
INROADS Real Analysis Exchange
Vol. 38(2), 2012/2013, pp. 431–444

Frédéric Mynard, Mathematical Sciences, Georgia Southern University, PO
BOX 8093, Statesboro, GA 30460, U.S.A. email:
fmynard@georgiasouthern.edu

A CONVERGENCE-THEORETIC
VIEWPOINT ON THE ARZELÀ-ASCOLI

THEOREM

Abstract

This is an expository note, hopefully accessible to students, on how
continuous convergence and convergence-theroretic techniques can pro-
vide insight on the classical Arzelà-Ascoli theorem.

1 Introduction

In its original form, the Ascoli theorem provides conditions for a sequence
(fn)n∈N of continuous real-valued functions on a closed interval [a, b] to have
a uniformly convergent subsequence. To this end, Arzelà and Ascoli inde-
pendently introduced the notion of an equicontinuous sequence: the sequence
(fn)n∈N is equicontinuous at x ∈ [a, b] if for every ε > 0 there is δ > 0 such
that

|x− y| < δ =⇒ |fn(x)− fn(y)| < ε

for every n ∈ N, and (fn)n∈N is called equicontinuous if it is equicontinuous
at every x in [a, b]. The sequence is uniformly bounded if there is an M such
that |fn(x)| < M for all x ∈ [a, b] and all n ∈ N. The combination of both
conditions yields the desired property:

Theorem 1 (Ascoli). [3] If a sequence of functions fn : [a, b]→ R is equicon-
tinuous and uniformly bounded, then it has a uniformly convergent subse-
quence.
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In other words, under these conditions, the set {fn : n ∈ N} has se-
quentially compact closure in the space C([a, b],R) of real-valued continuous
functions on [a, b], endowed with the topology of uniform convergence. Since
C([a, b],R) is metrizable in this topology (by the uniform norm), sequential
compactness and compactness are equivalent. Arzelà extended Ascoli’s theo-
rem to general sets of functions [2], obtaining what in modern terms would be
called a criterion of compactness of a set of real-valued continuous functions.
Therefore, the abstract Arzelà-Ascoli quest is to find sufficient (and hopefully,
also necessary) conditions on subsets H of a space C(X,Y ) of continuous func-
tions between two topological spaces X and Y to have compact closure, that
is, to be relatively compact, for some appropriate analogue of the topology of
uniform convergence. The literature is rich in results of that type. Theorems
of the Arzelà-Ascoli type have become an ubiquitous and efficient tool in a
variety of contexts. As such, the theorem, under one form or another, finds its
place in standard Topology courses, as well as standard Functional Analysis
courses. It is often stated only for continuous (sometimes only real-valued)
functions over a compact metric space X, e.g., [16], or a compact topological
space, e.g., [8], [12], [15]. While [9] provides a more comprehensive and far
reaching treatement of Arzelà-Ascoli theorems, the following is probably the
most general form that can be easily found from several textbooks (e.g., [11,
Theorem 47.1]):

Theorem 2. Let X be a topological space and Y be a metric space. If
H ⊆ C(X,Y ) is equicontinuous and pointwise bounded then H is relatively
compact in Ck(X,Y ), that is, in C(X,Y ) endowed with the topology of uni-
form convergence on compact subsets of X. Moreover, if X is locally compact,
the converse is true.

The setting of a metric range space allows a straightforward extension of
the notion of equicontinuity (1). In absence of compactness, the topology of
uniform convergence on compact subsets of X turns out to be the relevant
analogue of the topology of uniform convergence, and pointwise boundedness
(where H is pointwise bounded if for each x ∈ X the set {h(x) : h ∈ H} is
bounded in Y ) is the needed analogue of uniform boundedness. A full char-
acterization is obtained among locally compact spaces. This is not too much
of a restriction if your idea of a topological space is a manifold. However, if

1by declaring H ⊆ C(X,Y ) equicontinuous at x if for every positive ε there is a neigh-
borhood U of x such that

y ∈ U, f ∈ H =⇒ d(f(y), f(x)) < ε.
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your favorite topological spaces are topological vector spaces, local compact-
ness fails as soon as you leave the finite dimensional case (e.g., [15, Theorem
1.22]). Regardless of your preference, it should be clear that the natural con-
text to treat the question of characterizing (relative) compactness of a set of
continuous functions should be the most natural setting to consider continuity
and compactness. That would lead most people to investigate this question in
the realm of topological spaces. Kelley [9] provides the most complete, and in
my opinion most lucid, exposition of results of the Arzelà-Ascoli type in this
context.

