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A CONSTRUCTION OF MULTIWAVELET
SETS IN THE EUCLIDEAN PLANE

Abstract

For A =

(
0 1
a 0

)
, where a is an integer such that |a| > 1 and a

natural number d satisfying L = (|a| − 1)d, we obtain that the product
W × Q of a measurable set W of the Lebesgue measure 2πL, and a
measurable set Q in R such that Q ⊂ aQ, is an MRA A-multiwavelet
set of order Ld in R2 if and only if W is an a-multiwavelet set of order
L and Q is an a-multiscaling set of order d associated with W.

1 Introduction.

The concept of wavelet sets has been introduced by observing that the Lebesgue
measure of the support of the Fourier transform of an orthonormal wavelet is
at least 2π. Considering the notion of multiwavelets [7, 8, 12], wavelet sets
have been generalized into multiwavelet sets by Bownik, Rzeszotnik and Spee-
gle in [4]. The study related to wavelet sets and also to multiwavelet sets has
attracted the attention of several workers [1, 3, 4, 10, 17, 18, 19, 20].

In this paper, we assume that a is an integer such that |a| > 1, and that L
is a natural number for which L/(|a| − 1) is an integer, say, d.

Having described necessary notation and preliminaries in Section 2, we
prove that for an expansive matrix A, an A-multiwavelet set W has an A-
multiscaling set if and only if it is an MRA A-multiwavelet set. In Section
3, we provide our main result, according to which the product W × Q of a
measurable set W of Lebesgue measure 2πL, and a measurable set Q in R
such that Q ⊂ aQ, is an MRA A-multiwavelet set of order Ld in R2 if and
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only if W is an a-multiwavelet set of order L and Q is an a-multiscaling set of

order d associated with W, where A =

(
0 1
a 0

)
.

2 Notation and Preliminaries.

Throughout the paper, the symbols N, Z and R denote, respectively, the set of
natural numbers, the set of integers and the real line. By A, we denote an n×n
expansive matrix such that AZn ⊆ Zn, where n ∈ N. The transpose of A is
denoted by A∗. The Lebesgue measure of a measurable set E in the Euclidean
space Rn is denoted by |E|. The collection of all square integrable complex
valued functions on Rn, in which two functions are identified if they are equal
almost everywhere (abbreviated, a.e.), is denoted by L2(Rn). With the usual
addition, scalar multiplication and the inner product 〈f, g〉 of f, g ∈ L2(Rn)
defined by

〈f, g〉 =

∫
Rn

f(x)g(x) dx,

L2(Rn) becomes a Hilbert space. For a function f ∈ L1(Rn) ∩ L2(Rn), the

Fourier transform f̂ of f is defined by

f̂(ξ) =

∫
Rn

f(t) e−i<ξ, t>dt,

and the inverse Fourier transform f̌ of f is defined by

f̌(t) =
1

(2π)n

∫
Rn

f(ξ) ei<ξ, t>dξ.

A finite set Ψ = {ψ1, ..., ψL} ⊂ L2(Rn), is called an orthonormal A-
multiwavelet of order L, if the system {ψlj,k : j ∈ Z, k ∈ Zn, l = 1, ..., L}
is an orthonormal basis for L2 (Rn) , where

ψlj,k (x) = |detA|
j
2ψl

(
Ajx− k

)
, x ∈ Rn.

In the case that Ψ consists of a single element, say ψ, we say ψ is an n-
dimensional orthonormal A-wavelet, or simply an A-wavelet. The following
result characterizes an orthonormal A-multiwavelet.

Theorem 2.1.[8, 12] A subset Ψ = {ψ1, ..., ψL} of L2(Rn) is an orthonormal
A-multiwavelet if and only if the following hold :

(i)
∑L
l=1

∑
j∈Z |ψ̂l(A∗

jξ)|2 = 1, a.e., ξ ∈ Rn,
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(ii)
∑L
l=1

∑∞
j=0 ψ̂

l(A∗jξ)ψ̂l(A∗j(ξ + 2sπ)) = 0, a.e., ξ ∈ Rn, s ∈ Zn\A∗Zn ,

(iii) ||ψl|| = 1, for l = 1, ..., L.

