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SETS IN THE EUCLIDEAN PLANE

Abstract
For A = ( 2 (1) > , where a is an integer such that |a] > 1 and a
natural number d satisfying L = (|Ja| — 1)d, we obtain that the product
W x @ of a measurable set W of the Lebesgue measure 27L, and a
measurable set ( in R such that Q C a@, is an MRA A-multiwavelet
set of order Ld in R? if and only if W is an a-multiwavelet set of order
L and @ is an a-multiscaling set of order d associated with W.

1 Introduction.

The concept of wavelet sets has been introduced by observing that the Lebesgue
measure of the support of the Fourier transform of an orthonormal wavelet is
at least 2m. Considering the notion of multiwavelets [7, 8, 12], wavelet sets
have been generalized into multiwavelet sets by Bownik, Rzeszotnik and Spee-
gle in [4]. The study related to wavelet sets and also to multiwavelet sets has
attracted the attention of several workers [1, 3, 4, 10, 17, 18, 19, 20].

In this paper, we assume that a is an integer such that |a| > 1, and that L
is a natural number for which L/(|a| — 1) is an integer, say, d.

Having described necessary notation and preliminaries in Section 2, we
prove that for an expansive matrix A, an A-multiwavelet set W has an A-
multiscaling set if and only if it is an MRA A-multiwavelet set. In Section
3, we provide our main result, according to which the product W x @ of a
measurable set W of Lebesgue measure 2w L, and a measurable set @ in R
such that Q C aQ, is an MRA A-multiwavelet set of order Ld in R? if and
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18 SHIVA MITTAL

only if W is an a-multiwavelet set of order L and @ is an a-multiscaling set of

order d associated with W, where A = ( 2 (1) > .

2 Notation and Preliminaries.

Throughout the paper, the symbols N, Z and R denote, respectively, the set of
natural numbers, the set of integers and the real line. By A, we denote an nxn
expansive matrix such that AZ™ C Z", where n € N. The transpose of A is
denoted by A*. The Lebesgue measure of a measurable set F in the Euclidean
space R™ is denoted by |E|. The collection of all square integrable complex
valued functions on R”, in which two functions are identified if they are equal
almost everywhere (abbreviated, a.e.), is denoted by L?*(R™). With the usual
addition, scalar multiplication and the inner product (f,g) of f,g € L*(R")
defined by

(f:9)= | [fl2)g(x)dr,
Rn

L?(R"™) becomes a Hilbert space. For a function f € L'(R") N L?(R"), the
Fourier transform f of f is defined by

fO = fye =t
R

and the inverse Fourier transform f of f is defined by

y 1

10 = Gy [, F© =5 de.

A finite set ¥ = {', ...,¢F} C L?(R"), is called an orthonormal A-
multiwavelet of order L, if the system {1/15-7,C 1 j € Z,kez™l =1,.,L}
is an orthonormal basis for L? (R™), where

Wby (@) = |detAlBgt (ATz — k),  z€R™

In the case that W consists of a single element, say 1, we say v is an n-
dimensional orthonormal A-wavelet, or simply an A-wavelet. The following
result characterizes an orthonormal A-multiwavelet.

Theorem 2.1.[8, 12] A subset ¥ = {4, ..., 0%} of L*(R") is an orthonormal
A-multiwavelet if and only if the following hold:

() Tt Xjez [H(AYOR =1, ae, E€RY,
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(i) Yoy 5o PHAY P (A (€ +25m)) =0, ae., £ €R™, s € ZM\A*Z"
(i) ||¢'|| =1, fori=1,.., L.

A method to obtain A-multiwavelets in L?(R™) arises from the notion
known as the A-multiresolution analysis of multiplicity d [2, 5, 11, 16], which
is described below:

Definition 2.2. An A-multiresolution analysis (A-MRA) of multiplicity d
associated with the lattice Z™ is a sequence of closed subspaces Vj, j € Z, of
L?(R") satisfying

(a) V; CVjqq, for all jeZ;

(b) f(-) € V;, if and only if f(A-) € Vj41, forall j € Z;
NjezV; = {0};

UjezV; = L*(R");

(c
(d
(e) There exist functions ¢y, 2, ..., pg € L?(R™) such that {p;(- — k) : k €
Z", i=1,..,d} forms an orthonormal basis for Vj.

