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SEPARATELY TWICE DIFFERENTIABLE
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STRING OSCILLATION

Abstract

We prove that for every separately twice differentiable function f :
R2 → R with that f ′′

xx = f ′′
yy there exist twice differentiable functions

ϕ,ψ : R→ R such that f(x, y) = ϕ(x+ y) + ψ(x− y).

1 Introduction.

Let f : X×Y → Z be a mapping defined on a product X×Y and valued in Z.
For any x ∈ X and y ∈ Y we define mappings fx : Y → Z and fy : X → Z by
the equalities: fx(y) = fy(x) = f(x, y). We say that a mapping f separately
has P for some property P of mappings (continuity, differentiability, twice
differentiability, etc.) if for any x ∈ X and y ∈ Y the mappings fx and fy
have P .

R. Baire in the fifth section of his PhD thesis [1] raised a problem of solv-
ing differential equations with partial derivatives under minimal requirements,
that is, a problem of solving a differential equation in the class of functions
satisfied strictly necessary conditions for the existence of expressions which
are contained in this equation. He proved that a jointly continuous separately
differentiable function f : R2 → R is a solution of the equation

∂f

∂x
+
∂f

∂y
= 0 (1)
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if and only if there exists a differentiable function ϕ : R → R such that
f(x, y) = ϕ(x−y) for any x, y ∈ R. In connection with this R. Baire naturally
raised the following question.

Question 1. [1, p.118] Let f : R2 → R be a separately differentiable solution
of (1). Does there exist a differentiable function ϕ : R→ R such that f(x, y) =
ϕ(x− y) for any x, y ∈ R?

Note that a similar result to Baire’s one was independently obtained in [3],
where Question 1 was formulated too.

During last 100 years differential equations with partial derivatives were
studied intensively by many mathematicians. Their investigations lead to the
appearance of the theory of partial differential equations, the basic notion of
which is the notion of generalized function. Note that the generalized func-
tions do not give an immediate possibility to solve differential equations with
partial derivatives in the classes of separately differentiable functions or sepa-
rately twice differentiable functions, which is tightly connected with the fact
that the partial derivative of a separately differentiable function can be locally
non-integrable on a set of a positive measure. Therefore, an application of the
method of generalized functions to solving differential equations with partial
derivatives in the classes of separately differentiable functions leads to the fol-
lowing question. Is it true that a generalized function generated by a bounded
separately continuous solution of some equation is also a solution of the same
equation?

The following argument shows that this question in general case has a nega-
tive answer. It is well known that u′′xy = u′′yx for every generalized function u. It
is easy to construct an example of a function f : R2 → R which everywhere has

mixed derivatives which are different at some point (i.e., f(x, y) = xy(x2−y2)
x2+y2 ,

if x2 + y2 > 0, and f(0, 0) = 0). Since two almost everywhere equal functions
on R2 generate the same generalized function, it is natural to assume that

f ′′xy
a.e.
= f ′′yx for every function f : R2 → R which everywhere has mixed deriva-

tives of the second order. In particular, the equality f ′′xy
a.e.
= f ′′yx was obtained

in [9] for every function f : R2 → R which everywhere has all partial derivatives
of the second order. But for an arbitrary function f : R2 → R this assertion is
not true. G.Tolstov in [10] constructed two functions F,G : [0, 1]2 → R which
satisfy the following conditions:

a) F has everywhere mixed derivatives F ′′xy and F ′′yx, but F ′′xy − F ′′yx = χE ,
where E is a set of a positive measure and χE is the characteristic function of
E;

b) G has almost everywhere mixed derivatives G′′xy and G′′yx, but G′′xy
a.e.
6=

G′′yx on [0, 1]2.
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Thus F and G generate generalized solutions of the equation u′′xy = u′′yx
but fail to be classical solutions of this equation. On the other hand, F is
a bounded classical solution of the equation u′′xy − u′′yx = χE which has no
generalized solutions.

In [6, 2, 5] properties of solutions of the equation

∂u

∂x
· ∂u
∂y

= 0 (2)

were studied. It was obtained that separately continuous solution of (2) de-
pends at most on one variable.

A technique from [1] was developed in [7]. It was established that Question
1 has a positive answer, which implies the following result.

Theorem 2. [7, Theorem 6.2] Let a function f : R2 → R has all partial
derivatives of the second order and

f ′′xx(p) = f ′′yy(p) and f ′′xy(p) = f ′′yx(p)

for every p ∈ R2. Then there exist twice differentiable functions ϕ,ψ : R→ R
such that

f(x, y) = ϕ(x+ y) + ψ(x− y)

for every x, y ∈ R.

In connection with this the following question on solutions of the equation
of string oscillation

∂2u

∂x2
=
∂2u

∂y2
(3)

arises naturally.

Question 3. [7, Question 6.3] Let a function f : R2 → R has partial deriva-
tives f ′′xx and f ′′yy and

f ′′xx(p) = f ′′yy(p)

for every p ∈ R2. Do there exist twice differentiable functions ϕ,ψ : R → R
such that

f(x, y) = ϕ(x+ y) + ψ(x− y)

for every x, y ∈ R?

In this paper we develop methods from [1, 7], and introduce and investigate

auxiliary functions λ
(2)
1 and λ

(2)
2 , generated by a twice differentiable function.

Using these functions we establish some properties of separately twice differ-
entiable functions and in Theorem 30 shall give a positive answer to Question
3.
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2 Auxiliary functions λ
(2)
2 and λ

(2)
1 .

Firstly we introduce an auxiliary function λ
(2)
2 which is generated by the second

order divided difference, and investigate its properties.
Let f : R→ R be a function. Denote

r
(2)
f (p, s) = r

(2)
f (x1, x2, s) =

f(x1)− f(x1 + s)− f(x2 − s) + f(x2)

s(x2 − x1 − s)

for every p = (x1, x2) ∈ R, x1 < x2, and s ∈ (0, x2 − x1).

It is easy to see that r
(2)
f (x1, x2, s) = r

(2)
f (x1, x2, x2−x1−s). Thus it is suf-

ficient to study the properties of the function r
(2)
f (x1, x2, s) for s ∈ (0, x2−x1

2 ].

Note that r
(2)
f (x, y, s) = 2a for any function f(x) = ax2 + bx + c and

every admissible x, y, s ∈ R. Besides, r
(2)
u+v = r

(2)
u + r

(2)
v for every functions

u, v : R→ R.

For every ε > 0 and x ∈ R denote by ∆
(2)
2 (ε, f, x) the set of all δ ∈ (0, 1]

such that
|r(2)f (p′, s′)− r(2)f (p′′, s′′)| ≤ ε

for every p′ = (x′1, x
′
2), p′′ = (x′′1 , x

′′
2) ∈ (x−δ, x)×(x, x+δ) and s′ ∈ (0, x′2−x′1),

s′′ ∈ (0, x′′2 − x′′1).

The function λ
(2)
2 (ε, f) : R→ R is defined by

λ
(2)
2 (ε, f)(x) =

{
sup ∆

(2)
2 (ε, f, x), if ∆

(2)
2 (ε, f, x) 6= Ø;

0, if ∆
(2)
2 (ε, f, x) = Ø.

Proposition 4. Let f : R → R be a function twice differentiable at a point

x0 ∈ R and ε > 0. Then λ
(2)
2 (ε, f)(x0) > 0.