A method to obtain A-multiwavelets in L2(Rn) arises from the notion
known as the A-multiresolution analysis of multiplicity d [2, 5, 11, 16], which
is described below:

Definition 2.2. An A-multiresolution analysis (A-MRA) of multiplicity d
associated with the lattice Zn is a sequence of closed subspaces Vj , j ∈ Z, of
L2(Rn) satisfying

(a) Vj ⊂ Vj+1, for all j ∈ Z;

(b) f(·) ∈ Vj , if and only if f(A·) ∈ Vj+1, for all j ∈ Z;

(c) ∩j∈ZVj = {0};

(d) ∪j∈ZVj = L2(Rn);

(e) There exist functions ϕ1, ϕ2, ..., ϕd ∈ L2(Rn) such that {ϕi(· − k) : k ∈
Zn, i = 1, ..., d} forms an orthonormal basis for V0.

The functions ϕ1, ϕ2, ..., ϕd are called scaling functions of the A-MRA, and
the vector Φ = (ϕ1, ..., ϕd)

∗ is called a multiscaling function with multiplicity
d [6, 15] for the A-MRA.

In [2], it is shown that an A-multiresolution analysis of multiplicity d gives
rise to an A-multiwavelet Ψ of order L, where L = (|detA| − 1)d.

It is well known that |supp ψ̂|, where ψ is an n-dimensional orthonormal

A-wavelet, is at least (2π)n. An A-wavelet ψ for which |supp ψ̂| = (2π)n,
is said to be a minimally supported frequency (MSF) A-wavelet [8, 9, 10].
It is also known that for an MSF A-wavelet ψ, there exists a measurable set
W of measure (2π)n such that |ψ̂| = χW . We call the set W is an A-wavelet set.

The concept of an MSF A-wavelet has been generalized to that of an MSF
A-multiwavelet of order L [4] as follows:

Definition 2.3.[4] An MSF A-multiwavelet of order L is an orthonormal

A-multiwavelet Ψ = {ψ1, ..., ψL} such that |ψ̂l| = χWl
, for some measurable

sets Wl ⊂ Rn, l = 1, ..., L.

Stated below is a characterization of MSF A-multiwavelets:
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Theorem 2.4.[4] A set Ψ = {ψ1, ..., ψL} ⊂ L2(Rn) such that |ψ̂l| = χWl
, for

l = 1, ..., L, is an orthonormal A-multiwavelet if and only if

(i)
∑
k∈Zn χWl

(ξ+2πk) χWm
(ξ+2πk) = δl,m, a.e., ξ ∈ Rn, l,m = 1, ..., L,

(ii)
∑
j∈Z

∑L
l=1 χWl

(A∗jξ) = 1, a.e., ξ ∈ Rn.

Notice that equality is, in general, almost everywhere. Also, we shall say
sets A and B to be disjoint if |A ∩ B| = 0. An empty set, is symbol φ, will
mean a set of measure zero.

Observing that Theorem 2.4 (i) implies that the disjoint union (modulo sets
of measure zero) of translates of Wl by 2πZn covers Rn, a.e., for l = 1, ..., L,

while (ii) implies that {(A∗)−j(
⋃̇L
l=1Wl) : j ∈ Z} partitions Rn, a.e., the no-

tion of an A-multiwavelet set has been introduced in [4]. Precisely,

Definition 2.5.[4] A measurable set W ⊂ Rn is an A-multiwavelet set of

order L, if W =
⋃̇L
l=1Wl, for some measurable sets W1, ...,WL ⊂ Rn satisfying

(i)
∑
k∈Zn χWl

(ξ + 2kπ) χWm
(ξ + 2kπ) = δl,m, a.e., ξ ∈ Rn, l,m = 1, ..., L,

and

(ii)
∑
j∈Z

∑L
l=1 χWl

(A∗jξ) = 1, a.e., ξ ∈ Rn.

The following characterization of A-multiwavelet sets of order L established
in [4], will be used in the sequel.

Theorem 2.6.[4] A measurable set W ⊂ Rn is an A-multiwavelet set of order
L if and only if

(i)
∑
k∈Zn χW (ξ + 2kπ) = L, a.e., ξ ∈ Rn, and

(ii)
∑
j∈Z χW (A∗jξ) = 1, a.e., ξ ∈ Rn.

