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A NEW PROOF OF THE
SOBCZYK-HAMMER DECOMPOSITION

THEOREM

Abstract

In this short note, we give a simple proof of the Sobczyk-Hammer
Decomposition Theorem in terms of Dedekind complete Riesz spaces.

1 The Sobczyk-Hammer Decomposition Theorem.

Recall that an algebra A on a nonempty set X is a subset of the power set 2X

such that X ∈ A and X \ A and A ∩ B belong to R whenever A and B do.
A map µ : A → [−∞,∞] is called an additive signed measure (or, a charge)
if µ(∅) = 0, and µ(A ∪ B) = µ(A) + µ(B) whenever A,B ∈ A are disjoint. If
µ(A) is bounded in R then µ is said to have bounded variation. The set of
charges on A with finite bounded variation is denoted by ba(A). If µ ∈ ba(A)
and µ(A) ≥ 0 for each A ∈ A the we say µ is positive. Let µ ∈ ba(A) be
positive; then µ is called continuous if for each ε > 0 there exists a partition
{A1, A2, ..., An} of X in A such that

sup
i
µ(Ai) < ε.

A necessary and sufficient condition for the continuity of µ is

inf

{
sup
i≤r

µ(Ai) : P = {A1, ..., Ar} is a partition of X

}
= 0.

The Sobczyk-Hammer Decomposition Theorem can be stated as follows.
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Theorem 1 (Sobczyk-Hammer). Let µ ∈ ba(R) be positive. Then there exist
a unique positive continuous ν0 ∈ ba(R) and a subset {µn : n ∈ N} of two-
valued positive additive measure with

∑
n µn(X) <∞ such that

µ = ν +
∑
n

µn.

The above theorem is given in [4] by Sobczyk and Hammer. Another proof
of it can be found in [3].

2 Proof of the Theorem.

We will give a proof of Theorem 1 using Riesz space (vector lattice) theory. For
all unexplained notation and terminology concerning Riesz spaces, we refer to
[1].

It is well-known that ba(A) is a Dedekind complete Riesz space under the
pointwise algebraic operations and pointwise order. In this case, the absolute
value µ ∈ A is given by

|µ|(A) = sup

{
n∑
i=1

|µ(Ai)| : {A1, A2, ..., An} is a partition of X

}
.

Moreover, it can be verified directly or consult on [1, Theorem 8.70] that the
Dedekind complete Riesz space ba(A) is an AL-space under the norm

||µ|| = |µ|(X).

Let
cba(A) := {µ ∈ ba(R) : |µ| is continuous}.

Lemma 2. The set cba(A) is a band in the Dedekind complete Riesz space
ba(A).

Proof. Since |µ(A)| ≤ |µ|(A) for each A ∈ ba(A), it is easy to see that ba(A)
is an order ideal. Let µα ↑ µ in ba(A) with µα ∈ cba(A). Let ε > 0 be given.
Since µα(X) ↑ µ(X) in R, there exists an α0 such that

0 ≤ µ(A)− µα0
(A) ≤ µ(X)− µα0

(X) <
ε

2

for each A ∈ ba(A). As µα0
is continuous, there exists a partition

{P1, P2, ..., Pn}
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of X in ba(A) such that

µα0(Ai) <
ε

2
for each i = 1, 2, ..., n. Now it is clear that

µ(Ai) < ε

for each i = 1, 2, ..., n, completing the proof.

For a subset A of a Riesz space E, the disjoint complement of A is defined
by

Ad := {x ∈ E : |x| ∧ |y| = 0 for each y ∈ A}.
If 0 ≤ µ ∈ ba(A), then set

mµ := inf{sup
i≤r

µ(Ai) : P = {A1, ..., Ar} is a partition of X}.

Lemma 3. One has

cba(A)d ⊂

{ ∞∑
n=1

µn : µn ∈ ba(A) is two-valued and

∞∑
n=1

|µn|(X) <∞

}
.

Proof. First we note that if 0 < µ ∈ ba(A) is not continuous, then there
exists a two-valued 0 < λ ∈ ba(A) with λ ≤ µ (see Lemma in [3]). Moreover
we can arrange λ so that it is 0 − mµ valued. Suppose that there exists
µ ∈ cba(A)d which is not of the form

∑∞
n=1 µn. Choose a 0 − mµ valued

µ1 ∈ ba(A). Then 0 < µ − µ1 holds. Suppose now that µ1, µ2, ..., µn is
two-valued and non-zero in ba(A), and that

0 < λn = µ−
n∑
i=1

µi.

Now define µn+1 as being 0 −mλn valued in ba(A) with µn+1 ≤ λn. So, by
the induction step, a sequence (µn) in ba(A) consisting of positive and two-
valued term and satisfying µn+1 ≤ λn for all n is defined. Since µ is bounded∑∞
n=1 µn(X) <∞ holds, whence µn(X)→ 0. Let

µ0 := µ−
∞∑
n=1

µn.

By the assumption, µ0 is not continuous, as 0 < µ0 ≤ µ. On the other hand,

0 < mµ0
≤ mλn

= mµn
= µn(X)→ 0

is satisfied, and this contradiction proves the lemma.



492 Z. Ercan

We are now in a position to give the proof of the Sobczyk-Hammer De-
composition Theorem.

Proof of Theorem 1. Since ba(A) is Dedekind complete and cba(A) is a
band in ba(A), we have

ba(A) = cba(A)⊕ cba(A)d.

Then there exist unique µs ∈ cba(A) and µd ∈ cba(A)d such that

µ = µs + µd.

By Lemma 3, there exists a sequence (µn) of nonzero, two-valued, finitely
additive measures such that

µd =

∞∑
n=1

µn,

and the proof is complete.

The referee has informed me that in [2] a technique based on the theory of
Riesz spaces has been used also. In [2] the measures have values in l-groups
and are defined on a structure (D-lattice) more general than Boolean algebras.
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