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ON LAPLACE CONTINUITY

Abstract
Some properties of Laplace continuous functions and Laplace derivable

functions are studied.

1 Introduction.

The Laplace derivative was introduced by Ralph Svetic [3]. Properties of this
derivative were studied in [2] where the notion of Laplace continuity was given.
In this article we study some properties of Laplace continuous functions and
we prove that the space of all bounded Laplace continuous functions on an
interval [a, b] is a Banach space with respect to the usual sup norm.

2 Preliminaries.

In what follows we shall use the special Denjoy integral which is equivalent
to the Perron integral and the Henstock integral (see [1]). The integration by
parts formula for this integral which will be used is stated here for convenience.
For a proof see [1, p. 194, Theorem 12.19].

Theorem 2.1. Let f : [a, b] −→ R be special Denjoy integrable and let
F (x) =

∫ x
a
f(t)dt for each x ∈ [a, b]. If G : [a, b] → R has Riemann inte-

grable derivative g in [a, b] then,∫ b

a

fG = FG/ba −
∫ b

a

Fg.
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Definitions. If f is special Denjoy integrable we simply write that f is
integrable. Let f be integrable in a neighborhood of x. Then f is said to be
Laplace continuous at x if for a fixed δ > 0

lim
s→∞

s

∫ δ

0

e−st[f(x+ t)− f(x)]dt and lim
s→∞

s

∫ δ

0

e−st[f(x− t)− f(x)]dt

exist and are equal to zero.
The function f is called Laplace derivable at x if

lim
s→∞

s2
∫ δ

0

e−st[f(x+ t)− f(x)]dt and lim
s→∞

(−s2)

∫ δ

0

e−st[f(x− t)− f(x)]dt

exists and are equal. The common value is called the Laplace derivative of f
at x and is denoted by LD1f(x).

Let LD1f(x) exist. If

lim
s→∞

s3
∫ δ

0

e−st[f(x+ t)− f(x)− tLD1f(x)]dt

and

lim
s→∞

s3
∫ δ

0

e−st[f(x− t)− f(x) + tLD1f(x)]dt

exist and are equal, then the common value is called the second order Laplace
derivative of f at x and is denoted by LD2f(x). Replacing “lim” by “lim inf”
in the above four limits we get the definitions of

LD+
1 f(x), LD−1 f(x), LD+

2 f(x) and LD−2 f(x)

respectively. Also we define

LDif(x) = min[LD+
i f(x), LD−i f(x)]

for i = 1, 2. The definitions of LD
+

1 f(x) etc are similar.
A function f is said to be Baire*-1 on [a, b] if every non-empty perfect set

contained in [a, b] contains a portion on which the restriction of f is continuous.
If a function f is Baire*-1, Baire-1, or Darboux on a set [a, b] then we write
f ∈ B∗1[a, b], f ∈ B1[a, b] or f ∈ D[a, b] respectively.

It is clear that if LD1f(x) exists at x then f is Laplace continuous at x.
The next Theorem is proved in [2] and [3] but for completeness we give a proof
here.

Theorem 2.2. The above definitions do not depend on δ.
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Proof. Take 0 < δ1 < δ2 such that x + δ1, x + δ2 is in neighborhood of x.
Using Theorem 2.1∫ δ2

δ1

e−stf(x+ t)dt = e−sδ2
∫ δ2

δ1

f(x+ t)dt+ s

∫ δ2

δ1

(
e−st

∫ t

δ1

f(x+ ξ) dξ

)
dt.

Now,
∫ δ2
δ1
f(x+ t)dt is bounded and

∫ t
δ1
f(x+ ξ)dξ is bounded for δ1 < t <

δ2, let M be the bound of both. So∣∣∣∣∣s
∫ δ2

δ1

e−stf(x+ t)dt

∣∣∣∣∣ ≤ sMe−sδ2 + s(e−sδ1 − e−sδ2)M → 0 as s→∞.