Proof. Note that it is sufficient to consider the case when x0 = 0.
Consider the function g(x) = f(x) − f(0) − f ′(0)x − 1

2f
′′(0)x2. Since

g′(0) = g′′(0) = 0, there exists δ ∈ (0, 1] such that | g
′(τ)
τ | <

ε
8 for every

0 < |τ | < δ. Take any x1 ∈ (−δ, 0), x2 ∈ (0, δ) and s ∈ (0, x2−x1

2 ]. Note that
t = (x2 − x1) − s ≥ x2−x1

2 . Taking into account that x1 < 0 < x2, we obtain
that |x| ≤ x2 − x1 for every x ∈ (x1, x2). Therefore |xt | ≤ 2. Now we have

|r(2)g (x1, x2, s)| =
∣∣∣∣g(x1)− g(x1 + s)− g(x2 − s) + g(x2)

s(x2 − x1 − s)

∣∣∣∣ =

=

∣∣∣∣g′(x1 + θ1s)− g′(x2 − θ2s)
t

∣∣∣∣ ≤ ∣∣∣∣x1 + θ1s

t

∣∣∣∣ · ∣∣∣∣g′(x1 + θ1s)

x1 + θ1s

∣∣∣∣+
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+

∣∣∣∣x2 − θ2st

∣∣∣∣ · ∣∣∣∣g′(x2 − θ2s)x2 − θ2s

∣∣∣∣ ≤ 2
ε

8
+ 2

ε

8
=
ε

2
,

where θ1, θ2 ∈ (0, 1) are chosen by Lagrange Theorem. Therefore for every
p′ = (x′1, x

′
2), p′′ = (x′′1 , x

′′
2) ∈ (−δ, 0) × (0, δ) and s′ ∈ (0, x′2 − x′1), s′′ ∈

(0, x′′2 − x′′1) we have

|r(2)f (p′, s′)− r(2)f (p′′, s′′)| = |r(2)g (p′, s′)− r(2)g (p′′, s′′)| ≤

|r(2)g (p′, s′)|+ |r(2)g (p′′, s′′)| ≤ ε

2
+
ε

2
= ε.

Thus δ ∈ ∆
(2)
2 (ε, f, 0) and λ(2)(ε, f)(0) ≥ δ > 0.

Remark 5. Note that lim
s→+0

r
(2)
f (x1, x2, s) = f ′(x2)−f ′(x1)

x2−x1
for every function

f differentiable at points x1 and x2. For such function f put r
(2)
f (x1, x2, 0) =

r
(2)
f (x1, x2, x2 − x1) = f ′(x2)−f ′(x1)

x2−x1
. Besides, f ′′(x0) = lim

x1→x0−0
x2→x0+0

r
(2)
f (x1, x2, s)

for a function f twice differentiable at point x0. Therefore it is natural to put

r
(2)
f (x0, x0, 0) = f ′′(x0). This implies that for a function f which is differ-

entiable on R and twice differentiable at x0 ∈ R in the definition of the set

∆
(2)
2 (ε, f, x0) we can put p′ = (x′1, x

′
2), p′′ = (x′′1 , x

′′
2) ∈ (x − δ, x] × [x, x + δ),

s′ ∈ [0, x′2 − x′1] and s′′ ∈ [0, x′′2 − x′′1 ].

The following proposition gives joint properties of λ
(2)
2 .

Proposition 6. Let Y be a topological space, f : R × Y → R be a function
continuous with respect to y and ε > 0. Then the function g : R × Y → R,

g(x, y) = λ
(2)
2 (ε, fy)(x), is jointly upper semicontinuous.

Proof. Let x0 ∈ R, y0 ∈ Y , γ = g(x0, y0) and η > 0. If γ + η > 1, then
g(x, y) ≤ 1 < γ + η for every (x, y) ∈ R× Y .

Consider the case when γ + η ≤ 1. Then δ0 = γ + η
3 ≤ 1. Since

sup ∆
(2)
2 (ε, fy0 , x0) = g(x0, y0) = γ < δ0, δ0 6∈ ∆

(2)
2 (ε, fy0 , x0), i.e. there exist

p′ = (x′1, x
′
2), p′′ = (x′′1 , x

′′
2) ∈ (x0− δ0, x0)× (x0, x0 + δ0) and s′ ∈ (0, x′2−x′1),

s′′ ∈ (0, x′′2 − x′′1) such that

|r(2)fy0 (p′, s′)− r(2)fy0 (p′′, s′′)| > ε.

Since f is continuous with respect to y, the function ϕ(y) = r
(2)
fy

(p′, s′) −
r
(2)
fy

(p′′, s′′) is continuous. Therefore there exists a neighborhood V of y0 in Y
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such that
|r(2)fy (p′, s′)− r(2)fy (p′′, s′′)| > ε

for every y ∈ V . Put ρ = min{x0 − x′1, x0 − x′′1 , x
′
2 − x0, x

′′
2 − x0,

η
3} > 0,

U = (x0 − ρ, x0 + ρ) and δ1 = γ + 2η
3 . Now we have x′1, x

′′
1 ∈ (x − δ1, x) and

x′2, x
′′
2 ∈ (x, x + δ1) for every x ∈ U . Therefore δ1 6∈ ∆

(2)
2 (ε, fy, x) for every

x ∈ U and y ∈ V . Thus ∆
(2)
2 (ε, fy, x) ⊆ (0, δ1) and g(x, y) ≤ δ1 < γ + η for

every x ∈ U and y ∈ V .
Hence g is upper semicontinuous at (x0, y0).

Now we introduce a function λ
(2)
1 which gives for a twice differentiable

function a possibility to estimate the exactness of approximation of derivative
by the first order divided difference.

Let f : R→ R be a function. Denote

rf (p) = rf (x1, x2) =
f(x1)− f(x2)

x2 − x1

for every p = (x1, x2) ∈ R2, x1 6= x2. For every ε > 0 and x ∈ R denote by

∆
(2)
1 (ε, f, x) the set of all δ ∈ (0, 1] such that

|rf (p′)− rf (p′′)| ≤ ε ·max{|x′2 − x′1|, |x′′2 − x′′1 |}

for every p′ = (x′1, x
′
2), p′′ = (x′′1 , x

′′
2) ∈ (x − δ, x) × (x, x + δ) with x′1 + x′2 =

x′′1 + x′′2 .

The function λ
(1)
2 (ε, f) : R→ R is defined by

λ
(2)
1 (ε, f)(x) =

{
sup ∆

(2)
1 (ε, f, x), if ∆

(2)
1 (ε, f, x) 6= Ø;

0, if ∆
(2)
1 (ε, f, x) = Ø.

Proposition 7. Let f : R → R be a twice differentiable at x0 ∈ R function

and ε > 0. Then λ
(2)
1 (ε, f)(x0) > 0.

Proof. Consider the function g(x) = f(x)−f(x0)−f ′(x0)(x−x0)− 1
2f
′′(x0)

(x − x0)2. Since g′(x0) = g′′(x0) = 0, g(x) = o((x − x0)2). Hence there
exists δ ∈ (0, 1] such that |g(x0 + t)| < ε

2 t
2 for every 0 < |t| < δ. Note that

rf (x1, x2) = f ′(x0)+ 1
2f
′′(x0)(x2 +x1−2x0)+ rg(x1, x2) for arbitrary distinct

x1, x2 ∈ R. Now for every p′ = (x′1, x
′
2), p′′ = (x′′1 , x

′′
2) ∈ (x0−δ, x0)×(x0, x0+δ)

with x′1 + x′2 = x′′1 + x′′2 we have

|rf (p′)−rf (p′′)| = |rg(p′)−rg(p′′)| ≤
|g(x′2)|
x′2 − x0

+
|g(x′1|
x0 − x′1

+
|g(x′′2)|
x′′2 − x0

+
|g(x′1|
x0 − x′1

≤
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ε

2
((x′2−x0) + (x0−x′1) + (x′2−x0) + (x0−x′1)) ≤ ε ·max{|x′2−x′1|, |x′′2 −x′′1 |}.

Thus δ ∈ ∆
(2)
1 (ε, f, x0) and λ(2)(ε, f)(x0) ≥ δ > 0.

