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RELATIONS BETWEEN Lp- AND
POINTWISE CONVERGENCE OF

FAMILIES OF FUNCTIONS INDEXED BY
THE UNIT INTERVAL

Abstract

We construct a variety of mappings from the unit interval I into
Lp([0, 1]), 1 ≤ p < ∞, to generalize classical examples of Lp-converging
sequences of functions with simultaneous pointwise divergence. By es-
tablishing relations between the regularity of the functions in the image
of the mappings and the topology of I, we obtain examples which are
Lp-continuous but exhibit discontinuity in a pointwise sense to different
degrees. We conclude by proving a Lusin-type theorem, namely that if
almost every function in the image is continuous, then we can remove
a set of arbitrarily small measure from the index set I and establish
pointwise continuity in the remainder.

1 Introduction

1.1 Motivation and Overview

Examples of sequences of real functions on a compact domain which have a
limit in Lp, but do not converge pointwise are well known. Their construction
is based on the fact that any interval can be covered infinitely often by a

Mathematical Reviews subject classification: Primary: 26E40, 26B05; Secondary: 54G20
Key words: pointwise convergence, continuity, Lusin’s theorem, Egorov’s theorem
Received by the editors February 27, 2012
Communicated by: Brian S. Thomson

177



178 V. Laschos and C. Mönch

sequence of subintervals of vanishing lengths. Take, for instance, the sequence
(fi)i∈I of characteristic functions fi = χIi , i ∈ N, of the intervals Ii = [ i

2k
−

1, i+1
2k
−1], where k is the unique integer with 2k ≤ i < 2k+1. After applying a

suitable molifier to smoothen each member of the sequence, we can see that this
pointwise divergence is not affected by the smoothness of the functions. In such
examples, only the order of the index set is relevant. We can observe, however,
that a simple topology is induced in a natural way by the convergence of the
sequence. It is not obvious whether examples of this type can be extended
to index sets of a more complex topological structure. We wish to address
the case of a continuous curve f which maps I = [0, 1] into Lp([0, 1]) and
generalize examples like the above. In our setting, the index set I has a non-
trivial topological structure of its own, which turns out to interact with the
regularity properties of the family {ft, t ∈ I}.

Curves such as {ft, t ∈ I} often appear in semigroup theory as solutions of
PDEs. However, the smoothing properties of the operators in these settings
usually result in a high regularity for the solutions for every t > 0, and there-
fore pointwise convergence comes naturally. Even for the more anomalous
case of t = 0, pointwise convergence can often be deduced by using tools from
harmonic analysis or potential theory. In this paper, no underlying process
is assumed. We investigate the pointwise behaviour of the curves in a purely
real analytic way.

By making different assumptions regarding the properties of the functions
ft, we construct two example curves in Lp which lack pointwise convergence
almost everywhere. The first example is constructed in Section 2, where we
assume that {ft, t ∈ I} ⊂ C(Ω) and that almost all ft are smooth. In Sec-
tion 3 we then show that the criteria on the regularity of ft are optimal.
We demonstrate that the structure of I renders “everywhere pointwise diver-
gence” impossible, and that higher regularity always implies better pointwise
convergence properties.

In Section 4 we remove the continuity requirement and construct a curve
of highly irregular functions. For this curve, we not only have everywhere
pointwise divergence, but also, for every subset T of I with positive measure,
the restriction f|T exhibits pointwise divergence almost everywhere.

Finally, Section 5 is devoted to proving that the discontinuity of ft is
necessary to obtain a curve that exhibits such strong pointwise divergence.
In particular, the example in Section 4 motivates a special case of our main
result Theorem 5.2., which can be interpreted as a refined version of Lusin’s
Theorem in two variables.
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1.2 Notation

Throughout, I is the unit interval [0, 1], equipped with the standard norm | · |
and the corresponding Borel-σ-field. Lebesgue measure on I is denoted by µ.
We study functions f : I × Ω −→ R of two real variables, we will usually, for
t ∈ I, write ft for the function f(t, ·) in one real variable to stress the differ-
ence between “time” and “space”, but revert to write f as a function of two
variables when it is notationally more convenient. The spacial domain Ω ⊂ R
of the functions ft, t ∈ I, can be chosen to be any interval of R equipped with
its Borel σ-field and Lebesgue measure. We take Ω = [0, 1] for convenience
in the construction of the examples. We denote Lebesgue measure by λ to
avoid confusion with the ”time“ interval I, whenever we refer to space, i.e.
when measuring sets in the domain and range of the real functions ft, t ∈ [0, 1].

