+N)−1) ∩ P 6= ∅.

Hence, comparing this with equation (5.1),

ρ/26(n+1) ≤ 1/26(n+N)−1.

Since N could be chosen to be arbitrarily large this contradicts the assumption
ρ > 0. Hence P cannot be directionally lower porous at x in the direction
v.

Theorem 5.5. The set P is not σ-directionally lower porous.

Proof. The set

G =
⋂
v∈D

∞⋂
N=1

Gv,N

is, by Proposition 5.2, a countable intersection of dense open subsets of the
closed set P . Hence, by Baire’s theorem, G is dense in P so it suffices, by
Proposition 2.3, to see P is not directionally lower porous at any point of G.

Suppose x ∈ G. Then, by Proposition 5.3, P is not directionally lower
porous at x in any direction belonging to D. Since D is a dense set of directions
it follows, by an easy approximation argument, that P is not directionally lower
porous at x in any direction.
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