Proposition 8. Let f : R → R be a differentiable at x0 ∈ R function, ε > 0

and 0 < |s| < λ
(2)
1 (ε, f)(x0). Then | f(x0+s)−f(x0−s)

2s − f ′(x0)| ≤ 2 εs.

Proof. Note that it is sufficient to prove this proposition for s > 0. Let

0 < t < s. Since there exists δ ∈ ∆
(2)
1 (ε, f, x0) with δ > s,

|rf (x0 − s, x0 + s)− rf (x0 − t, x0 + t)| ≤ 2 εs.

It remains to take into account that lim
t→0

rf (x0 − t, x0 + t) = f ′(x0).

The following proposition can be proved by analogy with Proposition 6.

Proposition 9. Let Y be a topological space, f : R× Y → R be a continuous
with respect to y function and ε > 0. Then the function g : R × Y → R,

g(x, y) = λ
(2)
1 (ε, fy)(x), is jointly upper semicontinuous.

Proof. Let x0 ∈ R, y0 ∈ Y , γ = g(x0, y0) and η > 0. If γ + η > 1, then
g(x, y) ≤ 1 < γ + η for every (x, y) ∈ R× Y .

Consider the case when γ + η ≤ 1. Then δ0 = γ + η
3 ≤ 1. Since

sup ∆
(2)
1 (ε, fy0 , x0) = g(x0, y0) = γ < δ0, δ0 6∈ ∆

(2)
1 (ε, fy0 , x0), i.e. there

exist p′ = (x′1, x
′
2), p′′ = (x′′1 , x

′′
2) ∈ (x0 − δ0, x0) × (x0, x0 + δ0) such that

x′1 + x′2 = x′′1 + x′′2 and

|rfy0 (p′)− rfy0 (p′′)| > ε ·max{|x′2 − x′1|, |x′′2 − x′′1 |}.

Since f is continuous with respect to y, the function ϕ(y) = rfy (p′)− rfy (p′′)
is continuous. Therefore there exists a neighborhood V of y0 in Y such that

|rfy (p′)− rfy (p′′)| > ε ·max{|x′2 − x′1|, |x′′2 − x′′1 |}

for every y ∈ V . Put ρ = min{x0 − x′1, x0 − x′′1 , x
′
2 − x0, x

′′
2 − x0,

η
3} > 0,

U = (x0 − ρ, x0 + ρ) and δ1 = γ + 2η
3 . Then x′1, x

′′
1 ∈ (x− δ1, x) and x′2, x

′′
2 ∈

(x, x + δ1) for every x ∈ U . Thus δ1 6∈ ∆
(2)
1 (ε, fy, x) for every x ∈ U and

y ∈ V . Hence ∆
(2)
1 (ε, fy, x) ⊆ (0, δ1) and g(x, y) ≤ δ1 < γ + η for every x ∈ U

and y ∈ V .

Thus g is jointly upper semicontinuous at (x0, y0).
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3 Separately twice differentiable pointwise changeable
functions.

In this section we give an answer to Question 3 in the case of continuous partial
derivatives f ′x and f ′y.

Proposition 10. Let f : R→ R be a twice differentiable at x0 function, ε > 0

and δ = min{λ(2)1 (ε, f)(x0), λ
(2)
2 (ε, f)(x0)}. Then

|f ′(x0)− f(x)− f(x0)

x− x0
+

1

2
f ′′(x0)(x− x0)| ≤ 5

2
ε|x− x0|

for every x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ).

Proof. Note that it is sufficient to consider the case of x ∈ (x0, x0 + δ).

Put t = x − x0. Since 0 < t ≤ λ
(2)
2 (ε, f)(x0), taking into account Remark

5 we have
|f ′′(x0)− r(2)f (x0 − t, x0 + t, t)| ≤ ε.

Besides, note that

r
(2)
f (x0 − t, x0 + t, t) = 2

f(x0 + t)− f(x0)

t2
− f(x0 + t)− f(x0 − t)

t2
.

Thus,

|f ′′(x0)− 2
f(x0 + t)− f(x0)

t2
+
f(x0 + t)− f(x0 − t)

t2
| ≤ ε.

On the other hand, the inequality 0 < t ≤ λ
(2)
1 (ε, f)(x0) and Proposition

8 imply

|f(x0 + t)− f(x0 − t)
t2

− 2
f ′(x0)

t
| ≤ 4 ε.

Now we have

|f ′(x0)− f(x)− f(x0)

x− x0
+

1

2
f ′′(x0)(x−x0)| = t

2
|f ′′(x0)−2

f(x0 + t)− f(x0)

t2
+

2
f ′(x0)

t
| ≤ t

2
(|f ′′(x0)− 2

f(x0 + t)− f(x0)

t2
+
f(x0 + t)− f(x0 − t)

t2
|+

|2f
′(x0)

t
− f(x0 + t)− f(x0 − t)

t2
|) ≤ t

2
(ε+ 4 ε) =

5

2
ε|x− x0|.
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Let (X, | ·− · |X) and (Y, | ·− · |Y ) be metric spaces. A mapping f : X → Y
satisfies Lipschitz condition with a constant C > 0 if |f(x)−f(y)|Y ≤ C|x−y|X
for any x, y ∈ X. A mapping f : X → Y is called pointwise changeable if for
every ε > 0 the union Gε of all open nonempty sets G ⊆ X such that f |G
satisfies the Lipschitz condition with the constant ε is an everywhere dense
set.

Theorem 11. Let f : R2 → R be a separately twice differentiable function
such that f ′′xx(p) = f ′′yy(p) for every p ∈ R2. Then the function g : R2 → R,
g = f ′x − f ′y, is pointwise changeable on every nonempty subset E of arbitrary
line y = x + c, and the function h : R2 → R, h = f ′x + f ′y, is pointwise
changeable on every nonempty subset E of arbitrary line y = −x+ c.

Proof. Note that it is sufficient to consider the case of closed set E and c = 0.
Let ε > 0 and E ⊆ {(x, x) : x ∈ R} be a closed set. According to

Proposition 4, Proposition 6, Proposition 7 and Proposition 9 the functions

λ
(2)
1 (ε, fx)(y), λ

(2)
2 (ε, fx)(y), λ

(2)
1 (ε, fy)(x) and λ

(2)
2 (ε, fy)(x) are strictly pos-

itive and jointly upper semicontinuous. Therefore there exist δ > 0 and an
open in E set G such that |u − v| < δ for every (u, u), (v, v) ∈ G and the

functions λ
(2)
1 (ε, fx)(y), λ

(2)
2 (ε, fx)(y), λ

(2)
1 (ε, fy)(x), λ

(2)
2 (ε, fy)(x) are ≥ δ on

G.
Let (u, u), (v, v) ∈ G, u < v and s = v − u. According to Proposition 10,

there exist α1, α2, α3, α4 ∈ (− 5
2ε,

5
2ε) such that

f ′x(u, u) =
f(v, u)− f(u, u)

s
− 1

2
f ′′xx(u, u)s+ α1s,

f ′y(u, u) =
f(u, v)− f(u, u)

s
− 1

2
f ′′yy(u, u)s+ α2s,

f ′x(v, v) =
f(u, v)− f(v, v)

−s
− 1

2
f ′′xx(v, v)(−s) + α3s,

f ′y(v, v) =
f(v, u)− f(v, v)

−s
− 1

2
f ′′yy(v, v)(−s) + α4s.

Then we have

|g(u, u)− g(v, v)| = |f ′x(u, u)− f ′y(u, u)− f ′x(v, v) + f ′y(v, v)| =

|α1 − α2 − α3 + α4|s < 10 ε s.

By analogy we can prove the pointwise changeability of the function h =
f ′x + f ′y.
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We need the following result from [7].