This completes the proof.

It is easy to verify that, if f is continuous, then f is Laplace continuous.
The next example shows that the converse is not true.

Example 2.3. Let

f(x) =

{
sin 1

x2 if x 6= 0,

0 if x = 0.

Then clearly f(x) is not continuous at x = 0. We shall show that f is Laplace
continuous at x = 0.
Let g(x) = x3cos 1

x2 for x 6= 0 and set g(0) = 0. Then g′(0) = 0 and for x 6= 0,

g′(x) = 3x2 cos
1

x2
+ 2 sin

1

x2
= 3x2 cos

1

x2
+ 2f(x).

Therefore

f(x) =
1

2
g′(x)− 3

2
x2 cos

1

x2
.

Let ε > 0 be given. Then there is δ > 0 such that∣∣∣∣t2 cos
1

t2

∣∣∣∣ < ε

3
whenever 0 < t < δ.

Hence ∣∣∣∣∣s
∫ δ

0

e−stt2 cos
1

t2
dt

∣∣∣∣∣ ≤ ε

3
s

∫ δ

0

e−stdt

=
ε

3
+ o(1) as s→∞.
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Now ∣∣∣∣∣s
∫ δ

0

e−stg′(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣se−sδg(δ) + s2

∫ δ

0

e−stg(t)dt

∣∣∣∣∣
≤
∣∣se−sδg(δ)

∣∣+
ε

3
s2
∫ δ

0

te−st =
ε

3
+ o(1) as s→∞.

Hence∣∣∣∣∣s
∫ δ

0

e−stf(t)dt

∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣s
∫ δ

0

e−stg′(t)dt

∣∣∣∣∣+
3

2

∣∣∣∣∣s
∫ δ

0

e−stt2 cos
1

t2
dt

∣∣∣∣∣
≤ 1

2

ε

3
+

3

2

ε

3
+ o(1) as s→∞.

So letting s→∞, we get

lim
s→∞

sup

∣∣∣∣∣s
∫ δ

0

e−stf(t)dt

∣∣∣∣∣ < ε.

Since ε is arbitrary

lim
s→∞

s

∫ δ

0

e−stf(t)dt = 0,

verifying that f is Laplace continuous at zero.

Remark 2.4. Let f be the function in previous example. Then, in a similar

way, it can be shown that lim
s→∞

s2
∫ δ
0
e−stf(t)dt = 0. So LD1f(0) = 0.

3 Main results.

Lemma 3.1. Let δ > 0 be fixed and f be integrable in [x− δ, x+ δ]. Then for
all s > 0,∫ δ

0

∫ t

0

e−stf(x+ z) dzdt =
1

s

[∫ δ

0

e−stf(x+ t)dt− e−sδ
∫ δ

0

f(x+ t) dt

]

and∫ δ

0

∫ t

0

e−stf(x− z) dzdt =
1

s

[∫ δ

0

e−stf(x− t)dt− e−sδ
∫ δ

0

f(x− t) dt

]
.
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Proof. We shall prove the first identity; the proof of the second is similar.
Using Theorem 2.1 we get∫ δ

0

e−stf(x+ t)dt = e−sδ
∫ δ

0

f(x+ t)dt+ s

∫ δ

0

[
e−st

∫ t

0

f(x+ z)dz

]
dt.

Hence

s

∫ δ

0

∫ t

0

e−stf(x+ z)dzdt =

∫ δ

0

e−stf(x+ t)dt− e−sδ
∫ δ

0

f(x+ t)dt.

This completes the proof.

Theorem 3.2. Let f : [a, b] −→ R be integrable and F (t) =
∫ t
a
f(ξ)dξ. If f is

Laplace continuous at a point x ∈ [a, b] then LD1F (x) exists and is equal to
f(x).