Two measurable sets E and F of Rn are said to be 2π-translation congruent
modulo null sets if there is a measurable bijection τ1 from E to F such that
τ1(t)−t ∈ 2πZn, for each t ∈ E. These sets are said to be A-dilation congruent
modulo null sets if there is a measurable bijection δ from E to F such that
δ(t) = Amt, for an m ∈ Z, where t ∈ E.

Dai, Larson and Speegle in [9] proved the existence of wavelets for any
expansive dilation matrix A. Gu and Han in [13] proved that if |detA| = 2,
then there exists an MSF A-wavelet ψ in L2(Rn), which arises from an A-MRA
having ϕ as its scaling function. It is known that there is a measurable set
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S in Rn such that |ϕ̂| = χS . Also, for the scaling function ϕ of an A-MRA
satisfying |ϕ̂| = χS , for some measurable set S in Rn, there exists an MSF
A-wavelet ψ associated with the A-MRA. Such a set is called an A-scaling set
[4, 13].

In [13], it has been found that a measurable set S in Rn is an A-scaling
set if it satisfies the following:

(i) S ⊂ A∗S,

(ii) W = A∗S\S, is an A-wavelet set of Rn, and

(iii) {S + 2kπ : k ∈ Zn} is a measurable partition of Rn, a.e.

It is easy to see that (ii) and (iii) imply (i). The following is an equivalent
condition to (i) and (ii) [3, 4]:

(iv) S = ∪j<0A
∗jW, for some A-wavelet set W.

A measurable set S in Rn satisfying (i) and (ii), or equivalently (iv), is
called a generalized A-scaling set [4]. In a similar way a generalized A-scaling
set associated with an A-multiwavelet set has been described in [4] as follows:

Definition 2.7. A measurable set S in Rn is called a generalized A-scaling
set if |S| = (2π)nL/(|detA| − 1), and A∗S\S is an A-multiwavelet set of order
L.

Equivalently, a measurable set S in Rn is a generalized A-scaling set if and
only if S =

⋃∞
j=1 (A∗)

−j
W, for some A-multiwavelet set W.

Employing Lemma 2.2 in [4], and following the steps of the proof of The-
orem 2.6 in [4], we easily obtain the proof of Lemma 2.8. Lemma 2.2 in [4]
states that for a measurable subset Ē of Rn, there is a measurable set E ⊂ Ē,
such that τ(E) = τ(Ē) and τ |E is injective, where τ is a map from Rn to
(−π, π]n defined by τ(ξ) = ξ + 2kπ, for some k ∈ Zn.

Lemma 2.8. Let E be a measurable subset in Rn such that |E| = (2π)nd.
Then the following are equivalent :

(a)
∑
k∈Zn χE(ξ + 2kπ) = d, a.e., ξ ∈ Rn.

(b) There exists a disjoint partition E1, E2, ..., Ed of E satisfying∑
k∈Zn χEl

(ξ + 2kπ) = 1, a.e., ξ ∈ Rn, l = 1, ..., d.
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(c) There exists a disjoint partition E1, E2, ..., Ed of E satisfying∑
k∈Zn χEl

(ξ + 2kπ) χEm
(ξ + 2kπ) = δl,m, a.e., ξ ∈ Rn, l,m = 1, ..., d.

The following Lemma and its conclusion as stated below give rise the notion
of multiscaling set of multiplicity d which is a particular case of multiscaling
function of multiplicity d. We call a multiscaling set of multiplicity d associ-
ated with a dilation matrix A to be an A-multiscaling set of order d.

Lemma 2.9.[2; Lemma 5] The sequence {ϕi(· − k) : k ∈ Zn, i = 1, ..., d} is
an orthonormal system if and only if∑

k∈Zn

Φ̂(ξ + 2kπ) Φ̂(ξ + 2kπ)∗ ≡ Id,

where Id is an identity matrix of order d.

From the above Lemma, we derive the following:

Let Φ = {ϕ1, ϕ2, ..., ϕd} ⊂ L2(Rn) be such that |ϕ̂i| = χQi
, for some

measurable sets Qi ⊂ Rn, i = 1, ..., d. Then {ϕi(.− k) : k ∈ Zn, i = 1, ..., d} is
an orthonormal system if and only if∑

k∈Zn χQi
(ξ + 2kπ) χQj

(ξ + 2kπ) = δi,j , a.e., ξ ∈ Rn, i, j = 1, ..., d.

