ON REPRESENTATIONS OF BAIRE ONE FUNCTIONS AS THE SUM OF LOWER AND UPPER SEMICONTINUOUS FUNCTIONS

Abstract

According to the Vitali-Carathéodory theorem, the integral of a finite summable function f on a measurable set may be approximated by the integral of a sum of lower and upper semicontinuous functions. In the case, that f is a Baire one function, we give the answer to the following question: is there a lower semicontinuous function l and a upper semicontinuous function u such that $f=l+u$ almost everywhere? The answer is in general negative.

We deal with the classes of real functions defined on the interval $[0,1]$. The symbols $C, B_{1}, D, l s c$ and usc stand for the class of continuous, Baire 1, Darboux, lower and upper semicontinuous functions, respectively. $D B_{1}$ denotes $D \cap B_{1}$ and f / F denotes the restriction of the function f on the set F. We use a notation $d\left(F, x_{0}\right)$ for the density of the set F at the point x_{0}. Let $A \subset_{d} B$ denote $A \subset B$ and $d(B, x)=1$ for all $x \in A$ and $A \subset_{c}$ $B(A$ is billateraly c-dense in $B)$ means that for each $x \in A$, the sets $(x, x+\delta) \cap B, \quad(x-\delta, x) \cap B$ are nondenumerable for every $\delta>0$.

Let $I=[0,1], F_{i}, i=1,2, \ldots$ be perfect nowhere dense subsets of I,

$$
F_{1} \subset_{d} F_{2} \subset_{d} F_{3} \subset_{d} \ldots,
$$

such that the set $F=\bigcup_{i=1}^{\infty} F_{i}$ has the Lebesgue measure $\lambda(F)=1$. Then we define the function f^{*} in the following way:

[^0]\[

f^{*}(x)=\left\{$$
\begin{array}{cl}
1, & x \in F_{1} \\
\frac{(-1)^{k-1}}{k}, & x \in F_{k} \backslash F_{k-1}, k=2,3, \ldots \\
0, & x \in I \backslash F
\end{array}
$$\right.
\]

Lemma 1. The function $f^{*} \in B_{1}$.
Proof. It is sufficient to show by [2], that for each $\alpha \in R$ the sets $\left\{f^{*}>\alpha\right\}=$ $\left\{x \in I ; f^{*}(x)>\alpha\right\}$ and $\left\{f^{*}<\alpha\right\}=\left\{x \in I ; f^{*}(x)<\alpha\right\}$ are sets of type F_{σ}. It is easy to see that every open set is of F_{σ} type and closed set of G_{δ} type. Then the following statement can be made: if A and B are closed subsets of I, then the set $A \backslash B=A \cap(I \backslash B)$ is of type F_{σ} and G_{δ} as well as any finite union of such sets.

We show that the sets $\left\{f^{*}>\alpha\right\}$ and $\left\{f^{*}<\alpha\right\}$ are of type F_{σ} for each $\alpha \in R$.

If $\alpha>1$, then the set $\left\{f^{*}>\alpha\right\}=\emptyset$ and $\left\{f^{*}<\alpha\right\}=[0,1]$.
If $\alpha=1$, then the set $\left\{f^{*}>\alpha\right\}=\emptyset$ and $\left\{f^{*}<\alpha\right\}=[0,1] \backslash F_{1}$. All of these sets are of type F_{σ}.

If $0<\alpha<1$, then there exists an odd natural number k such that $\frac{1}{k+2} \leq$ $\alpha<\frac{1}{k}$. From the definition of the function f^{*} it follows that

$$
\left\{f^{*}>\alpha\right\}=\left(F_{k} \backslash F_{k-1}\right) \cup\left(F_{k-2} \backslash F_{k-3}\right) \cup \cdots \cup\left(F_{3} \backslash F_{2}\right) \cup F_{1}
$$

and thus the set $\left\{f^{*}>\alpha\right\}$ is of type F_{σ} and G_{δ} too. Moreover, the same it holds for the set $\left\{f^{*} \leq \alpha\right\}$ and from there the set

$$
\left\{f^{*}<\alpha\right\}=\left\{\begin{array}{l}
\left\{f^{*} \leq \frac{1}{k+2}\right\}, \text { for } \frac{1}{k+2}<\alpha<\frac{1}{k} \\
\left\{f^{*} \leq \frac{1}{k+4}\right\}, \text { for } \alpha=\frac{1}{k+2}
\end{array}\right.
$$

