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Abstract

In this paper we describe the structure of the arithmetic sum of
two affine Cantor sets. These are self-similar sets which are part of the
dynamically defined Cantor sets.

Let C1,C2 be affine Cantor sets with [0, s] and [0, r] as intervals of
step 0. We explicit a generic family of these self-similar sets for which
the structure of C1 + C2 is of one of the following five types: (i) an
M -Cantorval, (ii) an R-Cantorval, (iii) an L-Cantorval, or there exist
λ, η > 0 and intervals I, Ĩ of the construction of C1 and C2, respectively,
such that (iv) λC1+ηC2 = C1∩I+C2∩Ĩ−min I−min Ĩ = [0, λs+ηr],
or (v) λC1 +ηC2 = C1∩I+C2∩ Ĩ−min I−min Ĩ is homeomorphic to
the Cantor ternary set. This result generalizes the description obtained
by Mendes and Oliveira for the case of homogeneous Cantor sets and the
one obtained by the first two authors for semi-homogeneous Cantor sets.
It also provides a suitable framework in which a question of Mendes and
Oliveira admits a positive answer.
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1 Introduction and preliminaries

The study of measure-theoretical and topological properties of arithmetic sums
of Cantor sets is of interest in many different settings, for example in connec-
tion with homoclinic bifurcations of dynamical systems ([9]) or in the study
of continued fractions in number theory, as initiated by Hall [3]. In the former
context, Palis asked the question of whether the difference (or sum) of two dy-
namically defined Cantor sets is either of Lebesgue measure zero or contains
an interval. Although this is false in full generality ([2]), it is generically true
as shown by Moreira and Yoccoz [8]. They proved that, generically, if the sum
of the Hausdorff dimensions of two regular Cantor sets C1 and C2 is larger
than 1 then C1 + C2 contains intervals. On the other hand, it is known that
if the sum of the Hausdorff dimensions of C1 and C2 is less than 1 then the
arithmetic sum C1 +C2 has Lebesgue measure zero, thus providing a positive
answer to Palis’s conjecture.

The question remains open when one concentrates on the particular class of
affine Cantor sets, which form a collection of dynamically defined Cantor sets
with strong self-similarity properties: a Cantor set C is affine if it is obtained
from an interval [0, s] by removing at the first step a finite number of disjoint
open intervals, resulting in a finite union of non-trivial closed intervals, and
then continuing (at scale) with the same pattern of removing intervals at each
subsequent step of the construction. The interval [0, s] is called the interval
of step 0 and the closed intervals obtained at each step n of the construction
(n ≥ 1) are called intervals of step n.

In this paper we are interested in studying the arithmetic sum of two affine
Cantor sets from the topological point of view.

This direction was initiated by Mendes and Oliveira [4] who described the
topological structure of the arithmetic sum of two homogeneous sets when both
have [0, 1] as interval of step 0. An affine Cantor set is homogeneous provided
it has all its intervals of step 1 of equal lengths; consequently, for each n ≥ 1
the intervals of step n have equal lengths as well.

Theorem 1.1. ([4]) Let C1,C2 be homogeneous Cantor sets with [0, 1] as
interval of step 0. Then C1 + C2 is either: (i) an M -Cantorval, (ii) an R-
Cantorval, (iii) an L-Cantorval, (iv) the interval [0, 2], or (v) homeomorphic
to the Cantor ternary set.

Definition 1.2. Let K be a compact subset of R. A gap of K is a bounded
connected component of R \ K; an interval of K is a non-trivial connected
component of K and a point of K is a trivial one. A perfect subset of R, such
that any gap is accumulated on each side by infinitely many intervals and gaps
is called an M -Cantorval. A perfect subset of R, such that any gap has an
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interval adjacent on its right and is accumulated on the left by infinitely many
intervals and gaps is called an L-Cantorval. The definition of an R-Cantorval
is analogous.

We refer the reader to [4] for specific examples of arithmetic sums which pro-
duce these types of Cantorval structures.

It was noticed in [1, Example 1.5] that the description from Theorem 1.1
does not hold for arithmetic sums of general homogeneous Cantor sets. Nev-
ertheless, it is generically true as shown by the first two authors recently [1,
Corollary 2.6].