Thus the disjoint union of translates of Qi by 2πZn covers Rn, a.e., where
i = 1, ..., d. Using Lemma 2.8, we obtain that∑

k∈Zn

χQ(ξ + 2kπ) = d, a.e., ξ ∈ Rn.

Now, we have

Definition 2.10. A measurable set Q ⊂ Rn is called an A-multiscaling set
of order d if

(i) |Q| = (2π)nd,

(ii) W ≡ A∗Q \ Q is an A-multiwavelet set of order L, where L =
(|detA| − 1)d, and

(iii)
∑
k∈Zn χQ(ξ + 2kπ) = d, a.e., ξ ∈ Rn.

We sayW is anA-multiwavelet set of order L associated with theA-multiscaling
set Q of order d.
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An immediate consequence of Theorem 3 in [7] is the following character-
ization of an orthonormal A-multiwavelet in Rn of order L arising from an
A-multiresolution analysis of multiplicity d.

Theorem 2.11. Let Ψ = {ψ1, ..., ψL} be an orthonormal A-multiwavelet in
L2(Rn) with L = (|detA| − 1)d, where d is a natural number. Then Ψ arises
from an A-multiresolution analysis of multiplicity d if and only if

L∑
l=1

∞∑
j=1

∑
k∈Zn

∣∣∣ψ̂l(A∗j(ξ + 2πk))
∣∣∣2 = d, a.e., ξ ∈ Rn.

We, now, assume that |ψ̂l| = χWl
, l = 1, ..., L. Then Ψ arises from an

A-multiresolution analysis of multiplicity d if and only if

L∑
l=1

∞∑
j=1

∑
k∈Zn

χWl
(A∗j(ξ + 2πk)) = d, a.e., ξ ∈ Rn,

or, equivalently,

∞∑
j=1

∑
k∈Zn

χW (A∗j(ξ + 2πk)) = d, a.e., ξ ∈ Rn,

where W =
⋃L
l=1Wl.

The above can be rewritten as

∞∑
j=1

∑
k∈Zn

χ(A∗)−jW (ξ + 2πk) = d, a.e., ξ ∈ Rn,

or, ∑
k∈Zn

χQ(ξ + 2πk) = d, a.e., ξ ∈ Rn,

where Q =
⋃∞
j=1(A∗)−jW.

A straightforward computation shows that |Q| = (2π)nd, and Q ⊂ A∗Q.

Thus, we have the following characterization of MRA A-multiwavelet sets.

Theorem 2.12. An A-multiwavelet set W in Rn of order L, arises from
an A-multiresolution analysis of multiplicity d if and only if there is an A-
multiscaling set Q in Rn of order d associated with W, where L = (|detA|−1)d.
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3 A construction of MRA A-multiwavelet sets in R2.

In this section, we obtain our main result, which provides a method to generate
MRA A-multiwavelet sets in R2 from MRA a-multiwavelet sets in R as their
product with their associated a-multiscaling sets.

Now, onwards, A denotes the matrix

(
0 1
a 0

)
, where a is an integer such

that |a| > 1. We begin with the following Lemma:

Lemma 3.1. Let W be a measurable set of the Lebesgue measure 2πL in
R, and Q be a measurable set in R such that Q ⊂ aQ. If W × Q is an A-
multiwavelet set of order Ld in R2, where L = (a− 1)d then

(a) akW ∩ ajW = φ, for j, k ∈ Z, j 6= k.

(b) for every k ∈ Z, (i) W ∩ akQ = φ and (ii) ak−1W ∩Q = φ, cannot hold
simultaneously.

(c) Q ∩ ak−1W = φ, where k is a natural number.

(d) W = aQ\Q, a.e.

(e)
⋃̇
j∈Za

jW = R, a.e.

(f) Q =
⋃∞
k=1 a

−kW, a.e.