Lp(Ω,R, λ) = Lp, for 1 ≤ p < ∞, denotes the space of real-valued p-
integrable functions on Ω, equipped with the topology induced by the semi-
norm ‖·‖p. Furthermore, we writeW1,p for the space of all absolutely continu-
ous functions with derivatives belonging to Lp and use the standard notations
C(Ω) and C∞(Ω) for the space of continuous real valued functions on Ω and
the space of real valued smooth functions on Ω \ ∂Ω.

Remark 1.1. Note that we do not identify almost everywhere indentical mem-
bers of Lp, since all our constructions are pointwise. To prove lack of conver-
gence at a point t, we choose a sequence tn converging to t and assure that
ftn diverges pointwise on a set of positive measure. Therefore, the established
irregularity can not be avoided by choosing different ”versions“ of ft and triv-
ial counterexamples like the continuous transport of a set of measure zero are
excluded.

2 Construction of the first example

We begin by showing that there is an Lp-continuous curve of continuous func-
tions, along which pointwise convergence can be established almost nowhere.
Moreover, this irregularity is achieved while keeping almost all functions along
the curve smooth.

Theorem 2.1. Let 1 ≤ p < ∞ and K ⊂ [0, 1] be a meager Fσ. There is a
continuous mapping f of [0, 1] into Lp(Ω), satisfying

(i) ft is absolutely continuous for all t ∈ [0, 1],

(ii) ft ∈ C∞(Ω) for every t ∈ K,
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but also

(A) for every t ∈ K there exists a sequence (tn)n∈N with limn→∞ tn = t such
that

λ
(
{x ∈ Ω : (ftn(x))n∈N is Cauchy}

)
= 0.

In particular, if µ(K) = 1, then the conditions in (ii) and (A) hold for µ-a.e.
t ∈ [0, 1].

Proof. Without loss of generality, we will assume that {0, 1} ⊂ K. We can
represent K =

⋃∞
i=1Ki, where {0, 1} ⊂ K1 ⊂ K2 ⊂ . . . are closed nowhere

dense subsets of [0, 1]. For each i, the complement KC
i can be represented as a

countable union
⋃∞
j=1(ri,j , si,j) of disjoint open intervals, the lengths of which

we denote by li,j = µ((ri,j , si,j)). In this setting define

f (i)(t, x) = ϕi(t)γi(t, x),

where

ϕi(t) =


2j
li,j

(t− ri,j) if t ∈ (ri,j , ri,j +
li,j
2j ),

1 if t ∈ [ri,j +
li,j
2j , si,j −

li,j
2j ],

2j
li,j

(t− si,j) if t ∈ (si,j − li,j
2j , si,j),

0 otherwise

and

γi(t, x) =


1
4i exp

(−π(x− t−ri,jli,j

)2

l2pi,j

)
if t ∈ (ri,j , si,j) for some j ∈ N

and x ∈ [0, 1],

0 otherwise.

A straightforward calculation shows that, for all i ∈ N, f (i)(t, x) ≤ 4−i for all
(t, x) ∈ [0, 1]×Ω, and thus ‖f (i)(t, ·)‖p ≤ 4−i for all t ∈ [0, 1]. For fixed i ∈ N,
we next show Lp-continuity of f (i) in the first variable. We restrict ourselves
to the case where t is approximated from the right; the other situations can
be treated analogously. Application of the triangle inequality and convexity
of (·)p yield that, for all t, u ∈ [0, 1],

‖f (i)(t, ·)− f (i)(u, ·)‖pp
≤ 2p−1

(
|ϕi(t)− ϕi(u)|p‖γi(t, ·)‖pp + |ϕi(u)|p‖γi(t, ·)− γi(u, ·)‖pp

)
.