Proposition 12. [7, Theorem 3.2] Let X ⊆ R be a nonempty interval,
(Y, | · − · |Y ) be a metric space, f : X → Y be a continuous pointwise change-
able on every closed set mapping. Then f is a constant.

The following theorem will be proved using the idea of the proof of Theorem
4.3 from [7].

Theorem 13. Let f : R2 → R be a separately twice differentiable function
such that f ′′xx(p) = f ′′yy(p) for every p ∈ R2, and assume that the function
g : R2 → R, g = f ′x − f ′y, is jointly continuous. Then there exist continuously
differentiable functions ϕ : R → R and ψ : R → R such that f(x, y) =
ϕ(x− y) + ψ(x+ y) for every x, y ∈ R.

Proof. Theorem 11 and Proposition 12 imply that the function g is a con-
stant on every line y = x + c, i.e. g(x, y) = α(x− y). The joint continuity of
g implies the continuity of the function α : R→ R.

Choose a differentiable function ϕ : R → R such that ϕ′(x) = 1
2α(x) for

every x ∈ R and put h(x, y) = f(x, y)− ϕ(x− y). Then for every x, y ∈ R we
have

h′x(x, y)− h′y(x, y) = f ′x(x, y)− 1

2
α(x− y)− f ′y(x, y)− 1

2
α(x− y)

= g(x, y)− α(x− y) = 0.

Thus according to [7, Corollary] there exists a continuous ψ : R→ R such
that h(x, y) = ψ(x+ y), i.e. f(x, y) = ϕ(x− y) + ψ(x+ y) for every x, y ∈ R.
Since ψ(x) = f(x, 0)− ϕ(x), ψ is a continuously differentiable function.

Note that a similar result can be analogously proved under the assumption
of continuity of the function f ′x+f ′y. It can be derived from Theorem 13 using
the substitution of variables x = u, y = −v.

Note that in these results as in [7, Theorem 4.1, Theorem 4.3, Corollary
4.4] the fact that f(x, y) is defined on the hole plane R2 is inessential. The
following result can be proved analogously with several formal changes.

Theorem 14. Let P = {(x, y) ∈ R2 : a < x < b, c < y < d}, f : P → R be
a function such that f ′′xx(p) = f ′′yy(p) for every p ∈ P , and either the function
g = f ′x− f ′y, or the function h = f ′x + f ′y is continuous on P . Then there exist
continuously differentiable functions ϕ : (a, b) → R and ψ : (c, d) → R such
that f(x, y) = ϕ(x− y) + ψ(x+ y) for every (x, y) ∈ P .
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4 Properties of partial derivatives of separately twice dif-
ferentiable functions.

In this section we establish some properties of partial derivatives of separately
twice differentiable functions. The same property of separately differentiable
functions and separately pointwise Lipschitz functions was obtained in [9, 7].

Theorem 15. Let X = Y = R and f : X × Y → R be a function which
is twice differentiable with respect to the first variable x and continuous with
respect to the second variable y. Then for every nonempty set E ⊆ X × Y
the restriction f ′x|E of the partial derivative fx on E has a nowhere dense
discontinuity points set.

Proof. It is sufficient to consider the case of closed set E.
Let G be a nonempty open subset of E. We should find a nonempty open

subset W ⊆ G such that the restriction f ′x|W is continuous.
Note that according to Proposition 7 and Proposition 9 the function

g(x, y) = λ
(2)
1 (1, fy)(x) is a strictly positive jointly upper semicontinuous func-

tion. In particular, the restriction g|E is a strictly positive jointly upper semi-
continuous function on a Baire space E. Therefore there exist δ > 0 and a
nonempty open subset W ⊆ G such that g(x, y) ≥ δ for every (x, y) ∈W .

Let us show that f ′x|E is continuous at every point (x0, y0) ∈ W . Fix an
ε > 0. According to Baire theorem [1] the separately continuous function f
has a dense Gδ-set of joint continuity points on the set {(x, y0) : x ∈ X}.
Therefore there exists 0 < s < min{ε, δ} such that f is jointly continuous at
the points (x0 + s, y0) and (x0 − s, y0). Choose 0 < γ < s

2 such that∣∣∣∣f(x0 + s, y0)− f(x0 − s, y0)

2s
− f(x2, y)− f(x1, y)

x2 − x1

∣∣∣∣ < ε (4)

for every x1, x2 ∈ X and y ∈ Y with |x1 − (x0 − s)| < γ, |x2 − (x0 + s)| < γ
and |y − y0| < γ.

Let (x′, y′) ∈ W with |x′ − x0| < γ and |y′ − y0| < γ. Since s < δ
and (x0, y0), (x′, y′) ∈ W , according to the choice of δ and W we have s <

λ
(2)
1 (1, fy0)(x0) and s < λ

(2)
1 (1, fy

′
)(x′). Therefore the Proposition 8 implies∣∣∣∣f(x0 + s, y0)− f(x0 − s, y0)

2s
− f ′x(x0, y0)

∣∣∣∣ ≤ 2s (5)

and ∣∣∣∣f(x′ + s, y′)− f(x′ − s, y′)
2s

− f ′x(x′, y′)

∣∣∣∣ ≤ 2s. (6)
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But |(x′−s)− (x0−s)| = |(x′+s)− (x0 +s)| = |x′−x0| < γ and |y′−y0| < γ.
Therefore according to (4) we have∣∣∣∣f(x0 + s, y0)− f(x0 − s, y0)

2s
− f(x′ + s, y′)− f(x′ − s, y′)

2s

∣∣∣∣ ≤ ε. (7)

Taking to account (5), (6) and (7) we obtain

|f ′x(x0, y0)− f ′x(x′, y′)| < ε+ 4s < 5ε

for every (x′, y′) ∈ W with |x′ − x0| < γ and |y′ − y0| < γ. Thus f ′x|E is
continuous at (x0, y0).

5 Auxiliary propositions.

Lemma 16. Let f : R2 → R be a separately differentiable function, ϕ :
(a, b) → R, ψ : (c, d) → R be continuously differentiable functions such that
f(x, y) = ϕ(x − y) + ψ(x + y) for a < x − y < b and c < x + y < d. Then
there exists a continuously differentiable extension ψ̃ : [c, d] → R of ψ such
that f(x, y) = ϕ(x − y) + ψ̃(x + y), f ′x(x, y) = ϕ′(x − y) + ψ̃′(x + y) and
f ′y(x, y) = −ϕ′(x− y) + ψ̃′(x+ y) for a < x− y < b and c ≤ x+ y ≤ d.

Proof. Let x0, y0 ∈ R such that a < x0 − y0 < b and x0 + y0 = d. Then
f(x0, y0) = lim

x→x0−0
f(x, y0) = lim

x→x0−0
(ϕ(x − y0) + ψ(x + y0)) = ϕ(x0 − y0) +

lim
t→d−0

ψ(t). Thus there exists ψ̃(d) = lim
t→d−0

ψ(t). Analogously there exists

ψ̃(c) = lim
t→c+0

ψ(t). The extension ψ̃ : [c, d] → R of ψ is continuous and

f(x, y) = ϕ(x− y) + ψ̃(x+ y) for a < x− y < b and c ≤ x+ y ≤ d.
Show that ψ̃ is continuously differentiable at c and d. Let x0, y0 ∈ R such

that a < x0 − y0 < b and x0 + y0 = d. Then f ′x(x0, y0) = ϕ′(x0 − y0) +

lim
t→d−0

ψ(t)−ψ̃(d)
t−d . Thus ψ̃ is differentiable at d and f ′x(x0, y0) = ϕ′(x0 − y0) +

ψ̃′(d). The continuity of f ′x with respect to x implies the continuity of ψ̃′ at
d.