It is however far more natural to define continuity as preservation of limits
than in the usual topological way. As for compactness, the obscure definition
in terms of open covers becomes more transparent when interpreted in terms
of convergence: every ultrafilter converges. This viewpoint also proves often
more efficient, as a quick comparison of proofs of Tychonoff’s theorem with or
without ultrafilters shows. The purpose of this expository note is to show that
convergence spaces, in which the notion of limit is primal, offers an ideal con-
text for such investigations, providing surprisingly easy proofs while delivering
more general results than the classical ones.

As a disclaimer, I should mention that the convergence-theoretic viewpoint
on Arzelà-Ascoli theorems is far from a novel idea, and has been explored
before, in more details than in this note, e.g., [13], [14]. The results stated
here are known, but the proofs, in particular the use of (2.2) in this context,
are original. In particular, with this technique, the usual need for Tychonoff’s
theorem is bypassed.

2 Preliminaries: convergence spaces

2.1 Convergent objects: filters

Most students, as well as many professional mathematicians, associate conver-
gence with convergence of sequences. Convergent sequences, however, do not
suffice to describe a topological space, as is shown in most topology textbooks.
To recover all the information encoded in a topology in terms of the conver-
gent objects, generalizations of sequences have to be considered: either nets
or filters. A filter F on a set X is a family of non-empty subsets of X that
is closed under supersets (that is, B ∈ F whenever A ∈ F and A ⊆ B) and
under finite intersections (that is, A ∩ B ∈ F whenever A ∈ F and B ∈ F).
The only family of subsets of X that is closed under supersets and contains
the empty set is the power set of X, that we will also refer to as the degenerate
filter on X. A family B of non-empty subsets of X with the property that
there is B ∈ B with B ⊆ B1 ∩ B2 whenever B1 and B2 are in B is called a
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filter-base, and B↑ := {A ⊆ X : ∃B ∈ B, B ⊆ A} is the filter generated by B.
Hence, filters will be usually described in terms of a filter-base, even though a
filter may have many different filter-bases. In fact, you may think of filters as
equivalence classes of filter-bases modulo ∼, where A ∼ B if A↑ = B↑. Con-
sider for instance the collection N (x) of neighborhoods of a given point x of a
topological space X, which is a filter. In many cases, it is described by giving
one of its filter-bases. For example, consider the neighborhood filter N (0) of
the origin in the plane with its usual topology. Of course, there are many
different metrics inducing this topology. For any one of these metrics, the
collection of balls centered at the origin forms a filter-base for N (0). Hence,
considering Euclidian balls or "square" balls centered at 0 does not change
what characterizes the topology at 0 : the filter N (0).

As already mentioned, filters can also be thought of as generalized se-
quences. Indeed, to a sequence (xn)n∈N of points of X we can associate a
filter

F(xn) := {{xn : n ≥ k} : k ∈ N}↑ .

From the viewpoint of convergence in a topological space, it is not the sequence
(xn)n∈N that matters, but the filter F(xn). For instance, changing a finite
number of terms in a sequence yields a different sequence, yet this affects
neither convergence nor the filter associated to the sequence. In fact, the
usual definition of convergence of a sequence (xn)n∈N to a point x, that is,
that for every neighborhood V of x there is k ∈ N such that xn ∈ V for every
n ≥ k, is a statement about the filters N (x) and F(xn): every element V of
N (x) contains an element {xn : n ≥ k} of F(xn). Since filters are closed under
supersets, this means that

(xn)n∈N → x⇐⇒ F(xn) ⊇ N (x).

More generally, a filter F is said to converge to x in a topological space X
if F ⊇ N (x) and this convergence completely determines the topology.

