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LIMIT THEOREMS IN (l)-GROUPS WITH
RESPECT TO (D)-CONVERGENCE

Abstract

Some Schur, Vitali-Hahn-Saks and Nikodým convergence theorems
for (l)-group-valued measures are given in the context of (D)-convergence.
We consider both the σ-additive and the finitely additive case. Here the
notions of strong boundedness, countable additivity and absolute con-
tinuity are formulated not necessarily with respect to a same regulator,
while the pointwise convergence of the measures is intended relatively to
a common (D)-sequence. Among the tools, we use the Fremlin lemma,
which allows us to replace a countable family of (D)-sequence with one
regulator, and the Maeda-Ogasawara-Vulikh representation theorem for
Archimedean lattice groups.

1 Introduction.

The limit theorems for absolutely continuous, σ-additive and strongly bounded
set functions (Schur Lemma, Vitali-Hahn-Saks, Nikodým convergence and
Brooks-Jewett theorems, see [22, 31, 37, 47, 49, 52]) are objects of several
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studies in the literature. A survey about these kinds of theorems and related
topics, among which some applications to integration theory, can be found in
[25].

These theorems were extended to the cases of Banach space- and topolog-
ical group-valued measures, defined even in some domains more general than
σ-algebras. For the literature we quote, for instance, [26] and its bibliography,
[2, 19, 23, 24, 30, 34, 43, 48]. These kinds of theorems have several functional
analytic applications, and they are related with matrix theorems, which are
powerful tools to give some results both in measure theory and in the context
of operators (see for instance [1, 21, 40, 51]). Some other applications to inte-
gration, control measures and signal processing can be found, for example, in
[5, 20, 33, 38].

In this paper we deal with (l)-group-valued measures. Among the liter-
ature existing for limit theorems in order structures, we quote [3, 41]. In
[9, 12, 13] the authors proved some limit theorems for measures taking val-
ues in Riesz spaces and (l)-groups. In [9] they considered positive measures
converging pointwise to a regular measure and positive measures taking val-
ues in a subspace of the space L0(X,B, µ) of all measurable functions (up to
sets of measure zero) with respect to a σ-finite and σ-additive extended real-
valued positive measure. In [12, 13] they proved some limit theorems when
the (l)-group-valued measures converge pointwise with respect to a common
regulator, and also the concepts of (s)-boundedness, σ-additivity and absolute
continuity are defined analogously. Some other versions of limit theorems for
Riesz space-valued measures, defined in abstract structures, can be found in
[4].

In this paper we prove some limit theorems for (l)-group-valued σ-additive
measures and finitely additive set functions. The main used tools are the
Maeda-Ogasawara-Vulikh representation theorem for Archimedean (l)-groups
as sets of suitable continuous extended real-valued functions (see [6]) and the
Fremlin lemma (see [45]), which allows us to replace a countable family of
regulators with one regulator in the proof of limit theorems, without doing
too restrictive hypotheses on the involved (l)-group. For this aim and for
technical reasons we often use the notion of (D)-convergence in (l)-groups (see
also [45]). Here only the pointwise convergence of the measures (and not the
notions of strongly boundedness, countable additivity and absolute continuity)
is considered with respect to a common regulator. Similar results were proved
in [17] for (l)-group-valued σ-additive measures with respect to the relatively
uniform convergence (see [39, 53]). Some related results on matrix theorems
for (l)-group-valued measures were given in [15], while in [16] some similar
limit theorems and Drewnowski-type theorems on relations between finite and
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countable additivity were proved in slightly different settings and with other
kinds of techniques.

The paper is structured as follows. In Section 2 we introduce the prelimi-
nary notions and the tools used in our setting. In Section 3 we prove the Schur
Lemma, the Vitali-Hahn-Saks and the Nikodým convergence theorem.

Our thanks to the referee for his valuable comments, remarks and sugges-
tions to improve and simplify some parts of the paper. We thank also Prof.
D. Candeloro for his helpful suggestions.

2 Preliminaries.

In this section we introduce the preliminary notions in (l)-groups and the
fundamental concepts of (s)-boundedness, finite and countable additivity and
absolute continuity of (l)-group-valued set functions. Furthermore, we give
some examples and explain the tools and techniques, used to prove the main
results of the paper.

We begin with introducing the order convergence and (D)-convergence in
(l)-groups.

Definitions 2.1. An Abelian group (R,+) is called (l)-group if it is a lattice
and for any a, b, c ∈ R we get a+ c ≤ b+ c whenever a ≤ b.

From now on, we denote by ∨ and ∧ the lattice supremum and infimum
respectively.

An (l)-group R is said to be Dedekind complete if every nonempty subset
of R, bounded from above, has supremum in R.

For the basic properties of (l)-groups, see [8] and [45]. Given an element
r ∈ R, we call absolute value of r the element |r| defined by setting |r| =
r ∨ (−r). If we put r+ = r ∨ 0, r− = (−r) ∨ 0, it is not difficult to see that
r = r+ − r− and |r| = r+ + r−.

Let R be an (l)-group. We say that a sequence (pn)n in R is an (o)-sequence
if it is decreasing and ∧n pn = 0. A sequence (rn)n in R is said to be order-
convergent (or (o)-convergent) to r if there exists an (o)-sequence (pn)n in R
with |rn − r| ≤ pn for all n ∈ N, and in this case we write (o) limn rn = r. If

Λ is any nonempty set, (r
(λ)
n )n are sequences in R and r(λ) ∈ R for all λ ∈ Λ,

we say that (o) limn r
(λ)
n = r(λ) uniformly with respect to λ ∈ Λ if there exists

an (o)-sequence (qn)n in R with |r(λ)
n − r(λ)| ≤ qn for all n ∈ N and λ ∈ Λ. A

sequence (rn)n in R is (o)-Cauchy if (o) limn(rn − rn+p) = 0 uniformly with
respect to p ∈ N.