The continuity of ψ̃′ at c and the equalities f ′x(x, y) = ϕ′(x−y)+ ψ̃′(x+y)
and f ′y(x, y) = −ϕ′(x − y) + ψ̃′(x + y) at the corresponding points (x, y) can
be obtained analogously.

Lemma 17. Let r : (a, b)→ R be a function such that r(w) ≥ min{r(u), r(v)}
for a < u < w < v < b. Then there exists c ∈ [a, b] such that r increases
on the segment (a, c) and decreases on the segment (c, b). Besides the set
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A = {(u, v) : u ∈ (a, b), v < r(u)} is open if and only if r(u) ≤ lim
t→u±0

r(t) for

every u ∈ (a, b).

Proof. Let a < u1 < v1 < b such that r(u1) < r(v1). Show that r in-
creases on the segment (a, u1]. Suppose that a < u2 < v2 ≤ u1 such that
r(u2) > r(v2). Put u = u2, v = v1 and chose w ∈ {u1, v2} such that
r(w) = min{r(u1), r(v2)}. Now we have r(w) < min{r(u), r(v)}, which is
impossible.

Now denote by c the supremum of set of all u ∈ (a, b) such that r increases
on the segment (a, u]. If this set is empty then c = a. It is clearly that r
increases on (a, c). According to the chose of c, the function r decreases on
(c, b).

Prove the second part of Lemma. Fix u ∈ (a, b) and suppose that r(u) >
lim

t→u−0
r(t). Put v = 1

2 (r(u) + lim
t→u−0

r(t)). Then (u, v) ∈ A, but A is not a

neighborhood of (u, v). Thus A is not open.
Now let v < r(u), i.e. (u, v) ∈ A. It follows from lim

t→u±0
r(t) > v that A is

a neighborhood of (u, v).

Note that for increasing function r the above-mentioned condition means
the left-continuity of r and for decreasing function r it means the right-
continuity of r.

Lemma 18. Let r : (a, b)→ R be a strictly increasing left-continuous function.
Then there exist u0 ∈ (a, b) and a strictly monotone sequence (un)∞n=1 of
points of the interval (a, b) that converges to u0 and satisfies the inequality
un − u0 ≤ r(un)− r(u0) for every n ∈ N.

Proof. Suppose that it is impossible to choose such u0 ∈ (a, b) and (un)∞n=1.
This means that for every u ∈ (a, b) there exists δu > 0 such that r(t) <
t − u + r(u) for every t ∈ (u − δu, u + δu) ⊆ (a, b), t 6= u. Then r(u) ≤

lim
t→u+0

r(t) ≤ lim
t→u+0

(t−u+r(u)) = r(u). Hence r is a right-continuous function

at every point u ∈ (a, b). Thus r is a continuous function.
Fix u1 ∈ (a, b). Put u2 = u1 + 1

2δu1 . According to the choice of δu1 we
have r(u2) < u2 − u1 + r(u1). Consider the set A = {t ∈ [u1, b) : r(t) =
t − u2 + r(u2)}. Note that A is a closed set, u1 6∈ A and u2 ∈ A. Then
u3 = inf A ∈ A and u1 < u3 ≤ u2. The continuity of r implies that r(t) >
t − u2 + r(u2) = t − u3 + r(u3) for all t ∈ [u1, u3). But it contradicts to the
choice of δu3

.

Lemma 19. Let r : (a, b) → (v0,+∞) be a strictly monotone function such
that for the numbers v1 = inf

u∈(a,b)
r(u), v2 = sup

u∈(a,b)
r(u) and a number v0 < v1
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the the set A = {(u, v) : a < u < b, v0 < v < r(u)} is open. Assume that
f : R2 → R is a function such that for every rectangle P = (α, β)× (c, d) ⊆ A
there exist continuously differentiable functions ϕP : (α, β) → R and ψP :
(c, d)→ R such that f(u, v) = ϕP (u)+ψP (v) for every (u, v) ∈ P . Then there
exist continuously differentiable functions ϕ : (a, b)→ R and ψ : (v0, v2)→ R
such that f(u, v) = ϕ(u) + ψ(v) for all (u, v) ∈ A.

Proof. Put P0 = (a, b)× (v0, v1) and ϕ = ϕP0 . We shall show that for every
rectangle P = (α, β)× (c, d) ⊆ A the function ϕP − ϕ is constant on (α, β).

Firstly consider the case of P = (α, β)× (v0, v1). We have ϕ(u)+ψP0
(v) =

ϕP (u) + ψP (v), i.e. ϕ(u) − ϕP (u) = ψP (v) − ψP0
(v) for (u, v) ∈ P . There-

fore the functions ϕP − ϕ and ψP − ψP0
are constant on (α, β) and (v0, v1)

respectively.

Now let P = (α, β)× (c, d), P1 = (α, β)× (v0, d) and P2 = (α, β)× (v0, v1).
Then, using analogous arguments, we obtain that the functions ϕP − ϕP1 ,
ϕP1
−ϕP2

and ϕP2
−ϕ are constant on (α, β). Therefore the function ϕP −ϕ

is constant on (α, β).

Without loss of generality we can suppose that ϕP − ϕ = 0 for every
rectangle P = (α, β)×(c, d) ⊆ A. Now by the similar arguments we obtain that
ψP1(v) = ψP2(v) for every rectangles P1 = (α1, β1)× (c1, d1), P2 = (α2, β2)×
(c2, d2) ⊆ A and v ∈ (c1, d1)∩ (c2, d2). For every v ∈ (v0, v2) choose u ∈ (a, b)
such that (u, v) ∈ A. Choose any open neighborhood P = (α, β)× (c, d) ⊆ A
of (u, v) and put ψ(v) = ψP (v).

The following property of solutions of the equation (3) plays an important
role in the proof of the main result.

Theorem 20. Let f : R2 → R be a separately twice differentiable function
such that f ′′xx(p) = f ′′yy(p) for every p ∈ R2, g = f ′x − f ′y, W = {(x, y) ∈
R2 : a ≤ x − y ≤ b, c ≤ x + y ≤ d} be a rectangle and I be a non-empty
open subset of g(W ) ⊂ R such that g is continuous at every point of the set
E = g−1(I)∩W . Then there exists a nonempty open segment (a0, b0) ⊆ (a, b)
such that {(x, y) ∈ R2 : a0 < x− y < b0, c ≤ x+ y ≤ d} ⊆ E.

Proof. Since I is open in g(W ) and g is continuous at every point of the set
E, the set E is open in W .

Put u = x−y and v = x+y. Fix (x0, y0) ∈ E. Since E is open in W , there
exists a nonempty closed segment [a1, b1] ⊆ (a, b) such that B = {(x, y) : a1 ≤
u ≤ b1, v = v0 = x0 + y0} ⊆ E.

We shall show that there exists a nonempty open segment (a2, b2) ⊆ (a1, b1)
such that {(x, y) : a2 < u < b2, v0 ≤ v ≤ d} ⊆ E. Since E is open in W , it
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is sufficient to prove that there exists w ∈ (a1, b1) such that the compact set
{(x, y) : u = w, v0 ≤ v ≤ d} is contained in E.

Assume the contrary, i.e. {(x, y) : u = w, v0 ≤ v ≤ d} 6⊆ E for every
w ∈ (a1, b1). For arbitrary w ∈ (a1, b1) and t ∈ (v0, d] put Jw,t = {(x, y) : u =
w, v0 ≤ v < t}. For every u ∈ (a1, b1) denote by r(u) the supremum of the set
of all v ∈ (v0, d] such that g is continuous on Ju,v. Since E is a neighborhood
of compact set B in W and g is continuous at every point p ∈ E, the function
r : (a1, b1) → R is correctly defined and there exists v1 ∈ (v0, d] such that
r(u) ≥ v1 for every u ∈ (a1, b1).