(1)

We now distinguish three cases. Firstly, if t ∈ (ri,j , si,j) for some j ∈ N, then
the right hand side of (1) vanishes as u converges to t, since ϕi is continuous
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and γi(t, ·) is Lp-continuous in t. Secondly, if t = ri,j for some j ∈ N, then
limu→t ϕ(u) = ϕ(t) = 0. Thus the right hand side of (1) can be made arbi-
trarily small by chosing u close to t, since it is bounded by a positive multiple
of |ϕ(u)|p, due to the uniform boundedness of γi. Finally, if t is not contained
in any of the intervals {[ri,j , si,j)}j∈N, then either f (i)(u, ·) ≡ 0 for all u in a
set of the form [t, t + ε) or t is an accumulation point, from the right, of a
subsequence ((ri,jk , si,jk))k∈N of nonempty intervals with limk→∞ li,jk = 0. In
the latter case, we can assume w.l.o.g. that (si,jk)k∈N is montonically decreas-
ing and that u in (1) is an element of (t, si,jk). Both γi and ϕi are uniformly
bounded and γi(t, ·) ≡ 0. The sum in (1) is therefore bounded by a constant
multiple of µ((t, si,jk)). As u approximates t from the right, k can be chosen
larger and the bound can be made arbitrarily small, since limk→∞ si,jk = t.
This shows that f (i) is Lp-continuous from the right in t in this case. Com-
bining all three cases, f (i)(t, ·) is thus Lp-continuous for all t in the compact
interval [0, 1] and is therefore also uniformly continuous on KC

i . We set

ft(x) =

∞∑
i=1

f (i)(t, x),

which defines a function f : [0, 1] −→ Lp(Ω) for which the properties stated in
the theorem can be verified. To show that f is a continuous mapping of the
unit interval into (Lp(Ω), ‖ · ‖p) we fix ε > 0, choose l ∈ N such that 2−l < ε

2
and estimate, for t, u ∈ I, using the triangle inequality and Fatou’s Lemma,(∫

Ω

|fu(x)− ft(x)|pdx
) 1
p

=

(∫
Ω

∣∣∣ ∞∑
i=1

(
f (i)(u, x)− f (i)(t, x)

) ∣∣∣pdx) 1
p

≤
∞∑
i=1

(∫
Ω

|f (i)(u, x)− f (i)(t, x)|pdx
) 1
p

=

l∑
i=1

(∫
Ω

|f (i)(u, x)− f (i)(t, x)|pdx
) 1
p

+

∞∑
i=l

(∫
Ω

|f (i)(u, x)− f (i)(t, x)|pdx
) 1
p

︸ ︷︷ ︸
≤ 2

4i

.

The finite first sum can be made smaller than ε
2 by choosing u close to t and

the second sum is bounded by 2−l and therefore by ε
4 . Since t and ε can be
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chosen arbitrarily, we conclude that Lp-continuity holds for every t ∈ [0, 1].

Recalling K =
⋃∞
i=1Ki, for any t ∈ K there exists an index i for which

t ∈ Ki. Hence f(t, ·) is a finite sum of C∞(Ω)-functions and therefore smooth,
so (ii) holds. For (i), absolute continuity only needs to be verified for t ∈
KC . Clearly, all f (i)(t, ·) are absolutely continuous and so are the finite sums∑k
i=1 f

(i)(t, ·). For existence of the derivative d
dxf(t, x), we note that

d

dx

1

4i
exp

−π
(
x− t−ri,j

li,j

)2

l2pi,j

 = − 1

4i
2π

l2pi,j

(
x− t− ri,j

li,j

)

× 1

4i
exp

−π
(
x− t−ri,j

li,j

)2

l2pi,j

 ,

which is still summable in i. Hence the first derivative of ft exists and it is
continuous for all t ∈ KC a.e. on Ω, which implies absolute continuity.

The next step is to show that (A) holds. We do so by constructing for ev-
ery t ∈ K a sequence (tn)n∈N such that f(tn, ·) has the desired property. We
observe first, that if we fix i, j ∈ N, x ∈ [ 1

j , 1−
1
j ] and set τx = ri,j +xli,j , then

continuity of f(τx, ·) implies that the sets Ix = {y : f(τx, y) > 2
34−1} are open.

The defintions of f (i) and f imply that f(τx, x) ≥ 4−i, thus x ∈ Ix and
⋃
x Ix

is an open cover of the interval [ 1
j , 1−

1
j ]. By compactness, we can find a finite

subcover, i.e. there is an integer k and a k-tuple τ =
(
τ1, τ2, ..., τk

)
, where

τ l ∈ (ri,j , si,j), for 1 ≤ l ≤ k, with the property that for every x ∈ [ 1
j , 1 −

1
j ]

there exists an index l(x) ∈ {1, . . . , k} such that f (i)(τ l(x), x) > 2
34−i.