We now introduce (D)-convergence (for its main properties, see [18, 45]).
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A bounded double sequence (ai,l)i,l in R is called (D)-sequence or regulator
if the sequence (ai,l)l is an (o)-sequence for all i ∈ N. A sequence (rn)n in R
is said to be (D)-convergent to r ∈ R (and we write (D) limn rn = r) if there
exists a (D)-sequence (ai,l)i,l inR, such that to every ϕ ∈ NN there corresponds

n0 ∈ N with |rn − r| ≤
∞∨
i=1

ai,ϕ(i) whenever n ≥ n0. If Λ is as above, (r
(λ)
n )n

are sequences in R and r(λ) ∈ R for all λ ∈ Λ, we say that (D) limn r
(λ)
n = r(λ)

uniformly with respect to λ ∈ Λ if there is a (D)-sequence (ai,l)i,l in R, such

that for every ϕ ∈ NN there exists n0 ∈ N such that |r(λ)
n − r(λ)| ≤

∞∨
i=1

ai,ϕ(i)

whenever n ≥ n0 and λ ∈ Λ. The sequence (rn)n is said to be (D)-Cauchy if
(D) limn(rn − rn+p) = 0 uniformly with respect to p ∈ N.

We say that an (l)-group is (o)-complete if every (o)-Cauchy sequence is (o)-
convergent, and (D)-complete if every (D)-Cauchy sequence is (D)-convergent.
We recall that every Dedekind complete (l)-group is (o)-complete and (D)-
complete (see also [18, Chapter 2]).

An (l)-group R is said to be weakly σ-distributive if for every (D)-sequence
(ai,l)i,l we have: ∧

ϕ∈NN

( ∞∨
i=1

ai,ϕ(i)

)
= 0.

Remark 2.2. In general, the (D)-limit of a sequence is not unique. However,
(o)-convergence of sequences implies always (D)-convergence; moreover, if R is
weakly σ-distributive, then a sequence is (D)-convergent if and only if it is (o)-
convergent, and in this case the limit is unique (see [10] and [32, Proposition
1]).

If R is a Dedekind complete not weakly σ-distributive (l)-group (such
groups do exist, see [35, 54]), then there exist a (D)-sequence (ai,j)i,j and
a positive element b ∈ R, for which∧

ϕ∈NN

( ∞∨
i=1

ai,ϕ(i)

)
= b 6= 0.

We now prove that every sequence (rn)n with −b ≤ rn ≤ b for all n ∈ N (D)-
converges to 0, though it can be not (o)-convergent. Indeed, choose arbitrarily
ϕ ∈ NN: for each n ∈ N we get

|rn| ≤ b =
∧
ϕ∈NN

( ∞∨
i=1

ai,ϕ(i)

)
≤
∞∨
i=1

ai,ϕ(i),
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that is (D) limn rn = 0.

From now on we assume that R is a Dedekind complete weakly σ-distribu-
tive (l)-group. Note that weak σ-distributivity guarantees the uniqueness of
the (D)-limit and is used to prove σ-additivity of the limit measure in Theorem
3.1.

As in the classical definition of series, given a sequence (rn)n in R, we

denote by

∞∑
n=1

rn the limit (o) lim
n

n∑
i=1

ri = (D) lim
n

n∑
i=1

ri, if it exists in R.

The following proposition will be useful in the sequel, in defining some
suitable measures and proving some of its properties.

Proposition 2.3. If (D) lim
n

n∑
i=1

|ri| exists in R, then the limit

(D) lim
n

∑
i∈A,i=1,...,n

ri

exists in R uniformly with respect to A ⊂ N.

Proof. First of all note that (D) lim
n

n∑
i=1

|ri| =
∨
n

n∑
i=1

|ri|, since the corre-

sponding sequence of partial sums is increasing. It is not difficult to deduce
that the following equations hold in R:

(D) lim
n

∑
i∈A,i=1,...,n

|ri| =
∨
n

∑
i∈A,i=1,...,n

|ri|,

(D) lim
n

∑
i∈A,i=1,...,n

r+
i =

∨
n

∑
i∈A,i=1,...,n

r+
i ,

(D) lim
n

∑
i∈A,i=1,...,n

r−i =
∨
n

∑
i∈A,i=1,...,n

r−i ,

uniformly with respect to A ⊂ N. Since ri = r+
i − r

−
i for all i ∈ N, then it

follows that

(D) lim
n

∑
i∈A,i=1,...,n

ri (1)

exists in R uniformly with respect to A ⊂ N, that is the assertion.
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We denote by
∑
n∈A

rn the (D)-limit in (1), when it exists.

The following result (Fremlin lemma, [36, Lemma 1C], see also [45, Theo-
rem 3.2.3, pp. 42-45], [46, Proposition 2.1]) allows us to replace a countable
family of (D)-sequences with one regulator, and its technique will be useful in
the proof of the main results of the paper.

Lemma 2.4. Let (a
(n)
i,l )i,l, n ∈ N, be a sequence of regulators in R. Then for

every u ∈ R, u ≥ 0 there exists a (D)-sequence (ai,l)i,l in R such that:

u
∧( q∑

n=1

∞∨
i=1

a
(n)
i,ϕ(i+n)

)
≤
∞∨
i=1

ai,ϕ(i)

for all q ∈ N and for every ϕ ∈ NN.

We now recall the famous Maeda-Ogasawara-Vulikh representation theo-
rem in its version for (l)-groups (see [6, Theorem 6]). This theorem allows us
to identify any Archimedean Riesz space with a suitable space of continuous
extended real-valued functions. Note that every Dedekind complete (l)-group
is Archimedean (see also [8, Lemma XIII.5]). Here we denote by sup and inf
the pointwise supremum and infimum respectively.