PROOF. (a). Since W × Q is an A-multiwavelet set, by Theorem 2.6 (ii), we
have

R2 =
⋃̇

j∈Z
(A∗)−j (W ×Q)

=
⋃̇

j∈Z

[(
0 aj

aj−1 0

)
(W ×Q) ∪

(
aj 0

0 aj

)
(W ×Q)

]
=
⋃̇

j∈Z

[
(ajQ× aj−1W ) ∪ (ajW × ajQ)

]
, a.e. (3.1)

Since the right hand side of (3.1) consists of disjoint sets ajQ× aj−1W, j ∈ Z,
for j, k ∈ Z, j 6= k,

(aj+1Q× ajW ) ∩ (ak+1Q× akW ) = (aj+1Q ∩ ak+1Q)× (ajW ∩ akW ) = φ.

In view of fact that (aj+1Q ∩ ak+1Q) is nonempty, we have (a). �
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(b). We establish it by contradiction. Suppose that for some k ∈ Z, (i) and
(ii) hold. Since (3.1) is a disjoint union of sets and akW ∩ ajW = φ, where
j 6= k, we have∣∣W × ak−1W ∣∣
=

∣∣∣∣(W × ak−1W ) ∩ ⋃̇j∈Z

[
(ajQ× aj−1W ) ∪ (ajW × ajQ)

]∣∣∣∣
=

∣∣∣∣⋃̇j∈Z

[
(W ∩ ajQ)× (ak−1W ∩ aj−1W ) ∪ (W ∩ ajW )× (ak−1W ∩ ajQ)

]∣∣∣∣
=
∑
j∈Z

(∣∣(W ∩ ajQ)× (ak−1W ∩ aj−1W )
∣∣+
∣∣(W ∩ ajW )× (ak−1W ∩ ajQ)

∣∣)
=
∣∣(W ∩ akQ)

∣∣ ∣∣(ak−1W )
∣∣+ |W |

∣∣(ak−1W ∩Q)
∣∣ = 0,

which implies |W | = 0, a contradiction. �

(c). Since W ×Q is an A-multiwavelet set, (3.1) holds. As W ×Q appears in
the disjoint union on the right hand side of (3.1), for an integer n,

(W ×Q) ∩ (anQ× an−1W ) = φ. (3.2)

From (3.2), it follows that

(W ∩ akQ)× (Q ∩ ak−1W ) = φ,

where k ∈ Z. Therefore, either W ∩ akQ = φ, or Q ∩ ak−1W = φ.

To prove the result, we need to show that Q ∩ ak−1W = φ, for k ≥ 1. We
achieve this by establishing that for k ≥ 1, W ∩ akQ 6= φ, and using facts
proved in (b). Suppose, for the sake of contradiction that W ∩ alQ = φ, for
some l ≥ 1. Since l ≥ 1, |a| > 1, and |(alW ∩ aQ)| < |alW |, first note that the
set (alW\aQ) has positive measure. Using (3.1), we have∣∣∣(alW\aQ)×W

∣∣∣
=

∣∣∣∣(alW\aQ)×W
)
∩
⋃̇

j∈Z

[
(ajQ× aj−1W ) ∪ (ajW × ajQ)

]∣∣∣∣
=

∣∣∣∣⋃̇j∈Z

[
((alW\aQ) ∩ ajQ)× (W ∩ aj−1W ) ∪ ((alW\aQ) ∩ ajW )× (W ∩ ajQ)

]∣∣∣∣
=
∑
j∈Z

(∣∣∣((alW\aQ) ∩ ajQ)× (W ∩ aj−1W )
∣∣∣+ ∣∣∣((alW\aQ) ∩ ajW )× (W ∩ ajQ)

∣∣∣)
=
∣∣∣((alW\aQ) ∩ aQ)

∣∣∣ |W |+ ∣∣∣((alW\aQ) ∩ alW )
∣∣∣ ∣∣∣(W ∩ alQ)

∣∣∣ = 0,
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which contradicts |(alW\aQ)| > 0. �

(d). Since W ×Q is an A-multiwavelet set of order Ld, its Lebesgue measure
is (2π)2Ld. Also, the Lebesgue measure of W is 2πL. These facts together
imply that the Lebesgue measure of Q is 2πd. Since Q ⊂ aQ,Q ∩ W = φ
and aQ ∩W 6= φ, (aQ\Q) ∩W 6= φ. Further, since |(aQ\Q)\W | = 0, we have
W = aQ\Q, a.e. �

(e). Further, on simplifying the expressions in the right hand side of (3.1), by
using (d), we obtain that

R2 =
⋃̇

j∈Z

[
(ajQ× aj−1W ) ∪ (aj−1W × aj−1Q)

]
, a.e.