Let us show that r satisfies the conditions of Lemma 17 on the segment
(a1, b1). Suppose the contrary, i.e. there exist a1 < u1 < u2 < u3 < b1
such that r(u2) < min{r(u1), r(u3)}. Put d1 = inf

u∈(u1,u3)
r(u). Note that

v0 < v1 ≤ d1 ≤ r(u2). Since g is continuous on each set Ju,d1 for u ∈ (u1, u3),
according to Theorem 11 and Proposition 12 g is a constant on Ju,d1 . Since
B ⊆ E and Ju,d1 ∩ B 6= Ø, Ju,d1 ⊆ E for every u ∈ (u1, u3). Therefore g is
continuous at every point of the rectangle P =

⋃
u∈(u1,u3)

Ju,d1 = {(x, y) : u1 <

x− y < u3, v0 < x+ y < d1}.
According to Theorem 14, there exist continuously differentiable functions

ϕ : (u1, u3)→ R and ψ : (v0, d1)→ R such that f(x, y) = ϕ(x− y) + ψ(x+ y)
for every (x, y) ∈ P . It follows from Lemma 16 that g(x, y) = 2ϕ′(x − y)
for x + y = d1 and x − y ∈ (u1, u3). Thus g is constant on every segment
Jw = {(x, y) : u = w, v0 ≤ v ≤ d1} for w ∈ (u1, u3). On the other hand,
since r(u1) > r(u2) ≥ d1 and r(u3) > r(u2) ≥ d1, g is continuous on Ju1

and
Ju3 . Thus g is constant on Ju1 and Ju3 . Analogously as for the rectangle P
we obtain that P1 = {(x, y) : u1 ≤ u ≤ u3, v0 ≤ v ≤ d1} ⊆ E. Since E is
a neighborhood of the compact rectangle P1 in W and d1 < r(u3) < d, there
exists v2 ∈ (d1, d) such that W1 = {(x, y) ∈ R2 : u1 ≤ u ≤ u3, v0 ≤ v ≤ v2} ⊆
E. In particular, g is continuous at every point p ∈ W1. Then r(u) ≥ v2 for
every u ∈ [u1, u3]. But this contradicts to the choice of d1.

Thus r satisfies the conditions of Lemma 17 on the segment (a1, b1). There-
fore there exists an open segment (a3, b3) ⊆ (a1, b1) such that r is monotone
on (a3, b3).

We claim that r is constant on no open segment. Assume that r(u) = d0
for all u ∈ (a′, b′) ⊆ (a1, b1). Then according to Theorem 11 and Proposition
12 for every u ∈ (a′, b′) the function g is constant on the segment Ju,d0 and
equals to the value of g at the point pu = ( 1

2 (v0 − u), 12 (v0 + u)). Since
pu ∈ B ⊆ E, Ju,d0 ⊆ E for every u ∈ (a′, b′). Thus g is continuous on
the rectangle

⋃
u∈(a′,b′)

Ju,d0 . It follows from Theorem 14 and Lemma 16 that
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g( 1
2 (d0−u), 12 (d0+u)) = g( 1

2 (v0−u), 12 (v0+u)) for every u ∈ (a′, b′). Therefore
g is continuous at ( 1

2 (d0 − u), 12 (d0 + u)), what contradicts to r(u) = d0.

Hence r is not constant on every open segment. Therefore r is a strictly
monotone function on (a3, b3). Without loss of the generality we can suppose
that r strictly increases on (a3, b3). Since A = {(x, y) : a3 < u < b3, v0 <
v < r(u)} ⊆ E, g is continuous at every point from open set A. Therefore
according to Theorem 14 the functions r : (a3, b3) → R and f̃ : R2 → R,
f̃(u, v) = f(x, y), satisfy the conditions of Lemma 19. Therefore there exist
continuously differentiable functions ϕ : (a3, b3) → R and ψ : (v0, v3) → R,
where v3 = sup

u∈(a3,b3)
r(u), such that f(x, y) = ϕ(x − y) + ψ(x + y) for every

(x, y) ∈ A.

Let us show that f̃(u, r(u)) = ϕ(u) + ψ(r(u)) for every u ∈ (a3, b3). Since
r strictly increases, r(u) < v3, i.e. the function ψ is defined at r(u). Fix any
strictly decreasing sequence (wn)∞n=1 of points wn ∈ (a3, b3) which converges
to u. Note that wn > u. Therefore zn = −wn + u + r(u) < r(u) < r(wn).
Thus pn = ( 1

2 (wn + zn), 12 (zn − wn)) = ( 1
2 (u + r(u)), 12 (u + r(u)) − wn) ∈ A

for every n ∈ N. It follows from the continuity of f with respect to y that

f̃(u, r(u)) = lim
n→∞

f(
1

2
(u+ r(u)),

1

2
(u+ r(u))− wn)

= lim
n→∞

(ϕ(wn) + ψ(u+ r(u)− wn)) = ϕ(u) + ψ(r(u)).

Besides, for the point p = ( 1
2 (u+ r(u)), 12 (r(u)− u)) we have

f ′y(p) = lim
n→∞

f(pn)− f(p)

u− wn
= −ϕ′(u) + ψ′(r(u)).

According to Lemma 18 choose u0 ∈ (a3, b3) and a convergent to u0 strictly
monotone sequence (un)∞n=4 of points un ∈ (a3, b3) such that vn = un − u0 +
r(u0) ≤ r(un) for n ≥ 4. Since f̃(u, v) = ϕ(u) + ψ(v) for a3 < u < b3 and
v0 < v ≤ r(u), f( 1

2 (vn + un), 12 (vn − un)) = f(un + 1
2 (r(u0) − u0), 12 (r(u0) −

u0)) = f̃(un, vn) = ϕ(un) + ψ(vn).

Put p0 = ( 1
2 (r(u0) + u0), 12 (r(u0)− u0)). We have

f ′x(p0) = lim
n→∞

f̃(un, vn)− f̃(u0, r(u0))

un − u0

= lim
n→∞

ϕ(un)− ϕ(u0) + ψ(un − u0 + r(u0))− ψ(r(u0))

un − u0
= ϕ′(u0) + ψ′(r(u0)).
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Thus g(p0) = f ′x(p0) − f ′y(p0) = 2ϕ′(u0). Hence g is constant on the set
{(x, y) : u = u0, v0 ≤ v ≤ r(u0)} ⊆ E. Since r(u0) < d and E is open in W ,
there exists ṽ ∈ (r(u0), d) such that {(x, y) : u = u0, v0 ≤ v ≤ ṽ} ⊆ E. But
this contradicts the choice of r(u0).

Thus there exists a nonempty open segment (a2, b2) ⊆ (a1, b1) such that
{(x, y) : a2 < u < b2, v0 ≤ v ≤ d} ⊆ E. Using analogous arguments we
obtain that there exists a nonempty open segment (a0, b0) ⊆ (a2, b2) such that
{(x, y) : a0 < u < b0, c ≤ v ≤ v0} ⊆ E.

For a real-valued function f : X → R defined on a topological space (X, τ)
and a point x0 ∈ X let

ωf (x0) = inf{ωf (U) : x0 ∈ U ∈ τ}

be the oscillation of f at x0, where

ωf (U) = diamf(U) = sup
x′,x′′∈U

|f(x′)− f(x′′)|

is the oscillation of f on a subset U ⊂ X.

Corollary 21. Let f : R2 → R be a separately twice differentiable function
such that f ′′xx(p) = f ′′yy(p) for every p ∈ R2, D be the set of discontinuity
points of the function g = f ′x − f ′y and W = {(x, y) ∈ R2 : a < x− y < b, c <
x+ y < d} be a rectangle such that the restriction g|D∩W is continuous. Then
the projection π(D ∩W ), where π : R2 → R, π(x, y) = x − y, is a meager
subset of R.