Theorem 2.5. Given a Dedekind complete (l)-group R, there exists a compact
extremely disconnected topological space Ω, unique up to homeomorphisms,

such that R can be embedded as a solid subgroup of C∞(Ω) = {f ∈ R̃
Ω

: f
is continuous, and {ω : |f(ω)| = +∞} is nowhere dense in Ω}. Moreover, if
(aλ)λ∈Λ is any family such that aλ ∈ R for all λ ∈ Λ, and a = ∨λ aλ ∈ R
(where the supremum is taken with respect to R), then a = ∨λ aλ with respect
to C∞(Ω), and the set {ω ∈ Ω : (∨λ aλ)(ω) 6= supλ [aλ(ω)]} is meager in Ω.

We now introduce the finitely additive and σ-additive set functions and
their main properties.

Definitions 2.6. Let G be any infinite set and A ⊂ P(G) be a σ-algebra. A
set function m : A → R is bounded if there is w ∈ R, w ≥ 0, with |m(A)| ≤ w
for all A ∈ A. The set functions mj : A → R, j ∈ N, are equibounded there
exists an element u ∈ R, u ≥ 0, such that

|mj(A)| ≤ u (2)

for every j ∈ N and for all A ∈ A.
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Given a finitely additive bounded set function m : A → R, we define m+,
m−, v(m), ‖m‖A : A → R by setting, for every A ∈ A:

m+(A) =
∨

(m(B) : B ∈ A with B ⊂ A),

m−(A) =
∨

(−m(B) : B ∈ A with B ⊂ A),

v(m)(A) = m+(A) +m−(A),

‖m‖A(A) =
∨

(|m(B)| : B ∈ A with B ⊂ A).

The quantities m+,m−, v(m), ‖m‖A are called positive part, negative part,
variation and semivariation on A of m respectively. Analogously as in the
real case, we have clearly

‖m‖A(A) ≤ v(m)(A) ≤ 2‖m‖A(A), for all A ∈ A (3)

(see also [7]).
A set function m : A → R or m : A → [0,+∞] is finitely additive if

m(A ∪ B) = m(A) + m(B) whenever A, B are two disjoint elements of A
(with the convention that (+∞) + a = +∞ for all a ∈ R̃). A finitely additive
set function is said to be (s)-bounded if for every disjoint sequence (Hn)n in
A we have:

(D) lim
n
‖m‖A(Hn) = 0.

We say that the finitely additive set functions mj : A → R, j ∈ N, are
uniformly (s)-bounded if (D) limn[∨j‖mj‖A(Hn)] = 0 whenever (Hn)n is a
sequence of pairwise disjoint elements of A.

We now prove that, in the context of (l)-groups, every bounded finitely
additive set function is (s)-bounded too. Differently than in the real case, the
converse is in general not true (see [50, Example 3]).

Theorem 2.7. Every bounded finitely additive set function m : A → R is
(s)-bounded.

Proof. Let R be a subgroup of C∞(Ω), where Ω is as in 2.5. By Theorem 2.5
there is a nowhere dense set N0 ⊂ Ω such that the real-valued set functions
m(·)(ω), ω ∈ Ω \ N0, are finitely additive and bounded. By virtue of the
classical results (see [7, Corollary 2.1.7]), they are (s)-bounded on A.

Fix now an arbitrary disjoint sequence (Hn)n in A. Then by Theorem 2.5
there is a meager set N , depending on (Hn)n, without loss of generality with
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N ⊃ N0 and such that

[(D) lim
n
‖m‖A(Hn)](ω) =

[∧
n

∨
s≥n

‖m‖A(Hs)
]
(ω)

=
[∧
n

∨
s≥n

∨(
|m(A)| : A ∈ A with A ⊂ Hs

)]
(ω)

= inf
n

sup
s≥n

sup
(
|m(A)(ω)| : A ∈ A with A ⊂ Hs

)
= inf

n
sup
s≥n
‖m(·)(ω)‖A(Hs) = lim

n
‖m(·)(ω)‖A(Hn) = 0

for all ω ∈ Ω \N . By a density argument we obtain (D) limn ‖m‖A(Hn) = 0,
and hence we get the assertion.

Remark 2.8. Observe that, in the context of Banach spaces, the relations
between boundedness and (s)-boundedness of finitely additive set functions
are substantially different than in (l)-groups. First of all, note that every (s)-
bounded Banach space-valued set function defined in an algebra is bounded
too (see [44]). Let l∞ and c0 be the spaces of all real sequences and of the real
sequences convergent to 0 respectively, endowed with the supremum norm. It
is known that a Banach space X has the property that every finitely additive
and bounded X-valued set function defined in an algebra (resp. σ-algebra)
is (s)-bounded if and only if X does not contain isomorphically the space c0
(resp. l∞) (see [27, 28, 29]).

We now give the following example of a finitely additive bounded set func-
tion, which is not (s)-bounded. Let Σ be the σ-algebra of all Lebesgue mea-
surable subsets of [0, 1], ν be the Lebesgue measure, X = L∞([0, 1],Σ, ν) be
the space of all essentially bounded functions (with identification up to sets of
Lebesgue measure zero), endowed with the essential supremum norm ‖ · ‖∞.
We define m : Σ → X by setting m(A) = χA, for all A ∈ Σ, where χA is the
characteristic function associated to A. Then m is obviously a finitely additive
and bounded set function, since ‖m(A)‖∞ = ‖χA‖∞ ≤ 1 for every A ∈ A. But

m is not (s)-bounded, since for the disjoint sequence (in Σ) En =
[ 1

n+ 1
,

1

n

)
,

n ∈ N, we have that ‖m(En)‖∞ = 1 for all n ∈ N.

We now introduce the concept of σ-additivity.