=
⋃̇

j∈Z

[
(ajQ× (ajQ\aj−1Q) ∪ (ajQ\aj−1Q)× aj−1Q)

]
, a.e.

=
⋃̇

j∈Z

[
(ajQ× ajQ)\(aj−1Q× aj−1Q)

]
, a.e.

Equivalently,

χR2(ξ, η) =
∑
j∈Z

[
χ(ajQ×ajQ)(ξ, η)− χ(aj−1Q×aj−1Q)(ξ, η)

]
, a.e., (ξ, η) ∈ R2

1 = limj→∞χ(ajQ×ajQ)(ξ, η), a.e. (ξ, η) ∈ R2

= limj→∞
(
χajQ(ξ) χajQ(η)

)
, a.e., ξ, η ∈ R.

This implies that

limj→∞χajQ(ξ) = 1, a.e., ξ ∈ R.

Further, since ajQ = aj(∪∞k=1a
−kW ) = ∪∞t=−j+1a

−tW, a.e.,

limj→∞χajQ(ξ) = limj→∞χ∪∞t=−j+1a
−tW (ξ), a.e., ξ ∈ R

1 = limj→∞

∞∑
t=−j+1

χa−tW (ξ) a.e., ξ ∈ R

=
∑
t∈Z

χa−tW (ξ) a.e., ξ ∈ R.

Thus we obtain that
⋃̇
j∈Za

jW = R, a.e. �

(f). Since Q ∩ ak−1W = φ, where k is any natural number, we have Q ∩⋃∞
k=1 a

k−1W = φ. This implies thatQ ⊂ R−
(⋃∞

k=1 a
k−1W

)
=
⋃∞
k=1 a

−kW, a.e.
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Further, since the Lebesgue measure of
⋃∞
k=1 a

−kW =
∣∣⋃∞

k=1 a
−kW

∣∣ = 2πd =
|Q|, a.e., it follows that Q =

⋃∞
k=1 a

−kW, a.e. �

Theorem 3.2. Let W be a measurable set of Lebesgue measure 2πL in R, and
Q be a measurable set in R such that Q ⊂ aQ. If W ×Q is an A-multiwavelet
set of order Ld in R2, then W is an a-multiwavelet set of order L and Q is
the a-multiscaling set of order d associated with W, where L = (a− 1)d.

PROOF. In view of parts (a), (d), (e), and (f) of Lemma 3.1, to complete the
proof, we need to show that∑

m∈Z
χW (ξ + 2mπ) = L, a.e., ξ ∈ R, (3.3)

and ∑
n∈Z

χQ(ξ + 2nπ) = d, a.e., ξ ∈ R. (3.4)

From Lemma 2.8, there exists a disjoint partition Ei, i = 1, ..., Ld of W × Q,
such that ∑

k∈Z2

χEi
(η + 2kπ) = 1, a.e., η ∈ R2.

Also, |Ei| = (2π)2, i = 1, ..., Ld.
Let p1 and p2 be the first and second projection maps from R2 → R defined

by p1(x, y) = x and p2(x, y) = y, for (x, y) ∈ R2. Since Ei is 2πZ2-translation
congruent to (−π, π]2, a.e., p1(Ei) and p2(Ei) are 2πZ-translation congruent
to (−π, π], a.e., for i = 1, ..., Ld. Clearly, for i = 1, ..., Ld, p1(Ei) and p2(Ei)
are subsets of W and Q respectively.

Since W = ∪Ldi=1p1(Ei), τ(W ) = τ(∪Ldi=1p1(Ei)) = (−π, π]. Now, using
Lemma 2.2 [4] and following the steps of the proof of Theorem 2.6 in [4], we
easily obtain L disjoint sets W1,W2, ...,WL of W such that |Wi| = 2π, and∑
k∈Z χWi(ξ + 2kπ) = 1, a.e., ξ ∈ R, i = 1, ..., L. An application of Lemma

2.8, yields (3.3).
With the same arguments as above, we obtain disjoint partition Q1, Q2, ...,