The set FX of filters on X is partially ordered by inclusion. Every family
(Fα)α∈I in FX has a greatest lower bound, which is

⋂
α∈I
Fα (2). In contrast,

if two filters F and G have a least upper bound F ∨ G in FX, then F ∩ G ∈
F ∨ G is necessarily non-empty, for each F ∈ F and each G ∈ G, because
F ∨ G is a filter. Moreover, if F ∩ G 6= ∅ whenever F ∈ F and G ∈ G–a

2and {
⋃
α∈I

Fα : ∀α ∈ I, Fα ∈ Fα} is a filter-base for
⋂
α∈I
Fα. Indeed F ∈ Fα for each

α ∈ I if and only if, for each α ∈ I, there is Fα ∈ Fα such that Fα ⊆ F, because each Fα
is closed under supersets. Hence F ∈

⋂
α∈I
Fα if

⋃
α∈I

Fα ⊆ F for a selection of sets Fα ∈ Fα,

for each α ∈ I.
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condition that we will refer to as "F and G mesh", or in symbols, F#G–then
{F ∩G : F ∈ F , G ∈ G} is a filter-base for a filter that contains both F and
G. Hence it generates F ∨ G.

If (Fα)α∈I is a chain in FX then
⋃
α∈I
Fα is a filter (hence the least upper

bound of (Fα)α∈I), so that, by Zorn’s Lemma, FX has maximal elements
called ultrafilters. In fact, every filter is contained in an ultrafilter. Let us
denote by UX the set of ultrafilters on X and U(F) the set of ultrafilters
containing F .

2.2 Calculus of relations

One advantage (among many) of describing convergence in terms of filters
rather than nets (3) is that a notion of product filter is readily available, and
well behaved in the sense of (2.2) below. If F ∈ FX and G ∈ FY then

F × G := {F ×G : F ∈ F , G ∈ G}↑

is a filter on X × Y . A subset R of X × Y can be seen as a relation R from X
to Y or R− from Y to X. Defining as usual Rx := {y ∈ Y : (x, y) ∈ R} and
RF :=

⋃
x∈F

Rx, it is immediate that if F ⊆ X, G ⊆ Y and R ⊆ X × Y then

(F ×G)#R⇐⇒ RF#G⇐⇒ F#R−G,

where # means that the two sets have non-empty intersection. Therefore if
F ∈ FX and G ∈ FY and R ⊆ X × Y then

(F × G)#R⇐⇒ R [F ] #G ⇐⇒ F#R− [G] , (2.1)

where R [F ] is the (possibly degenerate) filter generated on Y by {RF : F ∈ F}
and R− [G] is defined similarly. If now R ∈ F(X × Y ), each of its elements

3A net on X is a map N : D → X where D is a directed set, that is, a partially ordered
set in which for each d1, d2 in D, there is d ∈ D such that d ≥ d1 and d ≥ d2. A net
N on X converges to x ∈ X if for every neighborhood V of x there is d0 ∈ D such that
{N(d) : d ≥ d0} ⊆ V .

Note that a directed partial order ≥ on D defines a filter FD on D generated by the
filter-base {{d ∈ D : d ≥ d0} : d0 ∈ D} and that conversely, a filter-base F := {Fd : d ∈ D}
indexed by D defines a directed partial order on D via

d1 ≤ d2 ⇐⇒ Fd2 ⊆ Fd1.

The convergence of the net N is nothing but the convergence of the image filter N(FD).
Hence nets can be thought of as images of filters. Yet, from the viewpoint of convergence,
what matters is the filter and not the many nets for which N(FD) coincide with this filter.
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can be seen as a relation, and we can consider the (possibly degenerate) filter
R [F ] := {RF : R ∈ R, F ∈ F}↑. Clearly,

(F × G)#R ⇐⇒ R [F ] #G ⇐⇒ F#R− [G] . (2.2)

We will see that we need little more than this very simple set-theoretic ob-
servation to prove one of the directions in our characterization of relatively
compact subsets of function spaces below, which generalizes Theorem 2.