Definitions 2.9. Let A ⊂ P(G) be a σ-algebra. A finitely additive set func-
tion m : A → R is called σ-additive measure on A if, for every decreasing
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sequence (Hn)n in A with

∞⋂
n=1

Hn = ∅,

(D) lim
n
‖m‖L(Hn) = 0,

where L is the σ-algebra generated by the Hn’s in H1.
The σ-additive measures mj : A → R, j ∈ N, are uniformly σ-additive if

for each decreasing sequence (Hn)n in A with

∞⋂
n=1

Hn = ∅,

(D) lim
n

[∨j ‖mj‖L(Hn)] = 0.

Our definition looks weaker than the classical one, in which the semivari-
ation on A is considered rather than the semivariation on L. In general, it
is still an open problem to find conditions under which these two kinds of
σ-additivity are equivalent. However, when R = R, it is not difficult to see
that a measure is σ-additive according to 2.9 if and only if it is σ-additive in
the classical sense (see also [7]).

It is natural to deal with the notion of σ-additivity given in 2.9, since in
the sequel we will examine in detail the case A = P(N). Indeed, the following
result holds:

Proposition 2.10. A finitely additive measure m : P(N) → R is σ-additive
on P(N) if and only if

(D) lim
n
‖m‖P(N)({n, n+ 1, n+ 2, . . .}) (4)

=
∧
n

‖m‖P(N)({n, n+ 1, n+ 2, . . .}) = 0.

Proof. The necessary part is straightforward.
We turn to the sufficient part. Let (Cn)n be any decreasing sequence in

P(N) with

∞⋂
n=1

Cn = ∅, and L be the σ-algebra generated by the Cn’s in C1.

Without loss of generality we can assume that Cn ⊂ {n, n + 1, n + 2, . . .} for
any n ∈ N. Hence

vL(m)(Cn) ≤ vP(N)(m)({n, n+ 1, n+ 2, . . .}),

and thus the sufficient part is proved.

Remark 2.11. Note that an analogous version of Proposition 2.10 holds even
for uniform σ-additivity of a sequence of measures mj : P(N)→ R, j ∈ N.
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We now turn to the concept of absolute continuity.

Definitions 2.12. Let A ⊂ P(G) be a σ-algebra and ν : A → [0,+∞],
m : A → R be two finitely additive set functions. We say that m : A → R
is ν-absolutely continuous, if for each decreasing sequence (En)n in A, with
limn ν(En) = 0, we get (D) limn ‖m‖L(En) = 0, where L is the σ-algebra
generated by (En)n and

‖m‖L(En) =
∨

(|m(B)| : B ∈ L with B ⊂ En)

for each n ∈ N.
The finitely additive set functions mj : A → R, j ∈ N, are said to be

uniformly ν-absolutely continuous if

(D) lim
n

[∨j ‖mj‖L(En)] = 0

whenever (En)n is a decreasing sequence in A such that limn ν(En) = 0.

Remark 2.13. Observe that, in our definition of ν-absolute continuity, we
consider only decreasing sequences in A, while in the classical setting all se-
quences in A ν-convergent to zero are considered. If R is a topological group,
the definition of ν-absolute continuity given in 2.12 coincides with the classical
one, but in general this is not true in Riesz spaces (see [9]). Indeed, let Σ the
σ-algebra of all measurable subsets of [0, 1] and ν : Σ → R be the Lebesgue
measure. The space R = L0([0, 1],Σ, ν) of all measurable functions on [0, 1],
with identification up to subsets of Lebesgue measure zero, is Dedekind com-
plete and has the Egorov property (see [39]). By [11, Theorem 3.1], R is weakly
σ-distributive (see also [12]). Let us define m : Σ→ R as follows: m(A) = χA,
for all A ∈ Σ, where χA is the characteristic function associated to A. Then
ν(An) → 0 if and only if χAn → 0 in L1, but (o) limn χAn = 0 ⇔ χAn → 0
ν-almost everywhere. So, in general, the implication

ν(An)→ 0⇒ (o) lim
n
m(An) = 0 (5)

does not hold, and m is not ν-absolutely continuous in the classical sense.
However, it is easy to see that (5) holds whenever (An)n is any decreasing
sequence in Σ. Thus m is ν-absolutely continuous according the definition
given in 2.12 (see also [9, Remark 1.13.1]).

We now formulate the concept of pointwise (D)-convergence for set func-
tions with respect to a common regulator, which will be our hypothesis in all
of our versions of limit theorems.
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Definitions 2.14. Let A ⊂ P(G) be a σ-algebra. Given a sequence of finitely
additive set functions mj : A → R, j ∈ N, we say that the mj ’s (RD)-
converge (or converge pointwise with respect to a same regulator) to m0, or
shortly (RD) limj mj = m0, if there exists a (D)-sequence (bi,l)i,l such that
for each ϕ ∈ NN and A ∈ A there is an integer j0 such that

|mj(A)−m0(A)| ≤
∞∨
i=1

bi,ϕ(i), for all j ≥ j0. (6)

We say that (D) limj mj = m0 uniformly, or in short (U) limj mj = m0, if
there exists a (D)-sequence (ci,l)i,l such that for every ϕ ∈ NN there is j0 ∈ N
with

|mj(A)−m0(A)| ≤
∞∨
i=1

ci,ϕ(i), for all A ∈ A and for every j ≥ j0, (7)

that is if and only if (D) limjmj(A) = m0(A) uniformly with respect to A ∈ A.

The following definitions are useful in order to present some examples.

Definitions 2.15. Let u ∈ R, u ≥ 0. We say that u has the Egorov property
if, for every regulator (ai,l)i,l bounded from above by u, there exist an (o)-
sequence (bn)n and a sequence (ϕn)n of elements of NN, such that

∞∨
i=1

ai,ϕn(i) ≤ bn

for all n ∈ N. We say that R has the Egorov property if each positive element
u ∈ R has the Egorov property (see also [39, pp. 458, 467]).