)
)
)
)

The functions @1, @a, ..., @4 are called scaling functions of the A-MRA, and
the vector ® = (¢1,...,0q)* is called a multiscaling function with multiplicity
d [6, 15] for the A-MRA.

In [2], it is shown that an A-multiresolution analysis of multiplicity d gives
rise to an A-multiwavelet ¥ of order L, where L = (|detA| — 1)d.

It is well known that |supp ’(/AJ|, where 1 is an n-dimensional orthonormal
A-wavelet, is at least (27)". An A-wavelet ¢ for which |supp ¢)| = (27)",
is said to be a minimally supported frequency (MSF) A-wavelet [8, 9, 10].
It is also known that for an MSF A-wavelet 1, there exists a measurable set
W of measure (27)™ such that |¢)| = yy. We call the set W is an A-wavelet set.

The concept of an MSF A-wavelet has been generalized to that of an MSF
A-multiwavelet of order L [4] as follows:

Definition 2.3.[4] An MSF A-multiwavelet of order L is an orthonormal

A-multiwavelet ¥ = {¢!, ..., 9L} such that |1/A11\ = Xw,, for some measurable
sets W, CR", I =1,..., L.

Stated below is a characterization of MSF A-multiwavelets:
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Theorem 2.4.[4] A set U = {{', ..., ¥F} € L2(R") such that || = xw,, for
l=1,...,L, is an orthonormal A-multiwavelet if and only if

(1) Yopezn xwi (E4+27k) xw,, (§+27k) = 81 m, a.e., EER™, I,m=1,...,L,

(i) Y ez Y xwi (A€ =1, ae., E€R™

Notice that equality is, in general, almost everywhere. Also, we shall say
sets A and B to be disjoint if |[A N B| = 0. An empty set, is symbol ¢, will
mean a set of measure zero.

Observing that Theorem 2.4 (i) implies that the disjoint union (modulo sets
of measure zero) of translates of W; by 2rZ" covers R", a.e., for | = 1, ..., L,
L
while (ii) implies that {(A*)™7(U,_, W) : j € Z} partitions R", a.e., the no-
tion of an A-multiwavelet set has been introduced in [4]. Precisely,

Definition 2.5.[4] A measurable set W C R"™ is an A-multiwavelet set of
- L
order L, if W = |J,_, W}, for some measurable sets W1y, ..., W, C R" satisfying

(1) ZkeZ" xw, (§ + 2km) xw,, (§ +2km) =01, ae.,, E€ER™, Im=1,..,L,
and

(i) ez Y xwi (A8 =1, ae., £ER™

The following characterization of A-multiwavelet sets of order L established
in [4], will be used in the sequel.

Theorem 2.6.[4] A measurable set W C R™ is an A-multiwavelet set of order
L if and only if

(1) Ypezn xw(§+2km) =L, ae., E€R”, and
(ii) ZjeZ xw(AYE) =1, ae., &R

Two measurable sets E and F' of R™ are said to be 27-translation congruent
modulo null sets if there is a measurable bijection 7 from E to F' such that
T1(t) —t € 27Z", for each t € E. These sets are said to be A-dilation congruent
modulo null sets if there is a measurable bijection § from E to F' such that
0(t) = A™t, for an m € Z, where t € E.

Dai, Larson and Speegle in [9] proved the existence of wavelets for any
expansive dilation matrix A. Gu and Han in [13] proved that if |detA| = 2,
then there exists an MSF A-wavelet 1 in L?(R™), which arises from an A-MRA
having ¢ as its scaling function. It is known that there is a measurable set
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S in R™ such that |@| = xs. Also, for the scaling function ¢ of an A-MRA
satisfying |@| = xg, for some measurable set S in R", there exists an MSF
A-wavelet ¢ associated with the A-MRA. Such a set is called an A-scaling set
4, 13].