Proof. Define f(x) = f(b) for all x > b. Let δ be a fixed positive number.
We have, for a fixed x ∈ [a, b),

F (x+ t)− F (x) =

∫ x+t

x

f(ξ)dξ =

∫ t

0

f(z + x) dz.

Now by Lemma 3.1∫ δ

0

e−st[F (x+ t)− F (x)]dt =

∫ δ

0

e−st
(∫ t

0

f(z + x)dz

)
dt

=
1

s

[∫ δ

0

e−stf(x+ t)dt− e−sδ
∫ δ

0

f(x+ t)dt

]
.

Hence

lim
s→∞

s2
∫ δ

0

e−st[F (x+ t)− F (x)]dt

= lim
s→∞

s

∫ δ

0

e−stf(x+ t)dt− lim
s→∞

s

esδ

∫ δ

0

f(x+ t)dt.

Since f is Laplace continuous at x and
∫ δ
0
f(x+ t)dt is finite

lim
s→∞

s2
∫ δ

0

e−st[F (x+ t)− F (x)]dt = f(x).
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Thus LD+
1 F (x) exists and equals to f(x). Again take x ∈ (a, b] then by

Lemma 3.1,∫ δ

0

e−st[F (x− t)− F (x)]dt = −
∫ δ

0

∫ t

0

e−stf(x− z)dzdt

= −1

s

[∫ δ

0

e−stf(x− t)dt− e−sδ
∫ δ

0

f(x− t)dt

]
.

So,

lim
s→∞

(−s2)

∫ δ

0

e−st[F (x− t)− F (x)]dt = f(x).

Hence LD−1 F (x) exists and equal to f(x). This completes the proof.

Corollary 3.3. If f is Laplace continuous on [a, b] then f ∈ D[a, b] and
f ∈ B1[a, b].

Proof. By Theorem 3.2 LD1F (x) = f(x) for all x ∈ [a, b] where F (x) =∫ x
a
f(t)dt. Since F is continuous on [a, b], by Theorem 8 and Corollary 4 of

[2], LD1F ∈ D[a, b] and LD1F ∈ B1[a, b]. So the result follows.

Lemma 3.4. Under the hypotheses of Theorem 3.2

LD2F (x) = LD1f(x) for all x ∈ [a, b].

Proof. For any δ > 0 and using Lemma 3.1 we get∫ δ

0

e−st[F (x+ t)− F (x)− tLD1F (x)] dt

=

∫ δ

0

∫ t

0

e−st[f(z + x)− f(x)] dzdt

=
1

s

[∫ δ

0

e−st[f(x+ t)− f(x)]dt− e−sδ
∫ δ

0

[f(x+ t)− f(x)]dt

]
.

Now multiplying by s3 and taking ” lim inf ” as s→∞, we get

LD+
2 F (x) = LD+

1 f(x).

Again ∫ δ

0

[F (x− t)− F (x) + tLD1F (x)]e−stdt
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= −
∫ δ

0

∫ t

0

e−st[f(x− z)− f(x)]dzdt

= −1

s

[∫ δ

0

e−st[f(x− t)− f(x)]dt− e−sδ
∫ δ

0

[f(x− t)− f(x)]dt

]
.

So
LD−2 F (x) = LD−1 f(x).

This completes the proof.

Lemma 3.5. If LD1f exists on [a, b], then LD1f has the Darboux property
and the Baire 1 property.

Proof. LD1f exists on [a, b] so f is Laplace continuous on [a, b]. So, as in
Lemma 3.4, we get that LD2F exists on [a, b] and that LD2F = LD1f . Since
F is continuous, by Theorem 17 and Corollary 14 of [2], LD2F ∈ D[a, b] and
LD2F ∈ B1[a, b]. Hence, LD1f ∈ D[a, b] and LD1f ∈ B1[a, b].

Theorem 3.6. If f is Laplace continuous on [a, b] and LD1f > −∞ in [a, b],
then f ∈ B∗1[a, b].