Remark 2.16. In [12] the authors introduced some concepts of σ-additivity,
(s)-boundedness and absolute continuity with respect to a common regula-
tor. However, there are sequences of measures (even uniformly) σ-additive
according to our definition, but not with respect to the same regulator (see
[50, Example 5]).

In this paper we will present some versions of limit theorems with respect
to (D)-convergence. The use of (D)-convergence could seem apparently quite
difficult, but it utilizes only Dedekind completeness and weak σ-distributivity
of the involved (l)-group, and often it simplifies the proofs and allows us
to replace a countable family of regulators with one (D)-sequence without
assuming further additional hypotheses on the involved (l)-group, differently
than in the contexts of relatively uniform convergence ((r)-convergence), where
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we require also some suitable regularity property (see [39, 53]) or of order
convergence, where we often require super Dedekind completeness (see also
[14]).

Some similar versions of the Schur and Nikodým theorems were proved in
[17] with respect to relatively uniform convergence (or (r)-convergence). Note
that in general (D)-convergence is weaker than (r)-convergence, and there are
some cases in which (r)-convergence is strictly stronger than (D)-convergence.
For example, in the space l∞ of all bounded real sequence endowed with
the usual coordinatewise ordering, (o)-convergence is strictly weaker than (r)-
convergence (see [39, Theorem 16.3, p. 80 and p. 479]). Moreover, note that
l∞ is an ideal in the space RN of all real sequences: indeed, given x ∈ l∞

and y ∈ RN with |y| ≤ |x|, we get clearly y ∈ l∞ (see [53, Definition III.9.1]).
Therefore, since l∞ is an ideal of RN, we get that l∞ is Dedekind complete
(see also [53, p. 156 and Theorem VI.2.2, p. 157]). Furthermore, observe that
l∞ has the Egorov property (see [39, p. 465]), and hence, by [11, Theorem
3.1], l∞ is weakly σ-distributive. Thus, order and (D)-convergences coincide,
but they are different from (r)-convergence.

3 Limit theorems.

In this section we prove some versions of the Schur lemma, Vitali-Hahn-Saks
and Nikodým convergence theorem with respect to (D)-convergence. Similar
versions in the context of relatively uniform convergence were proved in [17,
Theorems 3.4 and 3.5]. Note that in our context only the pointwise conver-
gence of the involved measures, and not σ-additivity or absolute continuity, is
intended with respect to a same regulator, while in [12, 13] all concepts are
formulated relatively to a common (D)-sequence.

We begin with stating the Schur lemma, the Vitali-Hahn-Saks theorem and
Nikodým convergence theorem.

Theorem 3.1. (Schur lemma) Let mj : P(N) → R, j ∈ N, be a sequence of
equibounded σ-additive measures, and assume that there exists a set function
m0 : P(N)→ R such that (RD) limj mj = m0. Then

(D) lim
j

( ∞∑
n=1

|mj({n})−m0({n})|
)

= 0.

Moreover m0 is σ-additive, (U) limjmj = m0 and the mj’s are uniformly
σ-additive.

Theorem 3.2. (Vitali-Hahn-Saks theorem) Let G be any infinite set, A ⊂
P(G) be a σ-algebra, ν : A → [0,+∞] be a finitely additive set function,
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mj : A → R, j ∈ N, be a sequence of equibounded ν-absolutely continuous
finitely additive set functions. Assume that there exists m0 : A → R with
(RD) limj mj = m0. Then m0 is ν-absolutely continuous and the mj’s are
uniformly ν-absolutely continuous.

Theorem 3.3. (Nikodým convergence theorem) Let G, A be as in Theorem
3.2, assume that mj : A → R, j ∈ N, is a sequence of equibounded σ-additive
measures, and suppose that there is a set function m0 : A → R such that
(RD) limj mj = m0. Then m0 is σ-additive and the mj’s are uniformly σ-
additive.

In order to prove Theorems 3.1, 3.2 and 3.3, let us introduce some prelim-
inary definitions and results.

Definitions 3.4. We denote by l1(R) the set of all sequences (aj)j of R, such

that

∞∑
j=1

|aj | exists in R.

It is not difficult to check that l1(R), endowed with the coordinatewise
ordering, is an (l)-group.

A sequence (a(n))n of elements of l1(R), where a(n) = (a
(n)
j )j , n ∈ N, is

said to be convergent in l1(R) to a = (aj)j ∈ l1(R) if

(D) lim
n

( ∞∑
j=1

|a(n)
j − aj |

)
= 0. (8)

We say that the sequence (a(n))n is Cauchy in l1(R) if

(D) lim
n

( ∞∑
j=1

|a(n)
j − a(n+p)

j |
)

= 0 (9)

uniformly with respect to p ∈ N.

The set l1(R) satisfies the following completeness condition:

Proposition 3.5. Every Cauchy in l1(R) sequence of elements of l1(R) is
convergent in l1(R).

Proof. The proof is similar to [17, Proposition 2.3] and is a consequence of
the fact that, in weakly σ-distributive Dedekind complete (l)-groups, order
convergence of sequences coincides with (D)-convergence.

The following lemma will be useful in the sequel ([17, Lemma 3.2]).
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Lemma 3.6. Let m : P(N) → R be a finitely additive bounded set function
and X be a finite subset of N. Then the following inequality holds:∑

l∈X

|m({l})| ≤ 2
∨
A⊂X

|m(A)|.

In order to prove our version of the Schur lemma, we will use the following
technical result.

