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A NOTE ON COMPARISON BETWEEN
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INTEGRALS FOR MULTIFUNCTIONS

Abstract

Here we present some comparison results between Birkhoff and Mc-
Shane multivalued integration.

1 Introduction

Several notions of multivalued integral have been developed after the pioneer-
ing papers of Aumann and Debreu in the sixties and they are used extensively
in economic theory and optimal control, we cite here for example [1, 2, 6]. In
[5] Boccuto and Sambucini and in [10, 11, 8, 9] Cascales, Kadets and Rodŕıguez
introduced the McShane and the Birkhoff multivalued integrals respectively,
while in [13, 14] Di Piazza and Musia l introduced the Kurzweill-Henstock one.
Since these kinds of integration lie strictly between Bochner and Pettis inte-
grability (both in the single-valued and in multivalued cases) it is natural to
study the possible relationships between the Birkhoff and McShane integrals
and with the other multivalued integrals, in particular with the Pettis and
Aumann Pettis studied also in [3, 4, 15]. This paper is organized as follows:
in Section 2 we recall some known results for the single-valued case, in Section
3 we recall multivalued integrals, while in Section 4 we give the comparison
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results between them and with respect to the Aumann integral obtained with
different types of selections.
The results that we obtain are the following: the McShane and the Birkhoff
multivalued integrals are equivalent in Banach spaces with weak∗ separable
dual unit ball (for example in separable Banach spaces) and in this case they
agree also with the Aumann Pettis multivalued integrals (this last comparison
for the McShane multivalued integral holds without separability assumption).

2 The single-valued McShane and Birkhoff integrals

Throughout this paper Ω is an abstract non-empty set and T is a topology
on Ω making (Ω, T ,Σ, µ) a σ-finite quasi-Radon measure space which is outer
regular, namely such that

µ(B) = inf{µ(G) : B ⊆ G ∈ T } for all B ∈ Σ.

A generalized McShane partition P of Ω ([18, Definitions 1A]) is a disjoint
sequence (Ei, ti)i∈N of measurable sets of finite measure, with ti ∈ Ω for every
i ∈ N and µ(Ω \

⋃
iEi) = 0.

A gauge on Ω is a function ∆ : Ω→ T such that s ∈ ∆(s) for every s ∈ Ω. A
generalized McShane partition (Ei, ti)i is ∆-fine if Ei ⊂ ∆(ti) for every i ∈ N.
From now on, let X be a Banach space, denote by the symbol P the class of all
generalized McShane partitions of Ω and by P∆ the set of all ∆-fine elements
of P.

Definition 2.1. A function f : Ω→ X is said to be

2.1.1 McShane integrable, with integral w, if for every ε > 0 there exists a
gauge ∆ : Ω→ T such that

lim sup
n→+∞

∥∥∥∥∥w −
n∑
i=1

µ(Ei)f(ti)

∥∥∥∥∥ ≤ ε
for every ∆-fine McShane partition (Ei, ti)i. In this case, we write∫

Ω
f = w (see [18, Definition 1A]);

2.1.2 Birkhoff integrable, if for every ε > 0 there exists a countable partition
Γ = (An)n of Ω in Σ, for which f is summable (namely J(f,Γ) :=
{
∑
n µ(An)f(tn) : tn ∈ An} is made up of unconditionally convergent

series) and supx,y∈J(f,Γ) ‖x − y‖ ≤ ε. In this case the Birkhoff integral
of f is

(B)

∫
Ω

fdµ =
⋂
{co(J(f,Γ)) : f is summable with respect to Γ}
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(see [7], [17, (b), Section 4]).

The Birkhoff integral was also defined for σ-finite measure spaces ([7])
considering only partitions into sets of finite measure. We now recall the
known results on the McShane and Birkhoff integrals in the single-valued case.