Now let t ∈ K be fixed and let i = i(t) = min{j ∈ N : t ∈ Kj}. Since
Ki is nowhere dense, there exists a subsequence of intervals

(
(ri,jn , si,jn)

)
n∈N

indexed by (jn) = (jn(t)) with endpoints ri,jn , si,jn converging to t. Thus
for each one of the intervals (ri,jn , si,jn) we can apply the above argument
and find k = k(n) ∈ N and a k-tuple τ(n) =

(
τ1(n), τ2(n), ..., τk(n)

)
, such

that τ l(n) ∈ (ri,jn , si,jn), 1 ≤ l ≤ k, and for every x ∈ [ 1
jn(t) , 1 −

1
jn(t) ]

there is l = l(x, n) ∈ {1, . . . , k} satisfying f (i)(τ l(n), x) > 2
34−i. Note also

thatf (i)(ri,jn , ·) = f (i)(si,jn , ·) ≡ 0.

Finally, we consider now the sequence (tm)m∈N obtained by concatenating
the k(n) + 2-tuples (ri,jn , τ

1(n), τ2(n), . . . , τk(n), si,jn) in increasing order in
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n. Fix x0 ∈ [0, 1], n0 ∈ N and ε = 1
64−i. Since t /∈ Kh for any h < i we know

that the functions f (h)(τ, ·) are uniformly continuous around t for every h < i,

i.e. there is a δ > 0 such that
∑i−1
h=1

(
f (h)(t, ·) − f (h)(τ, ·)

)
< 1

4i for every τ
with |t − τ | ≤ δ. Since tn converges to t there is n1 ∈ N such that for every
n ∈ N with n > n1 we have |tn − t| < δ and by construction of tn there are
n,m > max{n0, n1} such that f (i)(tm, x0) − f (i)(tn, x0) > 2

34−i. For these
n,m we have

f(tm, x)− f(tn, x) =

∞∑
h=1

(f (h)(tm, x)− f (h)(tn, x))

=

i−1∑
h=1

(f (h)(tm, x)− f (h)(tn, x)) + f (i)(tm, x)− f (i)(tn, x)

+

∞∑
h=i

(f (h)(tm, x)− f (h)(tn, x))

≥ 2

3 · 4i
− 1

4 · 4i
−
∞∑
h=i

1

4h
=

2

3 · 4i
− 1

4 · 4i
− 1

4 · 4i
= ε,

so
(
f(tn, x)

)
n∈N is not Cauchy.

3 Optimality of the conditions in Theorem 2.1

In this section we show that Theorem 2.1 is sharp in two senses. Firstly, the
following argument shows that K in Theorem 2.1 cannot be non-meager, thus
the example is best possible in the sense of Baire category. In particular, we
cannot obtain divergence on the whole of I.

Proposition 3.1. Let f be a continuous map of [0, 1] into Lp(Ω). If ft is
continuous for every t, then there is a comeagre subset T ⊂ [0, 1] such that for
any t ∈ I and any sequence (tn)n∈N with limit t

lim
n→∞

ftn(x) = ft(x) for all x ∈ Ω.

Proof. Define for 0 < q < p the sets

Tpq =
{
t ∈ [0, 1] : ∃ x(t) ∈ Ω with ft(x(t)) < q < p < lim sup

s→t
fs(x(t))

}
.

We first want to prove by contradiction that Tpq are nowhere dense sets. Let
us assume that there are q < p such that Tpq is dense in an open ball B(t0, r0),
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with center t0 ∈ Tpq. We then have that no open subset S of the ball B(t0, r0)
is disjoint from Tpq.

We start by demonstrating that for any such S and any choice of δ > 0
and sufficiently small ρ > 0, there exist t ∈ S and r < ρ, such that for every
s ∈ B(t, r), we have ω(s, δ) > q − p, where ω(s, δ) = sup{|fs(x) − fs(y)| :
|x− y| < δ}.

