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A SHORT PROOF OF THE EXISTENCE OF
UNIVERSAL FUNCTIONS

Abstract

We present a short proof of the existence of universal functions for
period-doubling and critical golden-mean circle maps for all degrees of
criticality d > 1. The method is based on H. Epstein’s Herglotz-function
technique.

During the past thirty years the theory of renormalisation has become an
established part of dynamical systems analysis. The celebrated Feigenbaum
universal function, which satisfies the functional equation

f(x) = −λ−1f(f(−λx)) , λ > 0 , (1)

(with f a unimodal map of an interval containing a dth order critical point
at 0 (d > 1) and with normalization f(0) = 1), governs the universal metric
properties of period-doubling cascades [6, 7]. (See also [1].)

Less well known are the universal functions related to critical circle map-
pings [12]. For golden circle mappings (i.e., those with average rotation per
iteration equal to the the golden mean (

√
5− 1)/2), the universal functions ξ,

η satisfy the functional equations

ξ(x) = β−1η(βx) , η(x) = β−1η(ξ(βx)) , β < 0 . (2)

Here ξ, η are increasing functions, defined and commuting on intervals con-
taining 0 and each with a dth order critical point at 0 (d > 1), and with
normallization ξ(0) = 1.

Mathematical Reviews subject classification: Primary: 37E20, 37E05, 37E10
Key words: Feigenbaum, functional equation, Herglotz function, universality
Received by the editors April 2, 2012
Communicated by: Zbigniew Nitecki

425



426 B. D. Mestel

The existence of these universal functions, which underlie the theory, has
been established by a variety of methods, ranging from computer-assisted
proofs (see [9, 11] and, for a more recent example, see [8]) to topological
[3, 4, 5] and complex analytic methods [13, 10, 14, 15]. All these proofs are
somewhat lengthy, and involve some non-trivial analysis and estimates.

In this note we present a short proof of the existence of the universal func-
tions in both the dissipative period-doubling and critical golden-mean circle
mapping cases, using the Herglotz-function approach pioneered by Epstein.
Our proof uses the Schauder-Tikhonov fixed-point theorem (and therefore
comes into the topological class of proofs). It is based on Epstein’s elegant
paper [5], but is simpler in that it does not require a two-stage construction.
Although Herglotz functions (also known as Pick functions) are defined on
the upper and lower half-planes in C, they have an integral representation in
terms of a real-valued measure supported on R so that, as will be clear below,
most of the analysis occurs on the real intervals on which the functions are
real-analytic.

Let C± denote the upper and lower complex plane respectively, and for
A < 0 < 1 < B, let Ω(A,B) denote C+ ∪C− ∪ (A,B). We denote by H(A,B)
(resp. AH(A,B)) the space of Herglotz (resp. anti-Herglotz) functions on
Ω(A,B), i.e., the space of analytic functions f : Ω(A,B) → C such that
f(C±) ⊆ C̄± (resp. f(C±) ⊆ C̄∓). We refer to [2] for the general theory of
Herglotz/Pick funtions and to [4] for the specific function spaces considered
here.

Let E(A,B) denote the space of normalised anti-Herglotz functions ψ ∈
AH(A,B) satisfying ψ(0) = 1, ψ(1) = 0. Equiping these spaces with the
topology of uniform convergence on compact subsets of Ω(A,B), we have, in
particular, that E(A,B) is compact and convex and that, by the Schauder-
Tikhonov theorem, every continuous T : E(A,B)→ E(A,B) has a fixed point.
This result is our main topological tool.

Of great utility are the so-called a priori bounds, which are derived from
the Herglotz representation theorem, which is the main analytic ingredient in
the proof. Recall from [4], that a function ψ ∈ E(A,B) may be written

logψ(x) =

∫
σ(t)

[
1

t
− 1

t− x

]
dt ,

where σ is a density function on R satisfying 0 ≤ σ(t) ≤ 1 for all t ∈ R, σ(t) = 0
for A < t < 1 and σ(t) = 1 for 1 < t < B. From this representation, we may
derive the inequality, for the special case A = −λ−1, B = λ−2, λ ∈ (0, 1),

ψ(x) ≤ 1− x
1− λ2x

, x ∈ [0, 1], ψ ∈ E(−λ−1, λ−2) .
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One further result we shall need is that, if f ∈ H(A,B) (resp. f ∈ AH(A,B)),
then f is real and strictly increasing (resp. decreasing) on (A,B), and in both
cases f has positive Schwarzian derivative. We refer the reader to Epstein’s
paper [4] for these and further results.

The result that we shall prove is the following, which is a restatement of
the theorem in [5].

Theorem 1. For all d > 1, ν ∈ [1, 2], there exists b ∈ (0, 1) and ψ ∈
E(−b−1, b−2) such that

ψ(x) = λ−νdψ(z1ψ(−λx)1/d), z1 = ψ(−λ)−1/d, λνd = ψ(z1) . (3)

Proof. Let d > 1, ν ∈ [1, 2] be fixed. Let b ∈ (0, 1) be the unique solution
of the equation bνd = (1 − bν)/(1 − b2+ν). It is straightforward to establish
that such a solution exists, is unique, and that if λ ∈ (0, 1) satisfies λνd <
(1− λν)/(1− λ2+ν), then λ < b.

Our method is to define a continuous map T : E(−b−1, b−2)→ E(−b−1, b−2)
such that a fixed point of T is a solution of (3).