is again the set of type F_{σ}. The analogous assertion is valid for $\alpha<0$. If $\alpha=0$, then the sets

$$
\left\{f^{*}>0\right\}=\bigcup_{k=1}^{\infty}\left\{f^{*}>\frac{1}{k}\right\} \text { and }\left\{f^{*}<0\right\}=\bigcup_{k=1}^{\infty}\left\{f^{*}<-\frac{1}{k}\right\}
$$

are sets of type F_{σ} too thus the function $f^{*} \in B_{1}$.
We will say that a function $g \in l s c+u s c$, iff there exist any functions $l \in l s c$ and $u \in u s c$ such that $g=l+u$. W. Sierpiński in [5] constructed a bounded Baire one function which cannot be written as sum of lower and upper semicontinuous functions and A. Maliszewski in [4] proved that there is a bounded Darboux Baire one function which does not belong to $l s c+u s c$. Additionally we find the following:

Proposition 2. There is a bounded function $f \in D B_{1}$ such that for arbitrary function $g \in l s c+u s c$, the Lebesgue measure of the set $\{x \in I ; f(x) \neq g(x)\}$ is positive.

Proof. Let f^{*} be the real function defined above. According to Proposition 1 in [3] there exists a function $f \in D B_{1}$ such that the set $\left\{x \in I ; f(x) \neq f^{*}(x)\right\}$ is a first category subset of the set $[0,1] \backslash F$. We prove that the function f satisfies the assertion of Proposition 2 by contradiction. Assume that there exist a lower semicontinuous function l and upper semicontinuous function u such that the function $g=l+u$ and the Lebesgue measure $\lambda(\{x \in I ; f(x) \neq g(x)\})=0$. Without loss of generality we may assume that $l \geq 0$ and $u \leq 0$. Otherwise there exists a positive real number K such that $l \geq-K$ and $u \leq K$, because the functions l and u are defined on the compact set $[0,1]$. Then the function l can be replaced by $l+K$ and u can by replaced by $u-K$. If we denote $d=-u$, then the solution of the functional equation $g=l+u$ on interval $I=[0,1]$ is equivalent to a solution of the equation

$$
l=g+d
$$

where the functions $l \geq 0, d \geq 0$ are lower semicontinuous.
Let $J \subset I$ be an arbitrary open interval and let

$$
\sum_{n=0}^{\infty} \alpha_{n}, \quad\left(\alpha_{n}>0 \text { for each } n=0,1,2, \ldots\right)
$$

be any convergent series of positive real numbers and the set

$$
A=\{x \in I ; f(x) \neq g(x)\}
$$

From the definition of the function f follows the existence of $x_{0} \in\left(J \cap F_{k_{0}}\right) \backslash A$, such that $f\left(x_{0}\right)=-\frac{1}{k_{0}}$ for some even natural number k_{0}. Because $f\left(x_{0}\right)=$ $g\left(x_{0}\right)$, by the assumption $l\left(x_{0}\right) \geq 0$ we have $d\left(x_{0}\right) \geq \frac{1}{k_{0}}$. Since the function $d \in l s c$ then there exists an open neighborhood $U_{0} \subset J$ of the point x_{0} such that

$$
d\left(U_{0}\right) \geq \frac{1}{k_{0}}-\alpha_{0}
$$

Again by the definition of the function f, because $F_{k_{0}} \subset_{d} F_{k_{0}+1}$, we choose $x_{1} \in\left(U_{0} \cap F_{k_{0}+1}\right) \backslash A$ such that

$$
f\left(x_{1}\right)=g\left(x_{1}\right)=\frac{1}{k_{0}+1}
$$

Then from (0)

$$
l\left(x_{1}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}
$$

and there exists an open neighborhood $U_{1} \subset U_{0}$ of the point x_{1} such that

$$
\begin{equation*}
l\left(U_{1}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}-\alpha_{1} \tag{1}
\end{equation*}
$$