In [13], it has been found that a measurable set S in R™ is an A-scaling
set if it satisfies the following:

(i) S c A*S,
(il) W = A*S\S, is an A-wavelet set of R”, and
(iii) {S + 2k7: k € Z™} is a measurable partition of R", a.e.

It is easy to see that (ii) and (iii) imply (i). The following is an equivalent
condition to (i) and (ii) [3, 4]:

(iv) S = U;j<oA*W, for some A-wavelet set W.

A measurable set S in R™ satisfying (i) and (ii), or equivalently (iv), is
called a generalized A-scaling set [4]. In a similar way a generalized A-scaling
set associated with an A-multiwavelet set has been described in [4] as follows:

Definition 2.7. A measurable set S in R" is called a generalized A-scaling
set if |S| = (2m)"L/(|detA| — 1), and A*S\S is an A-multiwavelet set of order
L.

Equivalently, a measurable set S in R™ is a generalized A-scaling set if and
only if S = J;Z, (A*) "W, for some A-multiwavelet set TW.

Employing Lemma 2.2 in [4], and following the steps of the proof of The-
orem 2.6 in [4], we easily obtain the proof of Lemma 2.8. Lemma 2.2 in [4]
states that for a measurable subset £ of R™, there is a measurable set F C E,
such that 7(E) = 7(E) and 7|E is injective, where 7 is a map from R" to
(—m, m]™ defined by 7(§) = £ + 2k, for some k € Z".

Lemma 2.8. Let E be a measurable subset in R™ such that |E| = (2m)"™d.
Then the following are equivalent:

(a) D pezn XE(E +2kT) =d, ae., £ €R™
(b) There exists a disjoint partition Ey, Es, ..., Eq of E satisfying
Yowezn XE (E+2km) =1, ae., E€R™, 1=1,...,d.



22 SHIVA MITTAL

(¢) There exists a disjoint partition Eq, Es, ..., Eq of E satisfying
S pezn X5, (€ + 2k7) X, (€ + 2kT) = 81m, a.e., EER™, Lm=1,...,d.

The following Lemma and its conclusion as stated below give rise the notion
of multiscaling set of multiplicity d which is a particular case of multiscaling
function of multiplicity d. We call a multiscaling set of multiplicity d associ-
ated with a dilation matrix A to be an A-multiscaling set of order d.

Lemma 2.9.[2; Lemma 5] The sequence {@;(- — k) : k € Z™, i = 1,...,d} is
an orthonormal system if and only if

D D¢+ 2km) B(E + 2km)* = I,
kezn

where 14 is an identity matriz of order d.

From the above Lemma, we derive the following:

Let ® = {p1,92,...,0a} C L*(R™) be such that |p;| = xq,, for some
measurable sets Q; CR", i =1,...,d. Then {p;(.—k): ke Z"i=1,..,d} is
an orthonormal system if and only if

Y okezn XQi(§ 4 2km) xq@, (§ +2km) = b5 5, ae, E€R", i,j=1,..,.d.

Thus the disjoint union of translates of @); by 27Z" covers R™, a.e., where
i =1,...,d. Using Lemma 2.8, we obtain that

> xol€+2kn) =d, ae., £ ER™
kezn

Now, we have

Definition 2.10. A measurable set @ C R" is called an A-multiscaling set
of order d if

(i) Q= (2m)"d,

(i) W = A*Q\ Q is an A-multiwavelet set of order L, where L =
(|detA] — 1)d, and

(iii) > pezn X@(§+2km) =d, ae., § €R™.

We say W is an A-multiwavelet set of order L associated with the A-multiscaling
set @ of order d.
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An immediate consequence of Theorem 3 in [7] is the following character-
ization of an orthonormal A-multiwavelet in R™ of order L arising from an
A-multiresolution analysis of multiplicity d.