Theorem 1.3. ([1]) Let C1,C2 be homogeneous Cantor sets. Then, gener-
ically, C1 + C2 is either: (i) an M -Cantorval, (ii) an R-Cantorval, (iii) an
L-Cantorval, (iv) a finite union of closed intervals, or (v) homeomorphic to
the Cantor ternary set.

If one looks outside the class of homogeneous Cantor sets, the topological
structure of the arithmetic sum of two affine Cantor sets is more complex. On
one hand, the arithmetic sum C1 + C2 behaves very nicely when the sum of
the Hausdorff dimensions of C1 and C2 is slightly larger than 1, in which case
C1 + C2 is an M -Cantorval. This is a generic result which was obtained by
Moreira and Muñoz in [6, Theorem 1] and describes a phenomenon that is
true not only for affine Cantor sets, but also for dynamically defined Cantor
sets.

On the other hand, Moreira, Muñoz and Rivera-Letelier exhibited in [7]
a construction of two affine Cantor sets C1 and C2 for which C1 + C2 is
persistently an LR-Cantorval, which is defined as a perfect subset of R with
infinitely many intervals and gaps so that any gap has intervals adjacent to
its left and right.

Theorem 1.4. ([7]) Given ε > 0, let Kε be the Cantor set defined by affine
increasing functions ψi satisfying ψi(Ii) = [0, 25], 1 ≤ i ≤ 6, where

I1 = [0, 10] I2 = [11, 11 + ε2/2] I3 = [12, 12 + 2ε2]

I4 = [13, 13 + ε2/2] I5 = [14, 14 + 2ε2] I6 = [15, 25].

If 0 < ε < 1/100 then there is a neighborhood U of Kε in the C1+ topology
such that if (K1,K2) ∈ U × U and λ ∈ (ε/3, 3ε) then K1 + λK2 has infinitely
many connected components and all of its gaps are of the type LR.

This result provides a negative answer to the question of weather Theorem
1.1 (or, more precisely, Theorem 1.3) holds generically for affine Cantor sets,
a question that was raised by Mendes and Oliveira in [4, Question 1].
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It should be observed that the construction in Theorem 1.4 uses semi-
homogeneous Cantor sets: these are affine Cantor sets for which the leftmost
interval of step 1 has the same length as the rightmost interval of step 1. For
semi-homogeneous Cantor sets it was shown in [1] that a weaker version of
Theorem 1.3 is nonetheless true.

Theorem 1.5. ([1]) Let C1,C2 be semi-homogeneous Cantor sets with [0, s]
and [0, r] as intervals of step 0. Then, generically, the structure of C1 +
C2 is of one of the following five types: (i) an M -Cantorval, (ii) an R-
Cantorval, (iii) an L-Cantorval, or there exist λ, η > 0 and intervals I, Ĩ of
the construction of C1 and C2 such that (iv) λC1 +ηC2 = C1∩ I+C2∩ Ĩ−
min I−min Ĩ = [0, λs+ηr], or (v) λC1+ηC2 = C1∩I+C2∩Ĩ−min I−min Ĩ
is homeomorphic to the Cantor ternary set.

This result generalizes the description obtained by Mendes and Oliveira
since it is actually equivalent to the statement of Theorem 1.3 when one only
considers homogeneous Cantor sets C1 and C2. This is a consequence of the
fact that, for homogeneous sets, C1 + C2 is a finite union of translations of
C1∩ I+C2∩ Ĩ for any intervals I and Ĩ of the construction of C1 and C2; as
such, the conditions (iv) and (v) above imply the corresponding ones about
C1 + C2 in Theorem 1.3.

In light of these facts it is natural to conjecture that the phenomenon from
Theorem 1.5 is more general and extends (generically) to the class of affine
Cantor sets. The aim of the present note is to show that this is indeed true. As
such, the main result of the paper (Theorem 2.2) provides a suitable framework
in which the mentioned question of Mendes and Oliveira [4, Question 1] admits
a positive answer.

The proof of this result follows the main steps from [1], however the ar-
guments need to overcome the lack of symmetry which was essential in the
semi-homogeneous case.