We define T by T (ψ)(x) = τ−1ψ(φ(x)) where τ = ψ(φ(0)), φ(x) =
z1ψ(−λx)1/d, z1 = ψ(−λ)−1/d, and λ ∈ (0, 1) is defined by

λ = sup{x | 0 < x ≤ b , x ≤ ψ(ψ(−x)−1/d)1/(dν) ,

and ψ(−xb−2)1/d/ψ(−x)1/d ≤ b−2} .
(4)

We note that f(x) = ψ(−xb−2)1/d/ψ(−x)1/d is an increasing function of x
(see Appendix below), and that the graph of the function ψ(ψ(−x)−1/d)1/(dν)

crosses the diagonal at a unique fixed point in (0, 1). (For the right-hand side is
Herglotz, and thus has positive Schwarzian derivative, f(0) = 0, f ′(0+) =∞,
and f(1) < 1.) Hence we have that λ(ψ) is a continuous function of ψ, and,
by standard properties of composition operators, that T is also continuous.
Moreover, we have T (ψ)(0) = 1, T (ψ)(1) = 0, so that T is a continuous map
from E = E(−b−1, b−2) to itself. Applying the Schauder-Tikhonov fixed-point
theorem, we obtain ψ ∈ E with T (ψ) = ψ. The fixed-point ψ satisfies

ψ(x) = τ−1ψ(φ(x)) for x ∈ (−b−1, b−2) , φ(x) = z1ψ(−λx)1/d ,

τ = ψ(ψ(−λ)−1/d) .
(5)

Our aim is now to show that, for this fixed-point ψ, we have the equation
λ = ψ(ψ(−λ)−1/d)1/(dν), so that (3) is solved.

Our first observation is that, since ψ ∈ E(−b−1, b−2) and the function
φ(x) = z1ψ(−λx)−1/d , we have that φ ∈ H(−λ−1, λ−1b−1) and φ((−λ−1, 1)) ⊆
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(0, 1) so that, using (5), ψ may be extended to (−λ−1, b−2) and, from the fixed-
point equation (5), we have ψ(x) < τ−1 for x ∈ (−λ−1, 1).

Now, we know that the equation x = f(x) = ψ(ψ(−x)−1/d)1/(dν) has a
unique solution in (0, 1). Hence, we need only show that λ, defined by (4),
satisfies λ < b and φ(b−2) = ψ(−λb−2)1/d/ψ(−λ)1/d < b−2.

Suppose that λνd < ψ(ψ(−λ)−1/d) = τ . Then since −λ ∈ (−λ−1, 1), we
have ψ(−λ) < τ−1 < λ−νd, so that z1 > λν . Suppose now that λ = b. Then
ψ ∈ E(−λ−1, λ−2) so, by the a priori bounds, we have

λνd = ψ(z1) < ψ(λν) ≤ 1− λν

1− λ2+ν
,

so that λ < b, a contradiction. We therefore conclude that λ < b. Now since
ψ ∈ E(−λ−1, λ−1b−1), we may extend φ so that φ ∈ H(−λ−1, λ−2). Moreover,
we have φ(λ−2) = z1ψ(−λ−1)1/d < τ−1 < λ−ν ≤ λ−2. Furthermore, φ is
Herglotz (and thus has positive Schwarzian derivative), φ(−λ−1) = 0, φ(1) =
1, and 1 < b−2 < λ−2 so it follows that φ(b−2) < b−2. The proof is complete.

Following [5], we now give an outline of the construction of the universal
functions satisfying equations (1) and (2) from a solution of (3) given by
Theorem 1. Let ψ ∈ E(−λ−1, λ−2) satisfy (3) for a fixed d > 1 and ν ∈
[1, 2]. For the construction of the universal functions we shall take ν = 1 for
equation (1) and ν = 2 for equation (2).

We now define U ∈ AH(−λ−1, λ−2) by λ(1−ν)dzd1ψ. Then U satisfies the
functional equation

U(x) = λ−νdU
(
λν−1U (−λx)

1/d
)
,

valid for x ∈ (−λ−1, λ−2). Then, taking limits where necessary, we have
U(−λ−1) = λ−νdU(0) and U(λ−2) = λ−νdU(z1λ

−ν) < 0 since z1 > λν and
U(x) < 0 for 1 < x < λ−2. Since U is strictly decreasing on (−λ−1, λ−2), with
U(1) = 0, we may invert U to give a strictly decreasing, negative schwarzian,
real-analytic function F defined on the interval (U(λ−2), U(−λ−1)) containing
0, and satisfying the functional equation

F (x) = −λ−1F
(
λ(1−ν)dF

(
λνdx

)d)
,

with normalization F (0) = 1.
In the case ν = 1 (corresponding to period-doubling), we write f(x) =

F (|x|d), which gives an even unimodal function with a degree-d critical point
at 0 satisfying equation (1). This function is real-analytic when d is an even
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integer. In the case ν = 2, we define ξ(x) = F (−x|x|d−1), β = −λ, so that ξ
satisfies the functional equation

ξ(x) = β−1ξ
(
β−1ξ

(
β2x

))
.

Writing η(x) = βξ(β−1x), it follows that ξ and η are both increasing func-
tions defined on intervals containing 0 and satisfying (2), each with a degree-d
critical point at 0. That ξ and η commute on an interval around 0 may be
established by a more detailed analysis of the functional equations.

A Appendix.

To show that ψ(−xb−2)1/d/ψ(−x)1/d is increasing it is clearly sufficient to
show that (d/dx)(logψ(−xb−2) − logψ(−x)) > 0 for 0 < x < b. From the
integral representation, we have, for 0 < x < b,

d

dx
(logψ(−xb−2)− logψ(−x)) =

∫
σ(t)

[
b−2

(t+ xb−2)2
− 1

(t+ x)2

]
dt

=

∫
σ(t)

(t+ x)2(t+ xb−2)2
[
(b−2 − 1)(t2 − x2b−2)

]
dt

> 0 ,

since b−2 > 1, x2b−2 < 1, and σ(t) = 0 for |t| < 1.
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