By assumption, there is t1 ∈ S ∩Tpq, hence there is a point x(t1) ∈ Ω with
ft1(x(t1)) < q < p < lim sups→t1 fs(x(t1)). Since ft1(x(t1)) < q, there exists
0 < δ1 < δ such that ft1(y) < q, for all y ∈ B(x(t1), δ1), by continuity of
ft1 . Moreover, f is Lp-continuous, hence there is r1 > 0 such that for every
s ∈ B(t1, r1), there exists xu(s) ∈ B(x(t1), δ1) for which fs(x

u(s)) < q. We
choose now a second point t2 ∈ B(t1, r1) with ft2(x(t1)) > p and by continuity
of ft2 we can fix δ2 > 0 such that ft2(y) > p for all y ∈ B(x(t1), δ2). Using
Lp-continuity again, we can find r2 > 0 such that for every s ∈ B(t2, r2) there
exists xl(s) ∈ B(x(t2), δ2) with fs(x

l(s)) > p. The above assertion now holds
for the choices t = t2, r = min{r1, r2, sup{|t2−s|, s ∈ ∂B(t1, r1)}} and δ = δ1.

Applying the above construction to vanishing sequences (ρn)n∈N, (δn)n∈N,
we can find points tn and radii rn < ρn with B(tn+1, rn+1) ⊂ B(tn, rn) and
ω(s, δn) > q − p for every s ∈ B(tn, rn). Since limn→∞ rn = 0, we have that
limn→∞ tn = t∞ for some t∞ ∈ [0, 1]. Moreover, we have that ω(t∞, δn) > p−q
for every n ∈ N, which contradicts the assumption that ft is continuous for
every t ∈ [0, 1], hence our initial assumption that Tpq is not nowhere dense
cannot be true.

We can apply the same argument to the sets

Spq =
{
t : ∃ x(t) ∈ Ω such that ft(x(t)) > q > p > lim inf

s→t
fs(x(t))

}
,

and the comeager set T mentioned in the theorem is the complement of⋃
p,q∈Q

(Tpq ∪ Spq).

Secondly, we can prove that we cannot make the regularity requirement (i)
in Theorem 2.1 stronger.

Proposition 3.2. Let f be a continuous mapping of [0, 1] into Lp(Ω)∩W1,q(Ω),
where 1 ≤ p <∞ and q > 1. Then there is an open dense set T ⊂ [0, 1] such
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that for all t ∈ T and any sequence (tn)n∈N with limit t,

lim
n→∞

ftn(x) = ft(x) for all x ∈ Ω.

For the proof of Proposition 3.2, we need to establish an auxiliary lemma
about the relation between Lp-continuity and pointwise continuity.

Lemma 3.3. Let f be Lp-continuous and S ⊂ [0, 1] an open interval. If
ft ∈ W1,q(Ω) for some q > 1 and {ft; t ∈ S} is bounded in W1,q(Ω), then f
is pointwise continuous for every t ∈ S, i.e. limn→∞ ftn(x) = ft(x) for every
sequence (tn)n∈N converging to t and every x ∈ Ω.

Proof. Fix ε > 0. Since ft ∈ W1,q(Ω), invoking the Sobolev Imbedding
Theorem (see, e.g., [1, Part II of Theorem 4.12 with m = n = 1, j = 0, n =
1, p = q and λ = 1 − 1/q]), we can assume that ft is Hölder-continuous with
exponent q′ = 1− 1

q and constant Ct > 0 independent of t, i.e. we have for all
t ∈ S,

|ft(x)− ft(y)| ≤ Ct|x− y|q
′
, for all x, y ∈ Ω. (2)

The proof of this part of the Sobolev Imbedding Theorem (see, e.g., [1, p. 100,
proof of Lemma 4.28]) demonstrates that the Hölder constant Ct is bounded
by a constant multiple of ‖ft‖1,q, using the boundedness of {ft; t ∈ S} we can
therefore assume that (2) holds uniformly on S with Ct ≡ C. Now, fixing
x ∈ Ω and any s, t ∈ S and then applying the triangle inequality and (2), we
obtain, for all y ∈ Ω,

|ft(x)− fs(x)| ≤|ft(x)− ft(y)|+ |ft(y)− fs(y)|+ |fs(x)− fs(y)|

≤2C|x− y|q
′
+ |ft(y)− fs(y)|.