Theorem 2.11. Let ¥ = {¢!, ..., 9L} be an orthonormal A-multiwavelet in
L?(R™) with L = (|detA| — 1)d, where d is a natural number. Then ¥ arises
from an A-multiresolution analysis of multiplicity d if and only if

L oo R ] 2
ZZ Z ‘z/)l(A*J(g—&— 2rk))| =d, a.e., £ € R".
I=1 j=1 kezn
We, now, assume that |1/A)l| = xw,, ! = 1,...,L. Then U arises from an

A-multiresolution analysis of multiplicity d if and only if

ZZ Z xw, (A (€ + 27k)) = d, a.e., £ €R",

L oo
=1 j=1kezZ™

or, equivalently,

S xw(AY(E+2mk) =d,  ae, (R,

j=1keZr
L
where W = J;_, W,.

The above can be rewritten as

Z Z X(A*)*JW(€+27T]C) = d, a.e., g S Rn,

j=1kezn

or,

Z xo (& + 2nk) = d, a.e., £ €R",
keZm

where Q = ;2 (A%) 7 W.
A straightforward computation shows that |Q| = (27)"d, and Q C A*Q.

Thus, we have the following characterization of MRA A-multiwavelet sets.

Theorem 2.12. An A-multiwavelet set W in R™ of order L, arises from
an A-multiresolution analysis of multiplicity d if and only if there is an A-
multiscaling set Q in R™ of order d associated with W, where L = (|detA|—1)d.
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3 A construction of MRA A-multiwavelet sets in R2.

In this section, we obtain our main result, which provides a method to generate
MRA A-multiwavelet sets in R? from MRA a-multiwavelet sets in R as their
product with their associated a-multiscaling sets.

Now, onwards, A denotes the matrix ) , where a is an integer such

0
that |a| > 1. We begin with the following Lemma:

Lemma 3.1. Let W be a measurable set of the Lebesque measure 2L in
R, and Q be a measurable set in R such that Q C aQ. If W x Q is an A-
multiwavelet set of order Ld in R*, where L = (a — 1)d then

(a) "W Na/W = ¢, for jk € Z, j #F.

(b) for every k € Z, (i) WNa*Q = ¢ and (ii) a*"'W N Q = ¢, cannot hold
simultaneously.

(c) QNa*~'W = ¢, where k is a natural number.
(d) W =aQ\Q, a.e.
(e) Ujezajw =R, a.e.

) Q=U,—, a "W, a.e.

ProorF. (a). Since W x @ is an A-multiwavelet set, by Theorem 2.6 (ii), we
have

R =] ()7 (W xQ)
U [(n ") ov <@u (g 2w =)
:UEAWQXM*WMMMWxM@La& (3.1)

Since the right hand side of (3.1) consists of disjoint sets a/Q x a’ ='W, j € Z,
for j,k € Z, j £ k,

(aj+1Q % ajW) N (ak+1Q % akW) — (aj+1Q n ak+1Q) > (ajW n akW) = ¢.

In view of fact that (a/71Q N a**1Q) is nonempty, we have (a). X
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(b). We establish it by contradiction. Suppose that for some k € Z, (i) and
(ii) hold. Since (3.1) is a disjoint union of sets and a*W N a/W = ¢, where
j # k, we have

|W x a*'W|

= ‘(W X ak_1W) N UjeZ [(@7Q x d'W) U (¢! W x an)]‘

= ‘UjGZ [(W N an) X (akflw N aj71W) umwn ajw) ~ (ak71W n CLJQ)]‘

=> (W NnaQ) x ("W nd~'W)| + |(WNna?W) x (a*7'W N dQ)])
JEZ
= |(WﬂakQ)| |(ak71W)| + |W] |(ak71Wﬂ Q)’ =

which implies |WW| = 0, a contradiction. X

(c). Since W x @ is an A-multiwavelet set, (3.1) holds. As W x @ appears in
the disjoint union on the right hand side of (3.1), for an integer n,

(W x Q)N (a"Q x a" W) = ¢. (3.2)
From (3.2), it follows that
(WNa“Q) x (QNa*~'W) = ¢,
where k € Z. Therefore, either W Na*Q = ¢, or QNaF'W = ¢.