Lemma 3.7. Let mj : P(N) → R, j ∈ N, be a sequence of σ-additive equi-
bounded measures, and m0 : P(N) → R be a set function, with the property
that (RD) limj mj = m0. Then there exists a regulator (ci,l)i,l in R such that
for every ϕ ∈ NN and for all sequences (js)s, (ps)s in N with js ≥ s for every
s ∈ N there is s ∈ N such that

|mjs(A)−mjs+ps(A)| ≤
∞∨
i=1

ci,ϕ(i) (10)

for any s ≥ s and for all A ⊂ N.

Proof. First of all, note that for all positive sequences (ai)i and (bi)i in R
the following equations hold:

2

∞∨
i=1

ai =

∞∨
i=1

2 ai; (11)

∞∨
i=1

ai +

∞∨
j=1

bj ≤
∞∨
i=1

2(ai + bi). (12)

Observe that (12) is an easy consequence of (11).

Let now u be as in (2), and for each j ∈ N let (a
(j)
i,l )i,l be a (D)-sequence

related with the necessary and sufficient condition for σ-additivity of mj given
in Proposition 2.10. For every ϕ ∈ NN and j ∈ N, let us define ξj : N→ N as
follows: ξj(n) = ϕ(n + j), for all n ∈ N. So, for every j ∈ N, the regulator

(a
(j)
i,l )i,l is such that in correspondence with ξj there exists n ∈ N with

|mj(A)| ≤
∞∨
i=1

a
(j)
i,ξj(i) =

∞∨
i=1

a
(j)
i,ϕ(i+j) (13)

for all A ⊂ {n, n+ 1, n+ 2, . . .}. By (2) and (13) it follows that

|mj(A)| ≤ u
∧( q∑

j=1

∞∨
i=1

a
(j)
i,ϕ(i+j)

)
(14)
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for all A ⊂ {n, n+ 1, n+ 2, . . .} and for each q ∈ N.
By virtue of (14) and Lemma 2.4 there exists a (D)-sequence (ai,l)i,l such

that for every ϕ ∈ NN and j ∈ N there is n ∈ N with

|mj(A)| ≤
∞∨
i=1

ai,ϕ(i) (15)

for each A ⊂ {n, n+ 1, n+ 2, . . .}, that is

‖mj‖P(N)({n, n+ 1, n+ 2, . . .}) ≤
∞∨
i=1

ai,ϕ(i). (16)

Let (bi,l)i,l satisfy the condition of (RD)-convergence of the mj ’s to m0. For
each ϕ ∈ NN, n ∈ N and for all sequences (js)s, (ps)s in N with js ≥ s for
every s, there is s0 ∈ N with∨

A⊂{1,...,n}

|νs(A)| ≤ 2

∞∨
i=1

bi,ϕ(i) (17)

for all s ≥ s0, where νs = mjs −mjs+ps . From (17) and Lemma 3.6 it follows
that

|νs({1})|+ . . .+ |νs({n})| ≤ 2

∞∨
i=1

bi,ϕ(i) (18)

for all s ≥ s0. Set now

ci,l = 8 ai,l + 12 bi,l (19)

for all i, l ∈ N. We prove that the (D)-sequence (ci,l)i,l defined in (19) satisfies
condition (10). Otherwise there are an element ϕ ∈ NN and two sequences
(js)s, (ps)s in N, with js ≥ s for each s ∈ N, and such that for all s ∈ N there
is a set As ⊂ N with

|νs(As)| 6≤
∞∨
i=1

ci,ϕ(i). (20)

Arguing analogously as in (13-16), since the νs’s are equibounded and satisfy
condition (4) of Proposition 2.10 with respect to the regulator (2ai,l)i,l and
by virtue of Lemma 2.4, in correspondence with the function ϕ satisfying (20)
and ν1 it is possible to find a natural number n1 such that

‖ν1‖P(N)({n1 + 1, n1 + 2, . . .}) ≤ 2

∞∨
i=1

ai,ϕ(i). (21)
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By (RD)-convergence of the νj ’s to 0 with respect to the regulator (2 bi,l)i,l,
which is an easy consequence of (RD)-convergence of (mj)j to m0 with respect
to the (D)-sequence (bi,l)i,l, proceeding analogously as in (17) and (18), in
correspondence with n1 there exists s1 ∈ N such that

|νs({1})|+ . . .+ |νs({n1})| ≤ 2

∞∨
i=1

bi,ϕ(i) (22)

for all s ≥ s1. Proceeding similarly as above, it is possible to associate to νs1
a natural number n2 > n1 such that

‖νs1‖P(N)({n2 + 1, n2 + 2, . . .}) ≤ 2

∞∨
i=1

ai,ϕ(i), (23)

and to find s2 > s1 such that

|νs({1})|+ . . .+ |νs({n2})| ≤ 2

∞∨
i=1

bi,ϕ(i) (24)

for all s ≥ s2. Proceeding by induction, we get the existence of two strictly
increasing sequences (nh)h and (sh)h in N such that for all h ∈ N we have:

‖νsh‖P(N)({nh + 1, nh + 2, . . .}) ≤ 2

∞∨
i=1

ai,ϕ(i) (25)

and

|νs({1})|+ . . .+ |νs({nh})| ≤ 2

∞∨
i=1

bi,ϕ(i) (26)

for every s ≥ sh. Set now s0 = 1, n0 = 0 and

A =
⋃

h∈N
⋃
{0}

(Ash ∩ {nh + 1, . . . , nh+1}).