Integrating both sides in y on the interval B(x, η2 ) = (x − η
2 , x −

η
2 ), where

0 < η < min{ ε2 , 2 q′
√

ε
4C }, yields

(∫
B(x, η2 )

|ft(x)− fs(x)|pdy

) 1
p

≤

(∫
B(x, η2 )

(2C|x− y|q
′
)pdy

) 1
p

+

(∫
B(x, η2 )

|ft(y)− fs(y)|pdy

) 1
p

and thus

η
1
p |ft(x)− fs(x)| ≤ η

1
p ε+ ‖ft − fs‖p.
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This implies

|ft(x)− fs(x)| ≤ ε

2
+
‖ft − fs‖p

η
1
p

and, using Lp-continuity of f , we derive that

|ft(x)− fs(x)| ≤ ε,

for all s sufficiently close to t.

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. Let ft ∈ W1,q(Ω), q > 1 for every t ∈ [0, 1].
Since ft is absolutely integrable for all t, we can expand each ft into a Fourier
series

f (m)(t, x) =

n=m∑
n=−m

cn(t)einπ(x− 1
2 )

for which we have limm→∞ f (m)(t, ·) = ft, w.r.t. ‖ · ‖1,q, see e.g. [2, p. 78].
Using Lp-continuity of f we obtain that the coefficients cn(t) =

∫
Ω
ft exp

(
−

inπ(· − 1
2 )
)
dλ are continuous in t and furthermore g(m)(t) = ‖f (m)(t, ·)‖1,q

is a continuous function. Hence g(t) = ‖ft‖1,q can be represented as a limit
of continuous functions and therefore the set of points of continuity of g is
comeager Gδ, see e.g. [3, Theorem 7.3]. This implies that g(t) is locally
bounded on an open dense set. Thus the assumptions of Lemma 3.3 are
satisfied and its application yields the statement of the theorem.

4 Construction of the second example

If the requirement (i) in Theorem 2.1 is dropped, then it is possible to create
an example where we not only have everywhere pointwise divergence, but also
divergence is obtained on every subset of I with positive measure.

Theorem 4.1. There exists a continuous function f : [0, 1] −→ Lp(Ω), such
that for all measurable sets T ⊂ [0, 1] with µ(T ) > 0 and every t ∈ T with
Lebesgue density one, there exists a sequence (tn)n∈N ⊂ T with limn→∞ tn = t
and λ(At) = 1, where At = {x : limn→∞ ftn(x) 6= ft(x)}

Proof. Let {qm,m ∈ N} ⊂ I \{0} be dense and assign to each qm a sequence
(sm,k)k∈N defined by

sm,k = qm −
1

k + r(m)
, where r(m) = min

{
r : qm −

1

r
≥ 0
}
.
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Setting Sm,k = [sm,k, sm,k+1], we note that the vanishing intervals {Sm,k}k∈N
partition [0, qm]. To partition the spacial domain, set

bm,k(t) = max
{

0,
t− sm,k

sm,k+1 − sm,k
− sm,k+1 − t

4k+m

}
and

cm,k(t) = min
{

1,
t− sm,k

sm,k+1 − sm,k
+
t− sm,k

4k+m

}
,

assigning to every Sm,k (possibly empty) intervals Im,k(t) = [bm,k(t), cm,k(t)]
of maximal length µ(Sm,k)×4−(k+m) which emerge, move through Ω at linear
speed µ(Sm,k)−1 and vanish as t ∈ I varies. Denoting by χA the characteristic
function of a set A, we define functions f (m,k)(t, ·) : Ω −→ Lp(Ω) by

f (m,k)(t, x) = 2mχSm,k(t)χIm,k(t)(x).

These functions satisfy ‖f (m,k)(t, ·)‖p ≤ 1
2m+k for all t ∈ I and one also checks

easily that f (m,k)(t, ·) is Lp-continuous in the first variable for all t ∈ I. We
can now set

ft(x) =

∞∑
k,m=1

f (m,k)(t, x)

and the limit f is well defined in Lp, since f (m,k)(t, x) ≥ 0 and

∞∑
m,k=1

‖f (m,k)(t, ·)‖p <∞.

Let T ⊂ I be of positive measure λ(T ) > 0, and let t ∈ T have density
1 with respect to T . We inductively construct a sequence (tn)n∈N ⊂ T with
limn→∞ tn = t such that

lim sup
n→∞

f(tn, x) =∞ 6= f(t, x), for almost all x ∈ [0, 1].