To prove the result, we need to show that Q Na*~ W = ¢, for k > 1. We
achieve this by establishing that for & > 1, W Na*Q # ¢, and using facts
proved in (b). Suppose, for the sake of contradiction that W N a'Q = ¢, for
some [ > 1. Since [ > 1, |a| > 1, and |(a!W NaQ)| < |a'W]|, first note that the
set (a!W\aQ) has positive measure. Using (3.1), we have

’(alW\aQ) X W’

(alW\aQ) x W) n Ujez [(an x @ W)U (@ W x an)H
= 'U - ((alW\aQ) Na’Q) x (WNd '"W)U ((d'W\aQ) Na? W) x (W N an)] ’

= Z (‘ a'W\aQ) Na’ Q) x (Wﬂaj_lVV)’ + ‘((alW\aQ) Na?W) x (Wﬂan)D

JEL

((a'W\a@) N aQ)| W] + |((@'W\aQ) N a'W)| |(W na'Q)| =
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which contradicts |(a'W\aQ)| > 0. X

(d). Since W x @ is an A-multiwavelet set of order Ld, its Lebesgue measure
is (2m)2Ld. Also, the Lebesgue measure of W is 2wL. These facts together
imply that the Lebesgue measure of @ is 2wd. Since Q C aQ,Q NW = ¢
and aQ NW #£ ¢, (aQ\Q) N W # ¢. Further, since |(aQ\Q)\W| = 0, we have
W =aQ\Q, a.e. X

(e). Further, on simplifying the expressions in the right hand side of (3.1), by
using (d), we obtain that

R? = U.eZ [(PQ x a'W)U (& 'W x o/ 1Q)] , ace.

= LJ]_GZ [(an x (a?Q\a’ Q) U (¢’ Q\a’ Q) x ajle)] , a.e.
= U]EZ [(an X an)\(ajle X ajle)] , a.e.
Equivalently,

Xe2(6m) =D [X@iaxar@) (1) = Xw-1gxa-10)(&n)]  a.e., (&) € R
JEL
1= ll‘mj%ooX(anxan) (6777)7 a.e. (6777) € RQ
= limj%oo (Xan(f) Xan<n)) , a.e., 577] eR.
This implies that

limjsooXaig(§) =1, ae., £€R.

Further, since a/Q = o/ (Up2 0 *W) = U2 1a™'W, a.e.,

limjooXai@(§) = limjsooXuse  a—tw(§), ae., §ER

—i+

1 =1limje0 Z Xa-tw (&) ae., £€R

t=—j+1
= Zxa—tw(f) a.e., £€R.
tez
Thus we obtain that UjezajW =R, a.e X

(f). Since Q Na*'W = ¢, where k is any natural number, we have Q N
Us, a*"'W = ¢. This implies that Q C R— (UZO:1 a’“lW) =Upe,a "W, ae.
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Further, since the Lebesgue measure of (J;—; a "W = |Up—; a W | = 2rd =
|Ql, a.e., it follows that Q = {J;—, a=*W, a.e.

Theorem 3.2. Let W be a measurable set of Lebesgue measure 2L in R, and
Q@ be a measurable set in R such that Q C aQ. If W x Q is an A-multiwavelet
set of order Ld in R?, then W is an a-multiwavelet set of order L and Q is
the a-multiscaling set of order d associated with W, where L = (a — 1)d.

Proor. In view of parts (a), (d), (e), and (f) of Lemma 3.1, to complete the
proof, we need to show that

Z xw (& + 2mm) = L, ae., £€R, (3.3)
meZ
and
> xqlé+2nm)=d,  ae, (€R (3.4)
neZ

From Lemma 2.8, there exists a disjoint partition F;,i = 1,..., Ld of W x @,
such that

Z Xg, (n+ 2km) =1, a.e., neR2
kez?