2.3 Convergence and pseudotopology

A convergence ξ on a set X is a relation between X and the set FX of filters
on X, denoted x ∈ limξ F if (x,F) ∈ ξ, such that limF ⊆ limG whenever
F ⊆ G. A convergence is centered if x ∈ lim{x}↑ for every x ∈ X. A centered
convergence such that

limF =
⋂

U∈U(F)

limU

for every F ∈ FX is a pseudotopology, as introduced by Gustave Choquet [5].
Unless stated otherwise, all convergences will be assumed centered (4). A pair
(X, ξ) where ξ is a convergence is called a convergence space. We may denote
a convergence space simply by X when no ambiguity can arise.

Note that a topology on X induces a convergence via

x ∈ limF ⇐⇒ F ⊇ N (x),

so that topologies can be considered as convergences. In fact, each topology
is a pseudotopology. On the other hand, non topological convergences arise
naturally in a variety of context. For instance, the convergence of ultrafilters
on a topological space, say on the real line, is clearly non-topological because if
(Uα)α∈I is a collection of ultrafilters converging to 0, the filter

⋂
α∈I
Uα is not an

ultrafilter and therefore does not converge. Hence, for this convergence, there
is no minimal filter converging to 0, and the convergence is not topological.

A function f : (X, ξ)→ (Y, σ) is continuous if

x ∈ limξ F =⇒ f(x) ∈ limσ f [F ] ,

where f [F ] := {f(F ) : F ∈ F}↑. Note that if the convergences ξ and σ happen
to be topologies, continuity coincides with the usual topological notion (5).

4In fact, the condition that x ∈ lim{x}↑ for every x ∈ X is usually included in the
definition of a convergence.

5because continuity of f at x in the topological sense translates into f
[
Nξ(x)

]
⊇

Nσ(f(x)), that is, f(x) ∈ limσ f
[
Nξ(x)

]
.
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If ξ and τ are two convergences on the same set, we say that ξ is finer
than τ (or that τ is coarser than ξ), in symbols ξ ≥ τ , if limξ F ⊆ limτ F for
every filter F . Of course, if ξ and τ are topologies, this partial order coincides
with the usual partial order on topologies. Induced convergence, quotient
convergence and product convergence are defined as usual via continuity. More
precisely, if A is a subset of a convergence space (X, ξ), the induced convergence
ξ|A is the coarsest convergence on A making the inclusion map i : A→ (X, ξ)
continuous. In other words, a ∈ limξ|A F if a ∈ limξ i [F ]. If f : (X, ξ) → Y
is onto, the quotient convergence fξ on Y is the finest convergence on Y
making f continuous. In other words, y ∈ limfξ F if there is a filter G on
X such that x ∈ limξ G, f(x) = y and F ⊇ f [G]. If (X, ξ) and (Y, σ) are
two convergence spaces, then the product convergence ξ × σ on X × Y is the
coarsest convergence on X × Y making each projection continuous. In other
words, (x, y) ∈ limξ×σ F if x ∈ limξ pX [F ] and y ∈ limσ pY [F ], where pX and
pY are the projection maps. The reader versed in the use of filters in topology
will note that if ξ and σ are topologies then ξ|A is nothing but the induced
topology, ξ × σ is the product topology, but fξ is not the quotient topology.

2.4 Separation

Recall that a topological space is regular if at each point, it admits a base of
neighborhood composed of closed sets. An analogue for convergences of the
topological closure is that of adherence. If A is a subset of a convergence space
X, let adhA :=

⋃
U∈U(A)

limU . More generally, the adherence of a filter F on X

is
adhF :=

⋃
U∈U(F)

limU .

Note that if the convergence is topological adhA is the usual topological
closure of A and adhF is the usual set of cluster points of F . In general
however, adhA may not be closed, that is, adh may not be idempotent. To
extend the definition of regularity from topological to convergence spaces,
consider for each filter F the filter

adh\F := {adhF : F ∈ F}↑.

A convergence space is regular if limF ⊆ lim(adh\F) for each filter F . It
should be a good exercise for the reader to verify that a topology is regular in
that sense exactly if it is regular in the usual topological sense.