Proof. Let F (x) =
∫ x
a
f(t)dt. So by Theorem 3.2 and Lemma 3.4 LD1F =

f and LD2F = LD1f in [a, b]. Since F is continuous on [a, b] by Corollary 13
of [2], LD1F ∈ B∗1[a, b] and so f ∈ B∗1[a, b].

Theorem 3.7. If f is Laplace continuous on [a, b] and LD1f ≥ 0 on [a, b]
then f is nondecreasing on [a, b].

Proof. Let G be the set of all points x in [a, b] such that there is a neigh-
borhood of x in which f is continuous. By Theorem 3.6, f ∈ B∗1[a, b] and so
G 6= ∅. We show that G = [a, b]. Let P = [a, b] ∼ G. Suppose P 6= ∅. Since G
is open in [a, b], P is closed. Clearly P has no isolated point. For, if x0 is an
isolated point of P , then there are points α, β, α < x0 < β, such that

(α, x0) ∪ (x0, β) ⊂ G.

Since f is continuous in (α, x0)∪(x0, β), by Theorem 6 of [2] f is nondecreasing
in (α, x0) and in (x0, β). Since by Corollary 3.3, f ∈ D[a, b], f is nondecreasing
in [α, x0] and in [x0, β] and so f is nondecreasing and continuous on [α, β].
Thus (α, β) ⊂ G, which contradicts x0 ∈ P . So P is perfect. Since f ∈ B∗1[a, b]
there is a portion (c, d)∩P on which f is continuous. Since f is nondecreasing
in each contiguous interval, of (c, d) ∩ P , f is continuous in (c, d) and so
(c, d) ⊂ G which is a contradiction. Therefore P = ∅ and so G = [a, b]. So f
is continuous in [a, b] and the proof follows from Theorem 6 of [2].
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Theorem 3.8. If LD1f exists in [a, b] then for all x, x + t ∈ [a, b] there is
θ, 0 < θ < 1 such that

f(x+ t)− f(x) = tLD1f(x+ θt).

Proof. Let

g(z) = f(z)−
[
f(x+ t)− f(x)

t

]
(z − x).

We shall prove that there exists θ, 0 < θ < 1, such that LD1g(x + θt) = 0.
Suppose that LD1g(z) ≥ 0 for all z ∈ [x, x + t]. Then by Theorem 3.7, g is
non decreasing in [x, x+ t]. Since g(x) = g(x+ t) the existence of θ is proved.
If LD1g(z) ≤ 0 the existence of θ is proved by a similar argument.

So suppose that there are ξ and η in [x, x + t] such that LD1g(ξ) > 0
and LD1g(η) < 0. Since, by Lemma 3.5, LD1g ∈ D[x, x + t], there is
θ, 0 < θ < 1, such that LD1g(x+ θt) = 0. This completes the proof.

Theorem 3.9. Let LD1f exist and be bounded on [a, b]. Then LD1f is
Lebesgue integrable on [a, b] and∫ x

a

LD1f(t) dt = f(x)− f(a)

for all x ∈ [a, b].

Proof. By Lemma 3.5, LD1f ∈ B1[a, b] and so LD1f is measurable and,
since it is bounded, then LD1f is Lebesgue integrable in [a, b] and the function
F (x) =

∫ x
a
LD1f is absolutely continuous in [a, b]. Hence F ′ exists and F ′ =

LD1f almost everywhere. Also

|f(x+ t)− f(x)| = |tLD1f(x+ θt)| ≤M |t|

where 0 < θ < 1 and M = sup{LD1f(x) : x ∈ [a, b]}. Hence f is absolutely
continuous and so f ′ exists almost everywhere. Hence f ′ = LD1f almost
everywhere. So

∫ x
a
LD1f(t)dt = f(x)− f(a).

Theorem 3.10. If LD1f exists and is bounded on [a, b], then LD1f is Laplace
continuous on [a, b].