Repeating this cycle, we choose $x_{2} \in\left(U_{1} \cap F_{k_{0}+2}\right) \backslash A$ such that

$$
f\left(x_{2}\right)=g\left(x_{2}\right)=-\frac{1}{k_{0}+2} .
$$

From (1) follows

$$
l\left(x_{2}\right)=g\left(x_{2}\right)+d\left(x_{2}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}-\alpha_{1}
$$

and consequently

$$
d\left(x_{2}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}-\alpha_{1}+\frac{1}{k_{0}+2}
$$

There exists an open neighborhood $U_{2} \subset U_{1}$ of the point x_{2} such that

$$
\begin{equation*}
d\left(U_{2}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}-\alpha_{1}+\frac{1}{k_{0}+2}-\alpha_{2} \tag{2}
\end{equation*}
$$

Next we choose $x_{3} \in\left(U_{2} \cap F_{k_{0}+3}\right) \backslash A$ such that

$$
f\left(x_{3}\right)=g\left(x_{3}\right)=\frac{1}{k_{0}+3}
$$

From (2) we have

$$
l\left(x_{3}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}-\alpha_{1}+\frac{1}{k_{0}+2}-\alpha_{2}+\frac{1}{k_{0}+3}
$$

and again we obtain the existence of an open neighborhood $U_{3} \subset U_{2}$ of the point x_{3} such that

$$
\begin{equation*}
l\left(U_{3}\right) \geq \frac{1}{k_{0}}-\alpha_{0}+\frac{1}{k_{0}+1}-\alpha_{1}+\frac{1}{k_{0}+2}-\alpha_{2}+\frac{1}{k_{0}+3}-\alpha_{3} \tag{3}
\end{equation*}
$$

It is necessary to note that the selection of such points $x_{0}, x_{1}, x_{2}, x_{3}$ is possible because the set F is dense in $[0,1]$ and $f / F=f^{*} / F$.

Continuing this process, we construct a sequence of open sets

$$
[0,1] \supset J \supset U_{0} \supset U_{1} \supset U_{2} \supset \ldots
$$

associated with a sequence of points $x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in F, n=0,1,2, \ldots$, such that for every even n the following hold:

$$
\begin{aligned}
& d\left(U_{n}\right) \geq \sum_{i=0}^{n}\left(\frac{1}{k_{0}+i}-\alpha_{i}\right) \\
& l\left(U_{n+1}\right) \geq \sum_{i=0}^{n+1}\left(\frac{1}{k_{0}+i}-\alpha_{i}\right)
\end{aligned}
$$

The functions d and l are real functions defined on $I=[0,1]$, then

$$
\bigcup_{M=1}^{\infty}\{d<M\}=\bigcup_{M=1}^{\infty}\{l<M\}=[0,1] .
$$

The series

$$
\sum_{i=0}^{\infty}\left(\frac{1}{k_{0}+i}-\alpha_{i}\right)
$$

diverges to $+\infty$. From the foregoing it follows that, for an arbitrary open interval $J \subset[0,1]$ and each $M>0$, there exists an open interval $U \subset J$ such that $d(U)>M$. That is, each of the sets $\{d<M\}, M=1,2, \ldots$, is nowhere dense in $[0,1]$. Therefore the closed interval $[0,1]$ is a countable union of nowhere dense sets, which contradicts the Category Theorem of Baire. It was shown that the assumption $\lambda(\{x \in I ; f(x) \neq g(x)\})=0$ is not true.

Let the class B_{1} of Baire 1 functions defined on interval $[0,1]$ be furnished with the sup norm. In the next theorem it will be shown that the class lsc+usc is dense in the class B_{1}.

The authors of the article [1] define the class of functions $[C]$ and prove the following Theorem 4.
Definition 3. $f \in[C]$ iff there exists a sequence of closed sets $A_{n}, n=1,2, \ldots$ such that $\cup A_{n}=R$ and f / A_{n} is continuous for every $n=1,2, \ldots$.

Theorem 4. Let $f \in B_{1}$. Then there are $f_{n} \in[C], n=1,2, \ldots$ such that $f_{n} \rightarrow f$ uniformly.

Lemma 5. $[C] \subset l s c+u s c$.