On the other hand, we extend the definition of a Hausdorff space from
topological to convergence spaces by observing that a topological space is
Hausdorff if each filter has at most one limit point.
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2.5 Function space structures

The most important reason to consider convergence structures is the lack of
a well behaved canonical topology on function spaces. More precisely, if X
and Y are two topological spaces, C(X,Y ) denotes the set of continuous maps
from X to Y . Consider now the evaluation map

e = 〈·, ·〉 : X × C(X,Y )→ Y

defined by e(x, f) = 〈x, f〉 = f(x). Of course, the question of continuity of
this coupling depends on the structure on C(X,Y ). Several classically used
function space topologies can be defined in terms of 〈·, ·〉. Indeed, the topology
of pointwise convergence is the coarsest convergence (and also the coarsest
topology) on C(X,Y ) that makes the point-evaluation map 〈x, ·〉 continuous,
for each x ∈ X. Similarly, the compact-open topology, also called topology
of uniform convergence on compact subsets, is the coarsest convergence (or
topology) on C(X,Y ) that makes the restriction of 〈·, ·〉 to K ×C(X,Y ) con-
tinuous, for each compact subset K of X. The continuous convergence is the
coarsest convergence on C(X,Y ) making 〈·, ·〉 (jointly) continuous.

There is, in general, no coarsest topology on C(X,Y ) making 〈·, ·〉 con-
tinuous, which is the reason for the use of a range of ad-hoc function space
topologies depending on the context. In contrast, continuous convergence pro-
vides the canonical function space structure in the realm of convergences. I
hope to convince the reader that it should also be considered the canonical
structure when X and Y are topological spaces. We will denote by Cp(X,Y ),
Ck(X,Y ) and Cc(X,Y ) respectively the set C(X,Y ) endowed with the topol-
ogy of pointwise convergence, the compact-open topology and the continuous
convergence respectively and by limp, limk and limc the corresponding limit
operators. By definition Cp(X,Y ) ≤ Ck(X,Y ) ≤ Cc(X,Y ) and

f ∈ limc F ⇐⇒ ∀x ∈ X, (x ∈ limX G =⇒ f(x) ∈ limY < G,F >) .

Classical (and relatively easy) facts about continuous convergence that I
will leave without proofs (which can be found for instance in [4], [6]) include:

Theorem 3. 1. The map i : X → Cc(Cc(X,Y ), Y ) defined by i(x) = 〈x, ·〉
is continuous;

2. If Y is a pseudotopological space then so is Cc(X,Y );

3. If Y is regular (respectively Hausdorff) then so is Cc(X,Y );
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4. If Y is a convergence group or convergence vector space (6), so is Cc(X,Y );

5.
Cc(X × Y,Z) = Cc(Y,Cc(X,Z))

where equality stands for homeomorphism via the map associating to
f ∈ C(X × Y,Z) its companion map tf ∈ C(Y,Cc(X,Z)) defined by
tf(y)(x) = f(x, y).

Less straightforward yet classical is the following important fact:

Theorem 4. [1] Let X be a completely regular topological space. The following
are equivalent:

1. Cc(X,R) is topological;

2. Cc(X,R) = Ck(X,R);

3. X is locally compact.

Moreover, Theorem 4 above extends to C(X,Y ) where Y is also completely
regular.

A simple fact that belongs to folklore is that "continuous limits are continuous"–
a useful feature shared with uniform convergence. More precisely, we can con-
sider continuous convergence on the set Y X of all functions from X to Y , even
though it is then centered only at continuous functions. Nevertheless, we have:

Lemma 5. If Y is a regular convergence space, f ∈ Y X , F is a filter on Y X ,
and f ∈ limc F then f is continuous.

Proof. Let x0 ∈ limX G. We want to show that f(x0) ∈ limY f [G]. Since
F converges continuously to f , we have f(x0) ∈ limY 〈G,F〉. By regularity,
f(x0) ∈ limY adh\ 〈G,F〉 and f [G] ⊇ adh\ 〈G,F〉 because f(x) ∈ limY 〈x,F〉
for each x ∈ G ∈ G so that f(G) ⊆ adh 〈G,F 〉. Therefore, f(x0) ∈ limY f [G]
and f is continuous.

3 Arzelà-Ascoli

3.1 Interpreting equicontinuity and compactness

A classical interpretation of compactness of a topological space is that every
ultrafilter converges. This readily extends to convergence spaces. More pre-
cisely a subset K of a convergence space X is compact if limU ∩K 6= ∅ for

6A group (vector space) equipped with a convergence structure is a convergence group
(convergence vector space) if the convergence makes the group operation and inversion
continuous (if it is a convergence group and the convergence makes scalar multiplication
continuous).
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every ultrafilter U onX that containsK. Note that this viewpoint makes pseu-
dotopologies the natural setting to study compactness, because compactness
and pseudotopologies are both defined modulo the convergence of ultrafilters.