Proof. For every n ∈ N put Dn = {p ∈ D ∩W : ωg(p) ≥ 1
n}. Note that it is

sufficient to prove that all sets π(Dn) are meager.
Fix n ∈ N. For every p ∈ Dn, use the continuity of the restriction g|D∩W to

choose a neighborhood Wp = {(x, y) ∈ R2 : ap ≤ x− y ≤ bp, cp ≤ x+ y ≤ dp}
of p such that Wp ⊆ W and ωg(D ∩Wp) ≤ 1

2n . Put W̃p = {(x, y) ∈ R2 :

ap < x− y < bp, cp < x+ y < dp} and show that the set Ap = π(Dn ∩ W̃p) is
nowhere dense.

Suppose that the set Ap is dense on a closed segment [α, β] ⊆ (ap, bp). Put

W ′ = {(x, y) ∈ R2 : α ≤ x − y ≤ β, cp ≤ x + y ≤ dp}, I = R \ g(D ∩Wp)
and pick any point q ∈ Dn ∩ {(x, y) ∈ R2 : α < x− y < β, cp < x + y < dp}.
Since diam(g(D ∩Wp)) ≤ 1

2n and diam(g(W ′)) = ωg(W
′) ≥ ωg(q) ≥ 1

n , the
set E = g−1(I) ∩W ′ is nonempty. Besides, E ∩D ⊆ g−1(I) ∩Wp ∩D = Ø.
Therefore g is continuous at every point from E. Thus the function g satisfies
the conditions of Theorem 20 on the rectangle W ′. Therefore there exists a
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nonempty open segment (α0, β0) ⊆ (α, β) such that {(x, y) ∈ R2 : α0 < x−y <
β0, cp ≤ x + y ≤ dp} ⊆ E. It implies Ap ∩ (α0, β0) = Ø, what contradicts to
the density of Ap on [α, β].

Hence all the sets Ap are nowhere dense. Using the σ-compactness of Dn

(see [4] for definition) choose a sequence (pm)∞m=1 of points pm ∈ Dn such that

Dn ⊆
∞⋃
m=1

W̃pm . Then π(Dn) ⊆
∞⋃
m=1

Apm and π(Dn) is a meager set.

Remark 22. The analogous result for the functions h = f ′x+f ′y and π(x, y) =
x+ y is valid too.

The following statement will be used in the final stage of our reasoning.

Theorem 23. A continuous function α : R→ R is differentiable if for every
y ∈ R the function βy(x) = α(x)− α(x+ y) is differentiable.

Proof. Assume that the function α is not differentiable but for every y the
function βy is differentiable.

Claim 24. The function α is nowhere differentiable.

Proof. Assume that α is differentiable at some point x0. Then for every
y ∈ R the function αy(x) = α(x) − βy(x) = α(x + y) is differentiable at x0.
Hence α is differentiable at x0 + y for every y ∈ R.

For every n ∈ N put

An = {x ∈ R : ∀x′ ∈ (x, x+ 1
n ) |α(x)− α(x′)| ≤ n|x− x′|}.

Claim 25. For every n ∈ N the set An is closed and nowhere dense in R.

Proof. The continuity of α implies the closedness of every An. Now assume
that An contains some interval (a, b). Then α is Lipschitz on (a, b) and hence
is differentiable at some point, which is forbidden by Claim 24.

Claim 25 implies:

Claim 26. The union A∞ =
⋃∞
n=1An is of the first Baire category in R.

For every n ∈ N put

Bn = {(x, y) ∈ R2 : ∀x′ ∈ (x, x+ 1
n ) |βy(x)− βy(x′)| ≤ n|x− x′|}.

Since the function f(x, y) = βy(x) is jointly continuous, every set Bn is closed.

Since the function βy is differentiable for each y, we conclude that R2 =
∞⋃
n=1

Bn
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and by the Baire Theorem, for some n0 ∈ N the set Bn0 has non-empty interior
and hence contains some rectangle (a, b)× (c, d).

Since the set A∞ =
⋃∞
n=1An is of the first Baire category, there is a

point x0 ∈ (a, b) \A∞. Now consider the function α restricted to the interval
(x0 + c, x0 + d).

Since the function α is nowhere differentiable, it is not monotone on (x0 +
c, x0 + d). Consequently, for the continuous function α there exists z0 ∈ R
such that the set C = {x ∈ (x0 + c, x0 + d) : α(x) = z0} contains at least two
points. Since α is not constant on every interval, there exist u, v ∈ C such that
u < v and (u, v) ∩ C = Ø. It follows from the continuity of α that α(t) > z0
for all t ∈ (u, v) or α(t) < z0 for all t ∈ (u, v). Put ε = v − u.

Claim 27. For every δ ∈ (0, ε) there is a point t ∈ (u, v − δ) such that
α(t) = α(t+ δ).

Proof. It is sufficient to use the Mean Value Theorem for the function g :
[u, v − δ]→ R, g(x) = α(x)− α(x+ δ).

Choose m ≥ n0 so large that 1
m ≤ min{b − x0, ε}. Since x0 /∈ Am, there

is a point x1 ∈ (x0, x0 + 1
m ) such that |α(x0) − α(x1)| > m|x0 − x1|. For

δ = x1−x0 by Claim 27, there is a point t ∈ (u, v−δ) such that α(t) = α(t+δ).
Let y0 = t − x0 and observe that y0 ∈ (u − x0, v − x0) ⊆ (c, d). Then
(x0, y0) ∈ (a, b)× (c, d) ⊆ Bn0

. On the other hand,

|βy0(x0)− βy0(x1)| = |α(x0)− α(x0 + y0)− α(x1) + α(x1 + y0)| =

= |α(x0)−α(t)−α(x1)+α(t+δ)| = |α(x0)−α(x1)| > m|x0−x1| ≥ n0|x0−x1|

which contradicts to (x0, y0) ∈ Bn0
.

6 Main result.

In this section we prove the main result of the paper. We first prove the
following auxiliary facts.

Proposition 28. Let X be a second countable topological space, Y be a Baire
space and G ⊆W ⊆ X×Y be open sets such that W ⊆ G. Then there exists a
dense Gδ-set B ⊆ Y such that for every y ∈ B the set Gy = {x ∈ X : (x, y) ∈
G} is dense in Wy = {x ∈ X : (x, y) ∈W}.

Proof. Put G0 = ((X × Y ) \W ) ∪G and fix a base (Un)∞n=1 of topology of
X. Since G is dense in W , the set G0 is dense in X × Y . For every n ∈ N
denote by Bn the set of all y ∈ Y such that there exist a neighborhood V
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of y in Y and an open in X nonempty set U ⊆ Un such that U × V ⊆ G0.
Clearly, all the sets Bn are open. Since G0 is dense in X × Y , Bn is dense in

Y . Thus B =
∞⋂
n=1

Bn is a dense in Y Gδ-set such that for every y ∈ B the set

{x ∈ X : (x, y) ∈ G0} is dense in X. Therefore for every y ∈ B the set Gy is
dense in Wy.

Proposition 29. Let W = {(x, y) ∈ R2 : a < x − y < b, c < x + y < d},
f : W → R, for every p ∈W there exist the partial derivatives f ′x(p) and f ′y(p)
which are continuous with respect to x and y respectively and G be a dense
open subset in W such that f ′x(p) = f ′y(p) = 0 for every p ∈ G. Then f is
constant.