To this end, let (γi)i∈N ⊂ (0, 1) be strictly increasing with limit 1 and initiate
the construction at stage i = 0 with arbitrary t0 ∈ T and n0 = m0 = 0.
Assume now, we have completed stages 0, . . . , i−1 of the construction, i.e. we
have chosen the initial members of the sequence t0, . . . , tn1

, . . . , tn2
, . . . , tni−1

.
Since t is a point of density 1 in T , we can fix ρi ∈ (0, t) \ { 1

l ; l ∈ N} such that
for every ρ < ρi,

µ (T ∩ (t− ρ, t]) ≥ γiρ. (3)
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Let now l ∈ N be the unique integer with 1
l+1 < ρi <

1
l and choose mi > mi−1

such that

t− ρi +
1

l + 1
< qmi < t and t− qmi <

γi
l + 1

. (4)

By (3) and the first inequality of (4), we have

µ

(
T ∩

[
qmi −

1

l + 1
, qmi

])
≥ µ

(
T ∩

[
qmi −

1

l + 1
, t

])
− (t− qmi)

≥ γi(t− qmi +
1

l + 1
)− (t− qmi),

and by the second inequality of (4) we get

µ

(
T ∩

[
qm −

1

l + 1
, qm

])
≥ γ2

i

l + 1
.

Since the intervals {Smi,k; k ∈ N} partition [qmi − 1
l+1 , qmi ], there must be

k ∈ N such that µ(Smi,k ∩ T ) ≥ (smi,k+1 − smi,k)γ2
i . We denote the index of

this interval by ki.

For z > 0 and J ⊂ Ω, we write zJ = {za; a ∈ I} and let also intJ denote
the interior of a set J . Note that if r ∈ intSm,k, then r − sm,k ∈ (sm,k+1 −
sm,k)intIm,k(r). Using this fact and the scale and translation invariance of
Lebesgue measure, we obtain

λ

 ⋃
r∈Smi,ki∩T

intImi,ki(r)


=
λ
(⋃

r∈T∩intSmi,ki
(smi,ki+1 − smi,ki)intImi,ki(r)

)
(smi,ki+1 − smi,ki)

≥
λ
(⋃

r∈T∩intSmi,ki
{r − sm,k}

)
smi,ki+1 − smi,ki

=
λ
(⋃

r∈(Smi,ki∩T ){r}
)

smi,ki+1 − smi,ki

=
µ(Smi,ki ∩ T )

smi,ki+1 − smi,ki
≥ γ2

i .

(5)

Since Lebesgue measure is inner regular, we can thus find a compact set K ⊂⋃
r∈Smi,ki∩T

intImi,ki(r) with

λ(K) ≥ γiλ

 ⋃
r∈Smi,ki∩T

intImi,ki(r)

 ,
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and the compactness of K allows us to select tni−1+1, . . . , tni from Smi,kmi ∩T
such that

λ

 ⋃
r∈{tni−1+1,...,tni}

intImi,ki(r)

 ≥ γiλ
 ⋃
r∈Smi,ki∩T

intImi,ki(r)


and therefore, combined with (5),

λ
{
x : ftni+j (x) ≥ 2mi for at least one j ∈ {1, 2, .., ni − ni−1}

}
≥ γ3

i ,

which concludes the construction and finishes the proof, since (γi)i∈N converges
to 1.

5 Necessity of discontinuity of ft in Theorem 4.1

In this section we prove our final and most general result, namely that dropping
continuity with respect to x for almost every t is essential in order to be able
to construct an extremely irregular curve like in Theorem 4.1. We show, that
if the function ft is continuous for every t, then a refined version of Lusin’s
Theorem in 2 variables holds.

Theorem 5.1. Let f : [0, 1] × Ω −→ R be Borel measurable such that ft is
a continuous function for µ-a.e t ∈ Ω. Then, for every ε > 0, there is a set
Tε ⊂ [0, 1] with µ(TCε ) < ε such that the restriction

f|Tε×Ω : (Tε × Ω, | · | ⊗ | · |) −→ (R, | · |)

is a continuous function.

Note that in Theorem 5.1 only the fact that f is a measurable function in
[0, 1] × Ω is needed and there is no Lp-continuity assumed. However, as Lp-
continuity guarantees that f is a measurable function in [0, 1]×Ω, the claimed
necessity in Theorem 4.1 is a straightforward consequence.