Remark 2.2. (See for reference [17, 18, 19, 21, 22, 25, 31]) Let Ω be a
quasi-Radon probability space. If f is Birkhoff integrable, then f is McShane
integrable and the respective integrals coincide; if BX∗ is separable in the
weak∗-topology (e.g. when X is separable), then a function f is Birkhoff in-
tegrable if and only if f is McShane integrable ([19, Theorem 10]). Birkhoff
integrability is in general stronger than McShane integrability, since it is possi-
ble to construct a bounded McShane integrable function f : [0, 1]→ l∞([0, 1])
which is not Birkhoff integrable (see [19, §8, Example]).
If we compare these definitions of integrability with the other ones known in
the literature we remember that Bochner integrability implies McShane inte-
grability and the two integrals are equal ([18, Theorem 1K]), while McShane
integrability implies Pettis integrability and the two integrals coincide ([18,
Theorem 1Q]). Finally, if the Banach space X is separable, then Birkhoff, Mc-
Shane and Pettis integrability are equivalent ([18, Corollary 4C], [27]).
For a more detailed investigation on the properties of the Birkhoff and Pettis
integrals see also [8, 11, 26].

3 Multivalued integrals

We skip now to the multivalued case. Independently in [5] and in [10] the
authors studied two kinds of multivalued integration related to McShane and
Birkhoff integrability using a R̊adstrom embedding theorem and compared
them with the usual Aumann integral.1

Let X be a Banach space, cwk(X) [ck(X)] denote the family of all convex
and weakly compact [respectively convex and compact] subsets of X. We de-
note by the symbol d(x,C) the usual distance between a point and a nonempty
set C ⊂ X, namely d(x,C) = inf{‖x− y‖ : y ∈ C}, δ∗(x∗, A) = supx∈A x

∗(x)
and with h the usual Hausdorff distance. We recall also that a multifunction
F is measurable if F−(C) := {ω ∈ Ω : F (ω) ∩ C 6= ∅} is a Borel set for every
closed set C ⊂ X, and that F is integrably bounded if there exists g ∈ L1(Ω)

1We point out that all the results given in [5] are expressed for Ω = [a, b], where a, b ∈
[−∞,+∞], a < b, only for the sake of simplicity. Moreover, T , Σ and µ are the families of
all open subsets of [a, b], the σ-algebra of all Lebesgue measurable subsets of [a, b] and the
Lebesgue measure on [a, b] respectively. We observe that all the results given there hold as
well whenever Ω is any non-empty σ-finite quasi Radon outer regular measure space.



318 A. Boccuto and A. R. Sambucini

such that h(F (t), {0}) ≤ g(t) µ− a.e. .
Thanks to the R̊adstrom embedding theorem (see [28]), cwk(X) endowed with
the Hausdorff distance h is a complete metric space that can be isometrically
embedded into a Banach space, for example in the Banach space of bounded
real valued functions defined on BX∗ , l∞(BX∗) endowed with the supre-
mum norm ‖ · ‖∞ by means of the mapping j : cwk(X) 7→ l∞(BX∗) given by
j(A) := δ∗(·, A) (see [12, Theorems II.18 and II.19] and [10, Lemma 1.1] for
the notations). So the authors in [5] and [10] defined the multivalued integrals
as follows:

Definition 3.1. Let F : Ω→ cwk(X) be a multifunction. For every A ∈ Σ
we say that F is:

(3.1.1) McShane integrable if there exists I ∈ cwk(X) such that for every ε >
0 there exists a gauge ∆ such that lim supn h(I,

∑n
i=1 F (ti)µ(Ei)) ≤ ε

for every generalized P∆ McShane partition Π = (Ei, ti)i of A. In this
case the McShane integral of F on A is defined by: I := (McS)

∫
A
F (t)dµ

([5, Definition 1]);

(3.1.2) Birkhoff integrable if the single-valued function j◦F : Ω→ l∞(BX∗) is
Birkhoff integrable. Since j(cwk(X)) is a closed convex cone in l∞(BX∗),∫
A
j◦Fdµ ∈ cwk(X), and therefore there is a unique element (B)

∫
A
Fdµ ∈

cwk(X), called the Birkhoff integral of F on A, which satisfies

j

(
(B)

∫
A

Fdµ

)
=

∫
A

j ◦ Fdµ

([10, Definition 2.1]);

(3.1.3) Aumann integrable if

(A)

∫
A

Fdµ =

{∫
A

fdµ, f ∈ C
}
6= ∅,

where for C we consider the following sets: S1
F , S1

McS , S1
B , S1

Pe (the sets
of all Bochner, McShane, Birkhoff and Pettis integrable selections of F
respectively);

(3.1.4) Pettis integrable if δ∗(x∗, F ) : Ω→ R given by δ∗(x∗, F )(ω) = δ∗(x∗, F (ω))
is µ-integrable and if for every A ∈ Σ there exists CA ∈ cwk(X) such
that

δ∗(x∗, CA) =

∫
A

δ∗(x∗, F (ω))dµ for every x∗ ∈ X∗.
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In this case we write CA = (P )

∫
A

Fdµ. See [15, Theorem 5.4] for a

number of equivalent definitions.