As for equicontinuity, in its classical formulation, it is a metric concept.
It is easily extended to the context of uniform spaces. However, since we are
aiming at a characterization of (relatively) compact collections of continuous
maps, we do not want to restrict ourselves to the case where Y is a uniform
space. This brings us to the concept of even continuity (e.g., [9]). If X and
Y are topological spaces, a subset H of C(X,Y ) is called evenly continuous
at x if for each y ∈ Y and each neighborhood U of y there is a neighborhood
V of x and a neighborhood W of y such that f(V ) ⊆ U whenever f(x) ∈ W
and f ∈ H. The collection H is evenly continuous if it is evenly continuous
at every x in X. It is a simple exercise in ε-cutting to see that when Y is a
metric (or a uniform) space, even continuity for the induced topology on Y is
implied by equicontinuity (e.g., [9, Theorem 22, p.237]). If the definition of
even continuity does not seem very palatable, it is because it is a statement
about filters. It becomes more transparent when rephrased in those terms:

Lemma 6. H ⊆ C(X,Y ) is evenly continuous at x if and only if for every
filter F on C(X,Y ) such that H ∈ F

y ∈ limY 〈x,F〉 , x ∈ limX G =⇒ y ∈ limY 〈G,F〉 . (3.1)

Proof. If H is evenly continuous, H ∈ F , y ∈ limY 〈x,F〉 and x ∈ limX G
then for each U ∈ NY (y), considerW ∈ NY (y) as in the definition of even con-
tinuity. There is F ∈ F such that F ⊆ H and 〈x, F 〉 ⊆W . By even continuity,
there is V ∈ NX(x) ⊆ G such that 〈V, F 〉 ⊆ U . Hence y ∈ limY 〈G,F〉.

Conversely, assume by contrapositive that there is U0 ∈ NY (y) for some
y ∈ Y such that for every neighborhood V of x and every neighborhood W of
y there is a map fV,W in H such that fV,W (x) ∈ W but fV,W (V ) " U0. For
each W ∈ NY (y), consider NW := {fV,P : V ∈ NX(x), P ∈ NY (y), P ⊆W}.
By definition, the collection {NW : W ∈ NY (y)} is a filter-base, and the
generated filter F satisfies y ∈ limY 〈x,F〉 but y /∈ limY 〈NX(x),F〉. Hence
there is a filter F containing H for which (3.1) fails.

Therefore, we extend the definition of even continuity to the case where X
and Y are convergence spaces by declaring H evenly continuous at x if (3.1)
is true for every filter F on C(X,Y ) such that H ∈ F . As an immediate
consequence, we have:

Corollary 7. If X and Y are convergence spaces, H ⊆ C(X,Y ) is evenly
continuous and H ∈ F then

f ∈ limp F =⇒ f ∈ limc F .
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In other words, the topology of pointwise convergence and the continuous con-
vergence coincide on H.

3.2 Arzelà-Ascoli for the continuous convergence

Theorem 8. Let X be a convergence space and Y be a regular convergence
space. If H ⊆ C(X,Y ) is evenly continuous and 〈x,H〉 is relatively compact
in Y for each x in X, then H is relatively compact in Cc(X,Y ).

Proof. Let U be an ultrafilter on C(X,Y ) containing H. We need to show
that limc U 6= ∅. Since 〈x,H〉 belongs to the ultrafilter 〈x,U〉 and 〈x,H〉 is
relatively compact, there is y(x) ∈ limY 〈x,U〉, for each x ∈ X. Therefore,
y(·) ∈ limY X U and H ∈ U so that y(·) ∈ limc U because of Corollary 7. In
view of Lemma 5, y(·) is continuous, which concludes the proof.

As for the converse of Theorem 8, we will obtain it using almost exclusively
the calculus of relations (2.2).