Proof. Using Proposition 28 choose sets A ⊆ (a+c2 , b+d2 ) and B ⊆ ( c−a2 , d−b2 )

such that A and B are dense in (a+c2 , b+d2 ) and ( c−a2 , d−b2 ), respectively, for
every x ∈ A the set Gx = {y ∈ R : (x, y) ∈ G} is dense in W x = {y ∈ R :
(x, y) ∈W} and for every y ∈ B the set Gy = {x ∈ R : (x, y) ∈ G} is dense in
Wy = {x ∈ R : (x, y) ∈W}.

Fix any y ∈ B. Since f ′x is continuous on Wy×{y} and f ′x(p) = 0 for every
p ∈ Gy × {y}, f ′x = 0 on Wy × {y}. Thus for every y ∈ B the function f is
constant on Wy × {y}.

Analogously for every x ∈ A the function f is a constant on {x} ×W x.
Since A and B are dense in (a+c2 , b+d2 ) and ( c−a2 , d−b2 ) respectively, the function
f is a constant on the set (

⋃
x∈A

({x}×W x))
⋃

(
⋃
y∈B

(Wy×{y})). The continuity

of f with respect to each variable implies that f is constant on W .

Theorem 30. Let f : R2 → R be a separately twice differentiable func-
tion such that f ′′xx(p) = f ′′yy(p) for every p ∈ R2. Then there exist twice
differentiable functions ϕ : R → R and ψ : R → R such that f(x, y) =
ϕ(x− y) + ψ(x+ y) for every x, y ∈ R.

Proof. Firstly we prove that there exist continuously differentiable functions
ϕ : R → R and ψ : R → R such that f(x, y) = ϕ(x − y) + ψ(x + y) for every
x, y ∈ R.

The cases of continuous function g = f ′x − f ′y and continuous function
h = f ′x + f ′y are considered in Theorem 14.

Let U = V = R, U 3 u = x − y and V 3 v = x + y for x ∈ X = R and
y ∈ Y = R, πu : U × V → U , πu(u, v) = u, πv : U × V → V , πv(u, v) = v, and
the functions f̃ , g̃, h̃ : U × V → R are defined by equalities: f̃(u, v) = f(x, y),
g̃(u, v) = g(x, y) and h̃(u, v) = h(x, y). Assume that g and h are discontinuous,
i.e. the sets D1 and D2 of points of discontinuity of g̃ and h̃ are nonempty.
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We claim that there exist nonempty open segments (a1, b1) ⊆ U and
(c1, d1) ⊆ V and dense subsets A ⊆ (a1, b1) and B ⊆ (c1, d1) which satisfy the
following conditions:

(a) D ∩W1 6= Ø, where W1 = (a1, b1)× (c1, d1) and D = D1 ∪D2;
(b) for every u ∈ A the function g̃ is constant on {u} × (c1, d1);
(c) for every v ∈ B the function h̃ is constant on (a1, b1)× {v}.
It follows from Theorem 15 that the restriction g̃|D1

has nowhere dense
discontinuity points set. Since D1 6= Ø, there exists an open in U × V set
W̃1 = (ã1, b̃1) × (c̃1, d̃1) such that D1 ∩ W̃1 6= Ø and the function g̃|D1 is
continuous at every point p ∈ D1 ∩ W̃1. According to Corollary 21, the set
πu(D1 ∩ W̃1) is a meager set.

Note that D2 ∩ W̃1 6= Ø. Indeed, if h̃ is continuous on W̃1, then according
to Theorem 14 the function g̃ is continuous on W̃1.

Analogously using Remark 22 we find a rectangle W1 = (a1, b1)×(c1, d1) ⊆
W̃1 such that D2 ∩W1 6= Ø and the set πv(D2 ∩W1) is meager. Clearly, W1

satisfies (a). Put A = (a1, b1) \ πu(D1 ∩W1) and B = (c1, d1) \ πv(D2 ∩W1).
The conditions (b) and (c) follow from Theorem 11 and Proposition 12.

Note that according to Theorem 14, the condition (a) is equivalent to
D1 ∩W1 6= Ø and D2 ∩W1 6= Ø. Pick any p ∈ D1 ∩W1. Since W1 ⊆ W̃1,
the function g̃|D1

is continuous at p. Therefore there exists a neighborhood
W̃2 = [ã2, b̃2]× [c̃2, d̃2] ⊆W1 of p such that ωg̃(W̃2∩D1) ≤ 1

2ωg̃(p). Reasoning
analogously as in the proof of Corollary 21, according to Theorem 20, find
an open nonempty segment (a′2, b

′
2) ⊆ (ã2, b̃2) and continuously differentiable

functions ϕ1 : (a′2, b
′
2) → R and ψ : (c̃2, d̃2) → R such that f̃(u, v) = ϕ1(u) +

ψ(v), in particular, h̃(u, v) = 2ψ′(v) for every u ∈ (a′2, b
′
2) and v ∈ (c̃2, d̃2).

According to (c) we have that h̃(u, v) = 2ψ′(v) for every u ∈ (a1, b1) and
v ∈ B ∩ (c̃2, d̃2).

Analogously we find an open neighborhood W2 = (a2, b2)× (c2, d2) ⊆ W̃2

of some point q ∈ D2 and continuously differentiable function ϕ : (a2, b2)→ R
such that g̃(u, v) = 2ϕ′(u) for every u ∈ A ∩ (a2, b2) and v ∈ (c1, d1).

Consider the function f0 : W2 → R, f0(u, v) = ϕ(u) + ψ(v). According to
Theorem 15 choose an open dense in W2 set G ⊆ W2 such that the functions
g̃ and h̃ are continuous at every point from G. Pick a family (Ps : s ∈
S) of rectangles Ps = (as, bs) × (cs, ds) ⊆ U × V such that G =

⋃
s∈S

Ps.

It follows from Theorem 14 that for every s ∈ S there exist continuously
differentiable functions ϕs : (as, bs) → R and ψs : (cs, ds) → R such that
f̃(u, v) = ϕs(u) + ψs(v) for every (u, v) ∈ Ps. Taking into account that
(as, bs) ⊆ (a2, b2) ⊆ (a1, b1) and (cs, ds) ⊆ (c̃2, d̃2) ⊆ (c1, d1) we obtain that
ϕ′s(u) = ϕ′(u) for every u ∈ A ∩ (as, bs) and ψ′s(v) = ψ′(v) for every v ∈
B ∩ (cs, ds). Since the functions ϕ′s, ψ

′
s, ϕ

′ and ψ′ are continuous and the sets
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A and B are dense in (as, bs) and (cs, ds) respectively, the functions ϕs − ϕ
and ψs−ψ are constant on (as, bs) and (cs, ds) respectively. Thus the function
f̃ − f0 is constant on every rectangle Ps.

Now for the function γ : Z → R, γ(x, y) = f(x, y) − ϕ(x − y) − ψ(x + y),
defined on the set Z = {(x, y) ∈ X × Y : (u, v) ∈ W2}, we have γ′x(p) =
γ′y(p) = 0 for every p = (x, y) such that (u, v) ∈ G. Therefore according to

Proposition 29 the function γ is constant. This implies that h̃ is a constant
on W2. But it contradicts to q ∈ D2 ∩W2.

Thus f(x, y) = ϕ(x − y) + ψ(x + y) for some continuously differentiable
functions ϕ and ψ. It remains to prove that ϕ and ψ are twice differentiable.

Put α(x) = ϕ′(x) and β(x) = ψ′(x). Note that f ′x(x, y) = α(x − y) +
β(x+ y). Since f is twice differentiable with respect to x, for every a ∈ R the
function γa(x) = α(x) + β(x + a) is differentiable. Therefore for every a ∈ R
the function θa(x) = α(x)−α(x+a) = γa(x)−γ0(x+a) is differentiable. Hence
according to Theorem 23, the function α is differentiable. The differentiability
of the function β can be proved by analogy.
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