We remark moreover that, in [10, Corollary 2.7] it is observed that the
definition of the Birkhoff integral does not depend on the particular embedding
used.

4 Comparisons between multivalued integrals

What we obtain in this paper is a comparison between the different types of
multivalued integrals introduced before. First of all we report some equivalence
conditions for both the McShane and the Birkhoff integral:

(4.a) If F : Ω → cwk(X) is McShane integrable, then its integral coincides
with the (?)-integral, namely (McS)

∫
Ω
Fdµ = Φ(F,Ω), where

Φ(F,Ω) = {x ∈ X : ∀ ε > 0,∃ a gauge ∆ : for every generalized P∆

McShane partition (Ei, ti)i∈N there holds:

lim sup
n

d(x,

n∑
i=1

F (ti)µ(Ei)) ≤ ε}.

(See [5, Proposition 1]). No measurability is required a priori and so we
can define the multivalued integral also in non separable Banach spaces;
moreover, if F is single-valued, then Φ(F,Ω) coincides with the classical
McShane integral, if it exists.

(4.b) The Birkhoff integrability of F is equivalent to:

(i) there is W ∈ cwk(X) with the following property: for every ε > 0
there exists a countable partition Γ0 of Ω in Σ such that for every
countable partition Γ = {An} of Ω in Σ finer than Γ0 and any
choice of points tn in Γ, n ∈ N, the series

∑∞
n=1 µ(An)F (tn) is

unconditionally convergent and h (
∑∞
n=1 µ(An)F (tn),W ) ≤ ε. In

this case, W = (B)

∫
Ω

F dµ

(see [10, Proposition 2.6]). Moreover in [10, Proposition 2.9] it is showed
that for bounded multifunctions F the Birkhoff integrability is equivalent
to both Birkhoff and Bourgain properties.
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As said in Remark 2.2, the Birkhoff and McShane single-valued integrals
coincide when the Banach space has weak∗ separable dual unit ball. The
following simple lemma is the key to extend this result from the single-valued
case to the case of cwk(X)-valued functions.
If A is a subset of a real vector space V , we denote by acoQ(A) (resp. aco(A))
the set of all elements v ∈ V that can be written as v =

∑n
i=1 λivi, n ∈ N,

with vi ∈ A, λi ∈ Q (resp. λi ∈ R) and
∑n
i=1 |λi| ≤ 1.

Lemma 4.1. Let Y := Cb(BX∗) be the Banach space (with the supremum
norm) of all real bounded and continuous functions on (BX∗ , τ), where τ is
the restriction of the Mackey topology in X∗. If BX∗ is weak∗ separable, then
BY ∗ is weak∗ separable.

Proof: Since BX∗ is weak∗ separable, there is a countable set D ⊂ BX∗

such that D
τ

= BX∗ (see the proof of [10, Lemma 3.6]). Given d ∈ D, let
us consider the element y∗d ∈ BY ∗ defined by y∗d(f) := f(d). Since {y∗d : d ∈
D} ⊂ BY ∗ is norming, by applying the Hahn-Banach theorem we get

aco({y∗d : d ∈ D})
weak∗

= BY ∗ ,

and hence

acoQ({y∗d : d ∈ D})
weak∗

= BY ∗ .

Therefore acoQ({y∗d : d ∈ D}) is a countable weak∗ dense subset of BY ∗ , and
the proof is complete. 2

Corollary 4.2. Let Ω be a quasi-Radon probability space and let X be a
Banach space such that BX∗ is weak∗ separable. Then a multi-valued function
F : Ω→ cwk(X) is McShane integrable if and only if F is Birkhoff integrable.
In this case, the two integrals coincide.