Theorem 9. Let X be a convergence space and Y be a Hausdorff pseudotopo-
logical space. If H is relatively compact in Cc(X,Y ) then 〈x,H〉 is relatively
compact in Y for each x in X and H is evenly continuous.

Proof. If H is (relatively) compact in Cc(X,Y ) then 〈x,H〉 is (relatively)
compact in Y for each x in X because each map 〈x, ·〉 is continuous and
therefore preserves (relative) compactness.

To show that H is evenly continuous, assume that H ∈ F , that y ∈
limY 〈x,F〉 and that x ∈ limX G. Since Y is pseudotopological, to show that
y ∈ limY 〈G,F〉 we only need to show that y ∈ limY W for each ultrafilter W
that contains 〈G,F〉. Note that W#e [G × F ]. By (2.1)

e− [W] # (G × F) ,

which, in view of (2.2) amounts to(
e− [W]

)
[G] #F .

In particular, the filters (e− [W]) [G] and F have a least upper bound H that
contains H. By relative compactness of H, there is an ultrafilter U finer than
H and a function f ∈ limc U . In particular, f(x) ∈ limY 〈x,U〉 and

〈x,U〉 ⊇ 〈x,H〉 ⊇ 〈x,F〉 ,

and y ∈ limY 〈x,F〉 so that y ∈ limY 〈x,U〉. As Y is Hausdorff, y = f(x).
Now, y = f(x) ∈ limY 〈G,U〉 because f ∈ limc U . Moreover,

U#
(
e− [W]

)
[G] ,
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so that, in view of (2.2),
e [U × G] #W.

As W is an ultrafilter, W ⊇ 〈G,U〉 and y ∈ limY W, which completes the
proof.

Corollary 10. If X is a convergence space and Y is a Hausdorff regular
pseudotopological space then a subset H of Cc(X,Y ) is relatively compact if
and only if 〈x,H〉 is relatively compact in Y for each x in X and H is evenly
continuous.

3.3 Topological corollaries

Note first that Theorem 8, while immediate once proper definitions are intro-
duced, significantly extends the first part of Theorem 2:

Corollary 11. Let X and Y be topological spaces. If Y is regular, H ⊆
C(X,Y ) is evenly continuous and 〈x,H〉 is relatively compact in Y for each
x ∈ X, then H is relatively compact in Cc(X,Y ) and therefore in Ck(X,Y ).

As an immediate consequence of Theorem 4 and Corollary 10, we obtain:

Theorem 12. Let X be a completely regular locally compact topological space
and let Y be completely regular. Then a subset H of Ck(X,Y ) is relatively
compact if and only if 〈x,H〉 is relatively compact in Y for each x in X and
H is evenly continuous.

The conclusion of Theorem 12 can be extended from locally compact to k-
spaces, that is, spaces in which a subset whose intersection with each compact
subset is closed is automatically closed. The class of k-spaces include both
first-countable and locally compact spaces. Note that a map f : X → Y
where Y is topological and X is a k-space is continuous if and only if f|K is
continuous for every compact subset K of X (e.g., [7, Theorem 3.3.21]). A
product of two k-spaces does not need to be a k-space, but a product of a
Hausdorff locally compact space and a k-space is a k-space ([10], [7, Theorem
3.3.27]).

Theorem 13. Let X be a k-space and let Y be a (Hausdorff) completely
regular topological space. Then a subset H of Ck(X,Y ) is relatively compact if
and only if 〈x,H〉 is relatively compact in Y for each x in X and H is evenly
continuous.

Proof. In view of Corollary 10, we only need to show that continuous con-
vergence and compact-open topology coincide on H under our assumptions.
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Because clkH is a compact Hausdorff topological space, it is locally compact.
Thus, X × clkH is a k-space, so that the continuity of the evaluation map
ev : X × clkH → Y depends only on the continuity of restrictions of ev to
compact subsets K of X × clkH. Let K be such a compact subset. Then
ev : pX(K) × clkH → Y is continuous, because clkH carries the compact-
open topology and the projection pX(K) is a compact subset of X. But
K ⊆ pX(K)×clkH so that ev|K is continuous. As a result, ev : X×clkH → Y
is continuous, so that the compact-open topology and continuous convergence
coincide on clkH, hence on H.
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