Also, |E;| = (27)2,i =1, ..., Ld.

Let p1 and ps be the first and second projection maps from R? — R defined
by pi(z,y) = z and pa(z,y) =y, for (z,y) € R%. Since E; is 2rZ>*-translation
congruent to (—, 7%, a.e., p1(E;) and py(E;) are 2nZ-translation congruent
to (—m,«, a.e., for ¢ = 1,..., Ld. Clearly, for i = 1, ..., Ld, p1(E;) and py(FE;)
are subsets of W and @ respectively.

Since W = UL py(E;), 7(W) = 7(ULd p1(E;)) = (—m, 7). Now, using
Lemma 2.2 [4] and following the steps of the proof of Theorem 2.6 in [4], we
easily obtain L disjoint sets Wy, Wa, ..., W, of W such that |W;| = 27, and
orezxwi(§+2km) =1, ae., £ €R,i=1,..,L. An application of Lemma
2.8, yields (3.3).

With the same arguments as above, we obtain disjoint partition @1, Q2, ...,
Qa of @ such that [Q;| = 27, and ), ., xq, (€ + 2k7m) = 1, ae., § € R,
j=1,...,d. We obtain (3.4) by aplying Lemma 2.8. X

Theorem 3.3. Let Q be an a-multiscaling set of order d of an a-multiwavelet
set W of order L in R. Then W x @ is an A-multiwavelet set of order Ld in
R2, where L = (a — 1)d.
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Proor. For the proof, we show that W x @) satisfies:

D xwxq (A7) =1, ae., £€R? (3.5)
JjEZ
3 Xwxo(€+2km) =Ld,  ae., £€R% (3.6)
keZ2

Let (51,52) € R?. Then

1= xwxq(A7¢)

jez
0 o \/[¢ a0\ (¢
=S ((470) (@) +ore (5 ) (E)]
= Z{XWXQ (&, a7 '&) + xwxo (¢7€1,d7&)}
jez
= ZXWXQ (a7&,0" &) + ZXWXQ (a?&,d’ &)
JEL JEZ

= Il + IQ (say).

Since @ is the a-multiscaling set of the a-multiwavelet set W, W C a@Q and
WNQ = ¢. Let £ € R. Then, for some n € Z, £ € a”W. Before proceeding
further, we observe the following:

(i) &€ ¢ a™W, where m is an integer different from n,

(i) on account of the facts that W C aQ and Q C aQ, ¢ € a'Q, for any
integer [ > n, and

(iii) since W NQ = ¢, and £ € a"W, a~1Q C Q implies that for an integer
p<mn, §¢arQ.

Now, since W is an a-multiwavelet set and (£1,&) € R2 & € oW and
& € a!W, for some k,l € Z. The following cases settle (3.5).

Case (a). Suppose k < [. Then from (ii), &; € a!t1Q. Therefore, (a™'&y,a171¢;) €
W x Q. Using (i), we obtain that I; = 1. Next, from (iii), it follows that
& ¢ a*Q. Using (i) again, we get I, = 0. Hence, I = 1.

Case (b). Suppose k > [. Then, from (ii), & € a*Q. Therefore, (a=%¢1,a7%&;) €
W x Q. From (i), we obtain that Iy = 1. Using (iii), we have ¢; ¢ a!*1Q which
together with (i), gives I; = 0. Hence, I = 1.
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Since W is an a-multiwavelet set of order L, it satisfies (3.3) and for £ € R
there exist integers mq, ma, ..., mq such that £é4+2m;m € W, i = 1,..., L. Further,
since @ is an a-multiscaling set of order d, it satisfies (3.4) and for £ € R,
there exist integers ni,ns, ..., ng such that £ +2n;m € Q, ¢t =1, ..., d. Now, for
¢ € R?, we have

> xwxql€+2km) = Y xwl(& +2mn) xo(& +2n7), ae. 1,6 R
kez? (m,n)€z?

= LZXQ(& +2n7), a.e.,& €R
ne”Z

= Ld.