Proof: Let j : cwk(X) → l∞(BX∗) be the embedding used in [10]. Then
it is easy to see that F : Ω→ cwk(X) is McShane integrable if and only if the
single-valued function j ◦ F : Ω → l∞(BX∗) is McShane integrable according
to [18, Definitions 1A], and in this case j

(∫
F
)

=
∫
j ◦ F . Since j(cwk(X)) ⊂

Cb(BX∗), the function j◦F takes values in Cb(BX∗), which is a closed subspace
of l∞(BX∗) with weak∗ separable dual unit ball by virtue of Lemma 4.1. By
[19, Theorem 10] j ◦ F is McShane integrable if and only if j ◦ F is Birkhoff
integrable and the respective integrals coincide. 2

The same conclusion of Corollary 4.2 can be obtained for σ-finite quasi-
Radon outer regular measure spaces.
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We now want to compare the McShane and the Birkhoff multivalued inte-
grals with the Aumann integral, when the multifunction F has some kind of
measurability. For the case of Birkhoff integrability the result is given in [10,
Proposition 3.1], for the McShane case we have:

Theorem 4.3. Let F : Ω→ cwk(X) be a McShane integrable multifunction,
then F is Pettis integrable and for every A ∈ Σ we have

(McS)

∫
A

Fdµ =

{∫
A

fdµ, f ∈ S1
Pe

}
. (1)

Moreover, if (Ω, T ,Σ, µ) is a Radon measure space or there is no real-valued-
measurable cardinal and every Pettis integrable selection f is measurable (that
is, f−1(G) ∈ Σ for every norm-open set G ⊆ X), then

(McS)

∫
A

Fdµ =

{∫
A

fdµ, f ∈ S1
McS

}
. (2)

If X is separable then

(B)

∫
A

Fdµ =

{∫
A

fdµ, f ∈ S1
B

}
=

{∫
A

fdµ, f ∈ S1
McS

}
(3)

= (McS)

∫
A

Fdµ.

Finally, if F is measurable and integrably bounded and X is separable and
there exists a countable family (x∗n)n in X∗ which separates points of X, then

(McS)

∫
A

Fdµ =

{∫
A

fdµ, f ∈ S1
F

}
. (4)

Proof: If F is McShane integrable then it means that j ◦ F is McShane
integrable thanks to the R̊adstrom embedding theorem. So j ◦ F is Pettis
integrable, and then, by [9, Proposition 4.4], F is Pettis integrable and for all
A ∈ Σ and x∗ ∈ BX∗ we get:

δ∗(x∗, F ) = 〈ex∗ , j ◦ F 〉 ∈ L1(µ);

where ex∗ ∈ Bl∞(BX∗ )∗ is defined by: 〈ex∗ , g〉 := g(x∗) for every g ∈ l∞(BX∗).
Then

δ∗
(
x∗, (McS)

∫
A

F dµ

)
= 〈ex∗ , j

(
(McS)

∫
A

F dµ

)
〉 = 〈ex∗ ,

∫
A

j ◦ F dµ〉

=

∫
A

〈ex∗ , j ◦ F 〉 dµ =

∫
A

δ∗(x∗, F ) dµ.
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Thus for all A ∈ Σ we have

(P )

∫
A

F dµ = (McS)

∫
A

F dµ.

Now by [9, Theorems 2.5 and 2.6] F admits Pettis integrable selections and

(P )

∫
A

F dµ =

{∫
A

fdµ, f ∈ S1
Pe

}
,

which proves (1). Now, by virtue of [18, Theorem 1Q and Corollary 4D], in our
context McShane and Pettis integrability coincide for single-valued functions
and this proves (2).
Observe that the concept of no real-valued measurable cardinal which appears
in [18, Corollary 4D] and in [16, (e)] is contained in [20, §438] using the new
terminology measure-free cardinals. In this case all metric spaces are Radon
and f is McShane integrable using [20, 438D] and [18, Corollary 2G].
If X is separable, the first equality in (3) for the Birkhoff integral is given in
[10, Proposition 3.1] and the last equalities follow in an analogous way and
taking into account the equivalence among Pettis, Birkhoff and McShane in-
tegrability. So we obtain again the equivalence between the Birkhoff and the
McShane multivalued integrals in a different way. Finally (4) is given in [5,
Theorem 1]. 2

In the end the comparison with the Debreu integral is obvious thanks to
the given definitions (see [10, Proposition 3.1 (i), Theorem 3.2] and [5, page
321 and Corollary 1]). Comparisons between Aumann and Debreu integrals
are given also in [23, 24, 29, 30].
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