Proof. Let a function $f \in[C]$. According to Definition 3 there exists a sequence of closed sets $A_{n}, n=1,2, \ldots$ such that $\bigcup A_{n}=[0,1]$ and f / A_{n} is continuous for every $n=1,2, \ldots$. The function f / A_{n} is bounded. Therefore there exists an increasing sequence of real numbers $\beta_{n}, n=1,2, \ldots$ such that

$$
|f(x)| \leq \beta_{n}, \text { for each } x \in \bigcup_{i=1}^{n} A_{i}
$$

We define the functions u and l :

$$
\begin{aligned}
& u(x)=f^{-}(x)-\beta_{1} \\
& l(x)=f^{+}(x)+\beta_{1} \\
& u(x)=f^{-}(x)-n \beta_{n} \\
& l(x)=f^{+}(x)+n \beta_{n}
\end{aligned}, \text { for } x \in A_{n} \backslash \bigcup_{i=1}^{n-1} A_{i}
$$

where as usually

$$
f^{-}=\min \{0, f\} \wedge f^{+}=\max \{0, f\}
$$

We prove that $l \in l s c$. Let $x_{0} \in[0,1]$ and let $x_{n}, n=1,2, \ldots$ to be any sequence of points, $x_{n} \rightarrow x_{0}$. There exists n_{0} such that

$$
x_{0} \in A_{n_{0}} \backslash \bigcup_{i=1}^{n_{0}-1} A_{i}
$$

and $l\left(x_{0}\right)=f^{+}\left(x_{0}\right)+n_{0} \beta_{n_{0}}$. Because $\bigcup A_{i}, 1 \leq i \leq n_{0}-1$ is a closed set, it is sufficient to consider

$$
x_{n} \in[0,1] \backslash \bigcup_{i=1}^{n_{0}-1} A_{i}
$$

If $x_{n} \in A_{n_{0}}$ for every $n=1,2, \ldots$, then from continuity of $f^{+} / A_{n_{0}}$ we have

$$
l\left(x_{n}\right)=f^{+}\left(x_{n}\right)+n_{0} \beta_{n_{0}} \rightarrow f^{+}\left(x_{0}\right)+n_{0} \beta_{n_{0}}=l\left(x_{0}\right) .
$$

If $x_{n} \in A_{k_{n}}, k_{n}>n_{0}$ for every $n=1,2, \ldots$ then
$l\left(x_{n}\right)=f^{+}\left(x_{n}\right)+k_{n} \beta_{k_{n}} \geq \beta_{k_{n}}+\left(k_{n}-1\right) \beta_{k_{n}} \geq \beta_{n_{0}}+n_{0} \beta_{n_{0}} \geq f^{+}\left(x_{0}\right)+n_{0} \beta_{n_{0}}=l\left(x_{0}\right)$.
Consequently

$$
\liminf _{x_{n} \rightarrow x_{0}} l\left(x_{n}\right) \geq l\left(x_{0}\right)
$$

which means $l \in l s c$ and analogically $u \in u s c$. The function $f \in l s c+u s c$, since $f=l+u$.

The assertion of Theorem 6 is an immediate consequence of Theorem 4 and Lemma 5.

Theorem 6. Let $f \in B_{1}$. Then there are $f_{n} \in l s c+u s c, n=1,2, \ldots$ such that $f_{n} \rightarrow f$ uniformly.

References

[1] S. J. Agronsky, R. Biskner, A. M. Bruckner, J. Mařík, Representations of Functions by Derivatives Trans. Amer. Math. Soc., Volume 261, Number 2, (1980), 493-500.
[2] A. M. Bruckner, Differentiation of Real Functions Lecture notes in Math. 659 Springer-Verlag, Berlin, (1978).
[3] , A. M. Bruckner, J. G. Ceder, R. Keston Representations and Approximations by Darboux Functions in the first class of Baire Rev. Roum. Math. Pures et Appl., 9, p. 1247-1254 (1968).
[4] A. Maliszewski On the differences of Darboux upper semicontinuous functions Real Anal. Exch., Vol. 21 (1), 1995-1996, 258-263
[5] W. Sierpiński Sur les fonctions développables en séries absolument convergentes de fonctions continues Fund. Math. 2 (1921), p. 15-27

[^0]: Mathematical Reviews subject classification: Primary: 26A15, 26A21
 Key words: semicontinuity, Darboux property, function of Baire one class
 Received by the editors February 24, 2012
 Communicated by: Brian S. Thomson