This completes the proof. X

Combining Theorems 3.2 and 3.3, we have

Theorem 3.4. Let W be a measurable set of the Lebesgue measure 2wL in
R, and @ be a measurable set in R such that Q@ C aQ. Then W x @Q is an
A-multiwavelet set of order Ld in R? if and only if W is an a-multiwavelet set
of order L and @Q is an a-multiscaling set of order d associated with W, where
L= (a—1)d.

Theorem 3.5. Let QQ be an a-multiscaling set of order d in R. Then Q X Q
is an A-multiscaling set of order d? in R2.

ProOF. Since @ is an a-multiscaling set of order d, |Q] = 2wd and W = aQ\Q
is an a-multiwavelet set of order (Ja| — 1)d, say, L. Therefore, |Q x Q| =
Q| - |Q| = 472d?. That

A(@*x Q\Q x Q) = (aQ x Q\(@ x Q) = (aQ\Q) x Q =W x Q,
is an A-multiwavelet set of order (|a| — 1)d? = Ld, follows from Theorem 3.3.

Furthermore, since @ is an a-multiscaling set of order d, it satisfies (3.4).
Thus, for £ = (£1,&2) € R2, there exist integers my, ma, ..., mg, and Iy, la, ..., lg
such that & + 2m;m € Q;, and & + 2w € Q;, ¢ =1,...,d. Now, we have

Z XQxQ(§ + 2km) = Z X@x@ (&1 + 2kim, &2 + 2kom)
kez? (k1, k2)€Z?

e Z XQ(§1 + 2]6171') XQ(fQ + 2/{327&') = d2.
(kl,k2)€Z2
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This completes the proof. X

Corollary 3.6. If Q is an a-multiscaling set of order d in R associated with
the a-multiwavelet set W of order L, then Q x Q is an A-multiscaling set of
order d? associated with the A-multiwavelet set W x @Q of order Ld in R2.

Remark 3.7. Since a wavelet set W has a scaling set if and only if W is an
MRA wavelet set, the product of a non-MRA wavelet set with any measurable
set of R cannot provide an A-wavelet set of R2.

Below we provide some examples to illustrate certain A-wavelet sets of R?
obtained as the product of an MRA dyadic wavelet set with its scaling set,
0 1
2 0 )°
Example 3.8. For a € (0,27), W, = [2a — 47,a — 27) U [a, 2a) is known to
be a 2-dilation MRA wavelet set [14]. Since its scaling set Q, is [a — 27, a),
by Theorem 3.4, it follows that W, x @, is an A-wavelet set.

where A denotes the matrix

Example 3.9. Wavelet sets possessing three intervals have been character-
ized by Ha, Kang, Lee and Seo in [14]. These are precisely,

W(p)=1LipUJjpUKjp,
where
B 2p+1 2p+1
o (e ) ()

g = 2p+ 7 2(2p+ D)7 K = 2 2p+ ) 272 (p+ )
Jp = 9j+l _ 1 9541 _1 |’ Jp = 2+l _ 1 Y FS ] >

and j, p are natural numbers such that j > 2 and 1 <p <2/ — 2.

For j > 2, and an odd p € N, W(j,p) is a non-MRA wavelet set [14;
Theorem 4.7] while for p = 2/ — 2, W (j,p) is an MRA wavelet set [19]. The
scaling set of

2j+1 17 925+1 1 2+l 1 7 9i+l 1

20+1(20+1 ) 22(20 — 1)7
2+ 1 7 2t ]

W2 —2) = [ —47 -2 ] [(2j+1 _ o) (242 —6)r
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is given by

Q

o0
=27 w2 -2
k=1

[ 2w (@ 9] Toror(it — 3y 20120 — 1)
T il 10 i+l 1 Ul 2+l 1 7 9i+l _ 1 :

r=

Thus from Theorem 3.4, W (4,27 —2) x Q; is an MRA A-wavelet set of R?

for j > 2. However, when p is odd, W (4, p) does not provide an A-wavelet set
of R? as its product with any measurable set of R.
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