Corollary 5.2. Let f be a continuous function from [0, 1] to Lp(Ω). If ft ∈
Lp(Ω) is continuous for µ-a.e t ∈ [0, 1], then the assertion in Theorem 5.1
holds.

Before we proceed with the proof of Theorem 5.1 we would like to point
out the difference between Theorem 5.1 and the classical result of Lusin. In
Lusin’s Theorem an arbitrarily small set of I × Ω is removed in order to es-
tablish continuity on the remainder. In our case the stronger assumption of
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continuity with respect to one variable entails the information that this small
set is of the form TCε × Ω, so it is only necessary to remove a “slice” in the
space-time domain.

For the proof of Theorem 5.1 we also need the following preliminary result.

Lemma 5.3. Let F = {ft; t ∈ I} be a family of continuous functions. Then,
for every ε > 0, there is a set Sε ⊂ I, such that µ(SCε ) < ε, with the property
that Fε := {ft; t ∈ Sε} is equicontinuous.

Proof. Let ωδ denote the δ-oscillation functional,

ωδ(g) := sup{|g(x)− g(y)| : |x− y| < δ} (6)

and set ωn(t) = ω 1
n

(ft) on F . We have limn→∞ ωn(t) = 0 for every t, since

all ft are continuous. From Egorov’s Theorem (see, e.g. [3, Theorem 8.3])
we deduce that for every ε > 0, there exists a set Sε with µ(SCε ) < ε such
that ωn| Sε converges uniformly. Now, fixing ε > 0, we wish to show that the
uniform convergence of ωn to zero implies equicontinuity of Fε.

Let η > 0. Since limn→∞ ωn = 0 uniformly on Sε, there exists n0 ∈ N such
that for all n > n0,

ωn < η for every t ∈ Sε.

Hence, choosing δ = 1
n0

in (6) and evaluating ωδ on Fε, we obtain

sup{|ft(x)− ft(y)| : |x− y| < δ} < η.

This means Fε is equicontinuous, since η was choosen arbitrarily.

From Lemma 5.3 and Lusin’s Theorem we can finally deduce Theorem 5.1.

Proof of Theorem 5.1. Since f is Borel measurable, we have that fx,
where fx(t) := f(t, x), is a Borel measurable function for every x ∈ [0, 1].
We can therefore choose a dense countable subset X = {xn;n ∈ N} ⊂ Ω such
that fxn is Borel measurable for every n ∈ N. By Lusin’s theorem, for every
function fxn , n ∈ N, and any fixed small parameter ε there is a set Un ⊂ [0, 1]
such that µ((Un)C) < ε

2n+1 and fxn|Un
is continuous. Now define V ε

2
:=
⋂∞
n=1 Un

and apply Lemma 5.3 to the family {f(t, ·); t ∈ [0, 1]} to obtain a set S ε
2

such
that {f(t, ·); t ∈ S ε

2
} is equicontinuous. Now, Tε := S ε

2
∩V ε

2
is the desired set.

It remains to prove that the restriction f|Tε×Ω is a continuous function, and
we are going to use the sequential definition of continuity to do so.
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Let (t0, y0) ∈ Tε × Ω. Also let (tn, yn) ∈ Tε × Ω be chosen such that
limn→∞(tn, yn) = (t0, y0). Finally let η > 0. By equicontinuity of {f(t, ·); t ∈
Tε} there exists a δ > 0 such that

|f(t, y′)− f(t, y)| < η

3
for all t ∈ Tε and y′, y ∈ Ω with |y′ − y| < δ.

By density of X in Ω, there exists a x0 such that |y0−x0| < δ
2 . Since yn → y0,

we can find n1 such that |yn − y0| < δ
2 and thus |yn − x0| < δ, ∀n ∈ N with

n > n1. Furthermore by continuity of f(·, x0) in Tε there exists a n2 such that
∀n > n2 we have ‖f(tn, x0)− f(t0, x0)‖ < η

3
Now, for n > max{n1, n2} we have

‖f(tn, yn)− f(t0, y0)‖ ≤ ‖f(tn, yn)− f(tn, x0)‖+ ‖f(tn, x0)− f(t0, x0)‖

+ ‖f(t0, x0)− f(t0, y0)‖ ≤ η

3
+
η

3
+
η

3
= η
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