Qd of Q such that |Qj | = 2π, and
∑
k∈Z χQj (ξ + 2kπ) = 1, a.e., ξ ∈ R,

j = 1, ..., d. We obtain (3.4) by aplying Lemma 2.8. �

Theorem 3.3. Let Q be an a-multiscaling set of order d of an a-multiwavelet
set W of order L in R. Then W ×Q is an A-multiwavelet set of order Ld in
R2, where L = (a− 1)d.
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PROOF. For the proof, we show that W ×Q satisfies:∑
j∈Z

χW×Q
(
A∗jξ

)
= 1, a.e., ξ ∈ R2, (3.5)

∑
k∈Z2

χW×Q(ξ + 2kπ) = Ld, a.e., ξ ∈ R2. (3.6)

Let (ξ1, ξ2) ∈ R2. Then

I ≡
∑
j∈Z

χW×Q(A∗jξ)

=
∑
j∈Z

{
χW×Q

((
0 aj

aj−1 0

)(
ξ1
ξ2

))
+ χW×Q

((
aj 0

0 aj

)(
ξ1
ξ2

))}
=
∑
j∈Z
{χW×Q

(
ajξ2, a

j−1ξ1
)

+ χW×Q
(
ajξ1, a

jξ2
)
}

=
∑
j∈Z

χW×Q
(
ajξ2, a

j−1ξ1
)

+
∑
j∈Z

χW×Q
(
ajξ1, a

jξ2
)

= I1 + I2 (say).

Since Q is the a-multiscaling set of the a-multiwavelet set W, W ⊂ aQ and
W ∩ Q = φ. Let ξ ∈ R. Then, for some n ∈ Z, ξ ∈ anW. Before proceeding
further, we observe the following:

(i) ξ /∈ amW, where m is an integer different from n,

(ii) on account of the facts that W ⊂ aQ and Q ⊂ aQ, ξ ∈ alQ, for any
integer l > n, and

(iii) since W ∩ Q = φ, and ξ ∈ anW, a−1Q ⊂ Q implies that for an integer
p ≤ n, ξ /∈ apQ.

Now, since W is an a-multiwavelet set and (ξ1, ξ2) ∈ R2, ξ1 ∈ akW and
ξ2 ∈ alW, for some k, l ∈ Z. The following cases settle (3.5).

Case (a). Suppose k ≤ l. Then from (ii), ξ1 ∈ al+1Q. Therefore, (a−lξ2, a
−l−1ξ1) ∈

W × Q. Using (i), we obtain that I1 = 1. Next, from (iii), it follows that
ξ2 /∈ akQ. Using (i) again, we get I2 = 0. Hence, I = 1.

Case (b). Suppose k > l. Then, from (ii), ξ2 ∈ akQ. Therefore, (a−kξ1, a
−kξ2) ∈

W ×Q. From (i), we obtain that I2 = 1. Using (iii), we have ξ1 /∈ al+1Q which
together with (i), gives I1 = 0. Hence, I = 1.
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Since W is an a-multiwavelet set of order L, it satisfies (3.3) and for ξ ∈ R
there exist integersm1,m2, ...,md such that ξ+2miπ ∈W, i = 1, ..., L. Further,
since Q is an a-multiscaling set of order d, it satisfies (3.4) and for ξ ∈ R,
there exist integers n1, n2, ..., nd such that ξ + 2niπ ∈ Q, i = 1, ..., d. Now, for
ξ ∈ R2, we have∑
k∈Z2

χW×Q(ξ + 2kπ) =
∑

(m,n)∈Z2

χW (ξ1 + 2mπ) χQ(ξ2 + 2nπ), a.e., ξ1, ξ2 ∈ R

= L
∑
n∈Z

χQ(ξ2 + 2nπ), a.e., ξ2 ∈ R

= Ld.

This completes the proof. �

Combining Theorems 3.2 and 3.3, we have

Theorem 3.4. Let W be a measurable set of the Lebesgue measure 2πL in
R, and Q be a measurable set in R such that Q ⊂ aQ. Then W × Q is an
A-multiwavelet set of order Ld in R2 if and only if W is an a-multiwavelet set
of order L and Q is an a-multiscaling set of order d associated with W, where
L = (a− 1)d.

Theorem 3.5. Let Q be an a-multiscaling set of order d in R. Then Q×Q
is an A-multiscaling set of order d2 in R2.