Notice that A ∩ {1, . . . , n1} = A1 ∩ {1, . . . , n1}. From this and taking into
account the finite additivity of ν1 we have:

ν1(A) = ν1(A1 ∩ {1, . . . , n1}) + ν1(A ∩ {n1 + 1, n1 + 2, . . .}),

ν1(A1) = ν1(A1 ∩ {1, . . . , n1}) + ν1(A1 ∩ {n1 + 1, n1 + 2, . . .}).
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Observe now that A ∩ {nh + 1, . . . , nh+1} = Ash ∩ {nh + 1, . . . , nh+1} for all
h ∈ N. From this and the finite additivity of νsh we get:

νsh(A) = νsh(A ∩ {1, . . . , nh}) + νsh(Ash ∩ {nh + 1, . . . , nh+1})
+ νsh(A ∩ {nh+1 + 1, nh+1 + 2, . . .}), (27)

νsh(Ash) = νsh(Ash ∩ {1, . . . , nh}) + νsh(Ash ∩ {nh + 1, . . . , nh+1})
+ νsh(Ash ∩ {nh+1 + 1, nh+1 + 2, . . .}) (28)

for every h ∈ N. From (25), (26), (27) and (28), for all h ∈ N we obtain:

|νsh(A)− νsh(Ash)| ≤ 4

∞∨
i=1

ai,ϕ(i) + 4

∞∨
i=1

bi,ϕ(i). (29)

By (RD)-convergence of the νj ’s to 0 with respect to the regulator (2 bi,l)i,l,
in correspondence with A there exists an integer h0 such that for every h ≥ h0

we get

|νsh(A)| ≤
∞∨
i=1

2bi,ϕ(i). (30)

From (29) and (30), taking into account (11) and (12), for all h ≥ h0 we have:

|νsh(Ash)| ≤ |νsh(A)|+ |νsh(A)− νsh(Ash)|

≤ 8

∞∨
i=1

ai,ϕ(i) + 12

∞∨
i=1

bi,ϕ(i) =

∞∨
i=1

ci,ϕ(i).

This is a contradiction with (20). Thus the lemma is completely proved.

We are now in position to prove our Schur lemma.

Proof. Theorem 3.1: First of all we know that, thanks to Lemma 3.7, there
exists a (D)-sequence (ci,l)i,l such that, for each ϕ ∈ NN and for all sequences
(js)s, (ps)s in N with js ≥ s for any s, there is s ∈ N with

|mjs(A)−mjs+ps(A)| ≤
∞∨
i=1

ci,ϕ(i) (31)
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for any s ≥ s and A ⊂ N. From (31) and Lemma 3.6 applied to the set
functions mjs −mjs+ps , s ≥ s, it follows that for all ϕ ∈ NN, for all sequences
(js)s, (ps)s in N with js ≥ s for each s, there exists s ∈ N such that

q∑
n=1

|mjs({n})−mjs+ps({n})|

≤ 2
∨

S∈S1,q

|mjs(S)−mjs+ps(S)| ≤ 2

∞∨
i=1

ci,ϕ(i) (32)

for every s ≥ s and q ∈ N (here S1,q is the set of all subsets of {1, . . . , q} for
all q ∈ N). Taking in (32) the supremum as q varies in N, we obtain that for
any ϕ ∈ NN, for all sequences of natural numbers (js)s, (ps)s with js ≥ s for
every s, there is s ∈ N such that, whenever s ≥ s,

∞∑
n=1

|mjs({n})−mjs+ps({n})| ≤ 2

∞∨
i=1

ci,ϕ(i). (33)

From (33) it follows that for any ϕ ∈ NN there exists j with the property that,
for each j ≥ j and p ∈ N,

∞∑
n=1

|mj({n})−mj+p({n})| ≤ 2

∞∨
i=1

ci,ϕ(i). (34)

Otherwise, there is ϕ ∈ NN such that for any s ∈ N there are js, ps ∈ N with
js ≥ s and such that

∞∑
n=1

|mjs({n})−mjs+ps({n})| 6≤ 2

∞∨
i=1

ci,ϕ(i),

that is there exist ϕ ∈ NN and two sequences (js)s, (ps)s in N with js ≥ s for
each s ∈ N and such that

∞∑
n=1

|mjs({n})−mjs+ps({n})| 6≤ 2

∞∨
i=1

ci,ϕ(i)

whenever s ∈ N. This contradicts (33), and thus (34) is proved.

Set now, for all j, n ∈ N, a
(j)
n = mj({n}), and for every j ∈ N, put

a(j) = (a
(j)
n )n.

From (34) we get that the sequence (a(j))j is Cauchy in l1(R). By Propo-
sition 3.5, (a(j))j is convergent in l1(R), and thus there exist an element
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a ∈ l1(R), a = (a
(0)
n )n, and a (D)-sequence (βi,l)i,l such that to every ϕ ∈ NN

there corresponds j ∈ N with

∞∑
n=1

|mj({n})− a(0)
n | ≤

∞∨
l=1

βi,ϕ(i) (35)

for every j ≥ j. Note that convergence of (a(j))j in l1(R) implies (D)-

convergence of (mj({n}))j to a
(0)
n for all n ∈ N, and this limit is unique,

thanks to weak σ-distributivity of R. Thus we get a
(0)
n = m0({n}) for every

n ∈ N.

We now prove that m0 is σ-additive. For all A ⊂ N set

m∗(A) = (D) lim
q

( ∑
n∈A,n=1,...,q

m0({n})
)

=
∑
n∈A

m0({n}). (36)

By Proposition 2.3 the limit in (36) exists in R uniformly with respect to
A ⊂ N. This also implies that∑

n∈A,n≥q

m0({n}) = (D) lim
l

( ∑
n∈A,n=q,q+1,...,q+l

m0({n})
)

exists in R and that

(D) lim
q

∑
n∈A,n≥q

m0({n}) = 0 (37)

uniformly with respect to A ⊂ N.