Proof. Since LD1f is bounded on [a, b], by Theorem 3.9, for all x, x+t ∈ [a, b]

f(x+ t)− f(x) =

∫ x+t

x

LD1f(ξ)dξ =

∫ t

0

LD1f(x+ u)du.
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Now by Lemma 3.1∫ δ

0

e−st[f(x+ t)− f(x)]dt =

∫ δ

0

[
e−st

∫ t

0

LD1f(u+ x)du

]
dt

=
1

s

[∫ δ

0

e−stLD1f(t+ x)dt− e−sδ
∫ δ

0

LD1f(x+ t)dt

]
.

Multiplying by s2 and letting s→∞ we get

LD1f(x) = lim
s→∞

s

∫ δ

0

e−stLD1f(x+ t)dt.

Similarly we can show that

LD1f(x) = lim
s→∞

s

∫ δ

0

e−stLD1f(x− t)dt.

This completes the proof.

Theorem 3.11. If f ′ exists on [a, b] then f ′ is Laplace continuous on [a, b].

Proof. Since f ′ exists on [a, b], f ′ is integrable on [a, b] and for every x and
t such that x, x+ t ∈ [a, b]∫ t

0

f ′(x+ ξ)dξ = f(x+ t)− f(x).

See [1, p. 108, Theorem 7.2]. Hence by Theorem 2.1, for all x ∈ [a, b],

s

∫ δ

0

e−stf ′(x+ t)dt = se−sδ
∫ δ

0

f ′(x+ t)dt+ s2
∫ δ

0

[
e−st

∫ t

0

f ′(x+ ξ)dξ

]
dt.

Since,

lim
s→∞

[
se−sδ

∫ δ

0

f ′(x+ t)dt

]
= 0

we get

lim
s→∞

s

∫ δ

0

e−stf ′(x+ t)dt = lim
s→∞

s2
∫ δ

0

e−st[f(x+ t)− f(x)]dt = LD1f(x).

Since f ′(x) exists, LD1f(x) exists and f ′(x) = LD1f(x) [2, Remark 1]. This
completes the proof.
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Theorem 3.12. If {fn} converges uniformly to f in [a, b] and if each fn is
Laplace continuous at x0 ∈ [a, b] then f is Laplace continuous at x0.

Proof. Let ε > 0 and δ > 0 be arbitrary. Since {fn} converges uniformly to
f there is N such that

|fN (x)− f(x)| < ε for all x ∈ [a, b]. (1)

Let x0 ∈ [a, b]. Since fN is Laplace continuous at x0 there is M such that∣∣∣∣∣s
∫ δ

0

e−st[fN (x0 + t)− fN (x0)]dt

∣∣∣∣∣ < ε for s ≥M. (2)

From (1) and (2) ∣∣∣∣∣s
∫ δ

0

e−st[f(x0 + t)− f(x0)]dt

∣∣∣∣∣
≤

∣∣∣∣∣s
∫ δ

0

e−st[f(x0 + t)− fN (x0 + t)]dt

∣∣∣∣∣
+

∣∣∣∣∣s
∫ δ

0

e−st[fN (x0 + t)− fN (x0)]dt

∣∣∣∣∣+

∣∣∣∣∣s
∫ δ

0

e−st[fN (x0)− f(x0)]dt

∣∣∣∣∣
< ε

(
1− 1

esδ

)
+ ε+ ε

(
1− 1

esδ

)
for s ≥M.

Letting s→∞, we get

lim
s→∞

s

∫ δ

0

e−st[f(x0 + t)− f(x0)]dt ≤ 3ε.

Since ε is arbitrary, f is Laplace continuous at x0.

From this theorem one easily deduces the following corollary.

Corollary 3.13. Let LC[a, b] be the space of all bounded Laplace continuous
function on [a,b]. For f ∈ LC[a, b] define the usual sup norm

||f || = sup{|f(t)| : t ∈ [a, b]}.

Then LC[a, b] is a Banach space with respect to this norm.
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