PROOF. Since Q is an a-multiscaling set of order d, |Q| = 2πd and W ≡ aQ\Q
is an a-multiwavelet set of order (|a| − 1)d, say, L. Therefore, |Q × Q| =
|Q| · |Q| = 4π2d2. That

A∗(Q×Q)\(Q×Q) = (aQ×Q)\(Q×Q) = (aQ\Q)×Q = W ×Q,

is an A-multiwavelet set of order (|a| − 1)d2 = Ld, follows from Theorem 3.3.

Furthermore, since Q is an a-multiscaling set of order d, it satisfies (3.4).
Thus, for ξ = (ξ1, ξ2) ∈ R2, there exist integers m1,m2, ...,md, and l1, l2, ..., ld
such that ξ1 + 2miπ ∈ Qi, and ξ2 + 2liπ ∈ Qi, i = 1, ..., d. Now, we have∑

k∈Z2

χQ×Q(ξ + 2kπ) =
∑

(k1, k2)∈Z2

χQ×Q(ξ1 + 2k1π, ξ2 + 2k2π)

=
∑

(k1, k2)∈Z2

χQ(ξ1 + 2k1π) χQ(ξ2 + 2k2π) = d2.
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This completes the proof. �

Corollary 3.6. If Q is an a-multiscaling set of order d in R associated with
the a-multiwavelet set W of order L, then Q × Q is an A-multiscaling set of
order d2 associated with the A-multiwavelet set W ×Q of order Ld in R2.

Remark 3.7. Since a wavelet set W has a scaling set if and only if W is an
MRA wavelet set, the product of a non-MRA wavelet set with any measurable
set of R cannot provide an A-wavelet set of R2.

Below we provide some examples to illustrate certain A-wavelet sets of R2

obtained as the product of an MRA dyadic wavelet set with its scaling set,

where A denotes the matrix

(
0 1
2 0

)
.

Example 3.8. For a ∈ (0, 2π), Wa = [2a− 4π, a− 2π) ∪ [a, 2a) is known to
be a 2-dilation MRA wavelet set [14]. Since its scaling set Qa is [a − 2π, a),
by Theorem 3.4, it follows that Wa ×Qa is an A-wavelet set.

Example 3.9. Wavelet sets possessing three intervals have been character-
ized by Ha, Kang, Lee and Seo in [14]. These are precisely,

W (j, p) ≡ Ij,p ∪ Jj,p ∪Kj,p,

where

Ij,p ≡
[
− 2

(
1− 2p+ 1

2j+1 − 1

)
π , −

(
1− 2p+ 1

2j+1 − 1

)
π

]
,

Jj,p ≡
[

2(p+ 1)π

2j+1 − 1
,

2(2p+ 1)π

2j+1 − 1

]
, Kj,p ≡

[
2j+1(2p+ 1)π

2j+1 − 1
,

2j+2(p+ 1)π

2j+1 − 1

]
,

and j, p are natural numbers such that j ≥ 2 and 1 ≤ p ≤ 2j − 2.

For j ≥ 2, and an odd p ∈ N, W (j, p) is a non-MRA wavelet set [14;
Theorem 4.7] while for p = 2j − 2, W (j, p) is an MRA wavelet set [19]. The
scaling set of

W (j, 2j − 2) =

[
−4π

2j+1 − 1
,
−2π

2j+1 − 1

]
∪
[

(2j+1 − 2)π

2j+1 − 1
,

(2j+2 − 6)π

2j+1 − 1

]
∪[

2j+1(2j+1 − 3)π

2j+1 − 1
,

2j+2(2j − 1)π

2j+1 − 1

]
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is given by

Qj =

∞⋃
k=1

2−k W (j, 2j − 2)

=

[
−2π

2j+1 − 1
,

(2j+1 − 2)π

2j+1 − 1

]
∪

(
j⋃
r=1

[
2r(2j+1 − 3)π

2j+1 − 1
,

2r+1(2j − 1)π

2j+1 − 1

])
.

Thus from Theorem 3.4, W (j, 2j−2)×Qj is an MRA A-wavelet set of R2,
for j ≥ 2. However, when p is odd, W (j, p) does not provide an A-wavelet set
of R2 as its product with any measurable set of R.
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