2 The main result

An important role in our argument will be played by the following result of
Moreira, which is part of a more general result involving regular Cantor sets
([5], Theorem IV.1). It was also used in other papers which deal with the
topological structure of the arithmetic sum of regular Cantor sets ([1], [6],
[7]).

Theorem 2.1. ([5]) Let C1,C2 be affine Cantor sets with [0, s] and [0, r] as
intervals of step 0. Let J and J̃ be the leftmost intervals of step 1 for C1 and
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C2, respectively, and assume that

ln (|J |/s)

ln
(
|J̃ |/r

) /∈ Q.

Then C1 + C2 does not contain an interval [0, δ], for all δ > 0, if and only if
there exist µ > 0 and t ∈ R such that

(−µC1 + t) ∩C2 = ∅ and (−µC1 + t)→ C2.

The last condition means that the convex hulls [c, d] and [e, f ] of −µC1 + t
and C2, respectively, satisfy c < e < d < f .

It is easy to see that the conclusion of Theorem 2.1 can be restated as
follows, which is how it will be used later in the arguments: there exists δ > 0
such that C1 + C2 ⊃ [0, δ] if and only if µC1 + C2 ⊃ [0,min{µs, r}] for all
µ > 0.

We can now state the main result of the paper which describes the structure
of the arithmetic sum of two affine Cantor sets. In what will follow, the implicit
topology in the class of affine Cantor sets is induced from the Hausdorff metric
on compact sets.

Theorem 2.2. Let A be the class of all affine Cantor sets C with min C = 0.
Then there is a residual set R ⊂ A×A such that for (C1,C2) ∈ R the structure
of C1 + C2 is of one of the following types: (i) an M -Cantorval, (ii) an R-
Cantorval, (iii) an L-Cantorval, or there exist λ, η > 0 and intervals I, Ĩ of
the construction of C1 and C2 such that (iv) λC1 +ηC2 = C1∩ I+C2∩ Ĩ−
min I−min Ĩ = [0, λs+ηr], or (v) λC1+ηC2 = C1∩I+C2∩Ĩ−min I−min Ĩ
is homeomorphic to the Cantor ternary set, where s = max C1, r = max C2.

The residual set R consists of the pairs (C1,C2) satisfying two properties.
On one hand,

ln (|J |/s)

ln
(
|J̃ |/r

) /∈ Q and
ln (|K|/s)

ln
(
|K̃|/r

) /∈ Q, (1)

where J and K are the leftmost and rightmost intervals of step 1 for C1, and
J̃ and K̃ are the leftmost and rightmost intervals of step 1 for C2. On the
other hand, for any c, d extremes of gaps of C1 and e, f extremes of gaps of
C2 we have c+ e 6= d+ f .

Proof. Let (C1,C2) ∈ R. We start by looking at the gaps of C1 +C2. Any
left (respectively, right) extreme of a gap of C1 + C2 is always of the form
c+d, with c ∈ C1 and d ∈ C2 left (respectively, right) extremes of gaps in C1

and C2. This gives us countably many intervals of the construction of C1 and
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C2 which have c and d as their right (respectively, left) extremes. However,
by the uniqueness of c and d, it is not hard to see that there exist intervals
I, Ĩ of the construction of C1 and C2 which have c and d as their extremes
and, in addition, C1 ∩ I + C2 ∩ Ĩ coincides with a neighborhood of c + d in
C1 + C2. When c+ d is a right extreme of a gap of C1 + C2 this implies that
we can find λ, η > 0 such that λC1 + ηC2 + (c + d) = C1 ∩ I + C2 ∩ Ĩ is a
neighborhood of c+ d in C1 + C2. The situation when c+ d is a left extreme
of a gap can be treated in an analogous way, since s + r − (c + d) is a right
extreme of a gap of (s−C1) + (r −C2).

Assume that (v) is not satisfied, for every choice of λ, η > 0. Then any
extreme c+ d of a gap of C1 + C2 has intervals of C1 + C2 arbitrarily close,
and this includes the cases when c = d = 0 and c = s, d = r. By Theorem 2.1
the condition C1 + C2 ⊃ [0, δ], for some δ > 0, is equivalent to the property
that, given any λ, η > 0, there exists δ′ > 0 such that λC1 + ηC2 ⊃ [0, δ′],
and the same is true when we replace C1 and C2 with s − C1 and r − C2.
Consequently, C1+C2 contains an interval [0, δ] (respectively, [s+r−δ, s+r])
for some δ > 0 if and only if C1 + C2 contains an interval adjacent to c + d,
whenever c+ d is a right (respectively, left) extreme of a gap of C1 + C2. In
conclusion, C1 + C2 is either an M , R, L- Cantorval, or there is δ > 0 such
that

[0, δ] ∪ [s+ r − δ, s+ r] ⊂ C1 + C2. (2)

We need to discuss now in more details the structure of the affine Cantor
sets C1 and C2. Let a := |J |/s and ã := |K|/s. Then, for every n ≥ 1,
Jn := [0, san] is the leftmost interval of step n and Kn := [s(1− ãn), s] is the
rightmost interval of step n of C1. If we denote by (sa, sw) the leftmost gap
at step 1 of the construction of C1, for some a < w < 1, then

(
san, swan−1

)
is the leftmost gap at step n, for all n ≥ 1. We can proceed in the same
way with C2 and get 0 < b, b̃, w̃ such that, for all n ≥ 1, J̃n := [0, rbn] and
K̃n := [r(1 − b̃n), r] are the leftmost and rightmost intervals of step n, while(
rbn, rw̃bn−1

)
is the leftmost gap at step n of the construction of C2. Note

that the working conditions (1) translate to

ln a

ln b
/∈ Q and

ln ã

ln b̃
/∈ Q.

Let p, q be arbitrary positive integers which satisfy sap ≤ rbq. As a con-
sequence of (2) we get [0, δ] ⊂ (s−C1) + (r −C2) and thus by applying
Theorem 2.1 to the affine Cantor sets s−C1 and r −C2 we obtain[

0,min

{
ap

bq
s, r

}]
⊂ ap

bq
(s−C1) + (r −C2).
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Therefore

[0, sap] = [0,min{sap, rbq}] ⊂ ap(s−C1) + bq(r −C2)

which in turn implies

[rbq, rbq + sap] ⊂ apC1 + bqC2 = C1 ∩ Jp + C2 ∩ J̃q.

The conclusion of the theorem follows once we show that there exists p, q such
that sap ≤ rbq and [0, rbq] ⊂ C1 ∩ Jp + C2 ∩ J̃q.

Take p′, q′ satisfying sap
′

+ rbq
′ ≤ δ and let α = (w − a)/(2a) > 0. Since

ln a/ ln b is irrational we can find θ irrational such that a = bθ. We can then
find integers p ≥ p′ and q ≥ q′ such that

0 ≤ r

s

bq

ap
− 1 ≤ α. (3)

This implies that the leftmost gap at step p of C1 intersects the leftmost gap
at step q of C2: (

sap, swap−1
)
∩
(
rbq, rw̃bq−1

)
6= ∅. (4)

Indeed, as a consequence of (3) and the choice of α we have

sap ≤ rbq ≤ (1 + α)sap = (1/2)(w + a)sap−1 < wsap−1.

Finally, we claim that

[0, rbq] ⊂ C1 ∩ Jp + C2 ∩ J̃q. (5)

Taking into account (2) we can write [0, rbq] ⊂ [0, sap
′

+ rbq
′
] ⊂ [0, δ] ⊂

C1 + C2. Together with (4) this gives

[0, rbq] ⊂ C1 ∩ [0, sap] + C2 ∩ [0, rbq] = C1 ∩ Jp + C2 ∩ J̃q.

Remark 2.3. By Theorem 2.1 it is clear that the alternatives (iv) and (v)
are mutually exclusive. Condition (iv) can be also rewritten as λC1 + ηC2 =
λ (s−C1)+η (r −C2) = [0, λs+ηr] and then the first part of the proof implies
that any gap of C1+C2 has intervals adjacent to its left and right. This shows
that the alternatives (iv) and (i), (ii), (iii) are also mutually exclusive. In the
same way we can conclude that (v) and (ii), (iii) are mutually exclusive, but
it is not clear whether or not (v) and (i) are mutually exclusive.
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