We now claim that

m∗(A) = m0(A), for all A ⊂ N. (38)

Indeed, we have:

m0(A)−m∗(A) = (D) lim
j

[mj(A)−m∗(A)] (39)

= (D) lim
j

[
(D) lim

q

( ∑
n∈A,n=1,...,q

(mj({n})−m0({n}))
)]

for each A ⊂ N; moreover from (35) it follows that to every ϕ ∈ NN a natural
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number j can be associated, with the property that, for all j ≥ j and A ⊂ N,∣∣∣(D) lim
q

( ∑
n∈A,n=1,...,q

(mj({n})−m0({n}))
)∣∣∣

≤
∑
n∈A
|mj({n})−m0({n})| (40)

≤
∞∑
n=1

|mj({n})−m0({n})| ≤
∞∨
i=1

βi,ϕ(i).

From (39), (40) and weak σ-distributivity of R we get:

0 ≤ |m0(A)−m∗(A)| ≤
∧
ϕ∈NN

( ∞∨
i=1

βi,ϕ(i)

)
= 0

for all A ⊂ N; thus we get (38).
From (36), (37) and (38) we have, uniformly with respect to A ⊂ N:

(D) lim
q
|m∗(A ∩ {q, q + 1, . . .})| = (D) lim

q

∣∣∣ ∑
n∈A,n≥q

m∗({n})
∣∣∣ (41)

= (D) lim
q

∣∣∣ ∑
n∈A,n≥q

m0({n})
∣∣∣ = 0.

From (41) it follows easily that (D) limq

∨
(|m∗(B)| : B ⊂ {q, q + 1, . . .}) = 0,

namely

(D) lim
q
‖m∗‖P(N)({q, q + 1, . . .}) = 0. (42)

From (42) and Proposition 2.10 it follows that m∗ is σ-additive on P(N), and
hence m0 is σ-additive too, since m0 coincides with m∗.

From σ-additivity of m0 and (40) it follows that to every ϕ ∈ NN there
corresponds j ∈ N such that, for any j ≥ j and A ⊂ N, we have

|mj(A)−m0(A)|

=
∣∣∣(D) lim

q

( ∑
n∈A,n=1,...,q

(mj({n})−m0({n}))
)∣∣∣ ≤ ∞∨

i=1

βi,ϕ(i),

and hence

(U) lim
j
mj = m0. (43)
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Uniform σ-additivity of the mj ’s is a consequence of (43) and σ-additivity of
m0. Indeed, by virtue of (43), there exists a (D)-sequence (hi,l)i,l such that
to every ϕ ∈ NN a positive integer j can be associated, with

|mj(A)−m0(A)| ≤
∞∨
i=1

hi,ϕ(i) (44)

whenever j ≥ j and A ⊂ N. Moreover, by virtue of σ-additivity of m0 and
the mj ’s, their equiboundedness and Lemma 2.4, arguing analogously as in
(13-15), there exists a (D)-sequence (fi,l)i,l such that, for all ϕ ∈ NN and
j ∈ N

⋃
{0}, there exists n = n(ϕ, j) ∈ N with

|mj(A)| ≤
∞∨
i=1

fi,ϕ(i), for all A ⊂ {n, n+ 1, n+ 2, . . .}. (45)

Fix arbitrarily ϕ ∈ NN, and let j be as in (44). In correspondence with ϕ
and j = 0, 1, . . . , j − 1, there exist n0, n1, . . . , nj−1 as in (45). Set n∗ =
max(n0, n1, . . . , nj−1): we have

|mj(A)| ≤
∞∨
i=1

fi,ϕ(i), for all A ⊂ {n∗, n∗ + 1, n∗ + 2, . . .}. (46)

Moreover, for every j ≥ j and A ⊂ {n∗, n∗ + 1, n∗ + 2, . . .}, we get

|mj(A)| ≤ |mj(A)−m0(A)|+ |m0(A)| ≤
∞∨
i=1

hi,ϕ(i) +

∞∨
i=1

fi,ϕ(i). (47)

Uniform σ-additivity of the mj ’s follows from (46) and (47).

The next step is to prove our version of the Vitali-Hahn-Saks-type theorem.
In order to do it, we first formulate the following technical lemma.

Lemma 3.8. Let R be a Dedekind complete weakly σ-distributive (l)-group, G
be any infinite set, A ⊂ P(G) be a σ-algebra, m : A → R be a finitely additive

set function. Let (En)n be any decreasing sequence of A, put F =

∞⋂
n=1

En and

suppose that m(F ) = 0. Set Bn = En \ En+1 for all n ∈ N, and denote by
K and L the σ-algebras generated by the Bn’s in E1 and by the En’s in E1

respectively. Then for all n ∈ N we get

‖m‖L(En) = ‖m‖K
( ∞⋃
l=n

Bl

)
. (48)
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Proof. First of all notice that L = K ∪ {X ∪ F : X ∈ K}. For all n ∈ N let

Kn := {X ∈ K : X ⊂
∞⋃
l=n

Bl}.

The following equalities hold for all n ∈ N:

vL(m)(En) = vL(m)
(
F ∪

( ∞⋃
l=n

Bl

))
=

∨
X∈Kn

[|m(X)| ∨ |m(X ∪ F )|]

=
∨

X∈Kn

|m(X)| ∨ |m(X) +m(F ))|, because m is finitely additive

=
∨

X∈Kn

|m(X)|, as m(F ) = 0 by hypothesis

= vK(m)
( ∞⋃
l=n

Bl

)
.

This ends the proof.

Finally we are ready to give our version of the Vitali-Hahn-Saks theorem
for ν-absolutely continuous set functions (not necessarily with respect to a
common regulator, differently than in [12]).

Proof. Theorem 3.2: Let (Hn)n be any decreasing sequence of elements of
A such that limn ν(Hn) = 0, set Bn = Hn \Hn+1 for every n ∈ N, and let L,
K be the σ-algebras generated by the Hn’s and by the Bn’s in H1 respectively.
Put F =

⋂∞
n=1Hn.

Choose arbitrarily j ∈ N. Since mj is ν-absolutely continuous, it follows
that ∧

n

‖mj‖L(Hn) =
∧
n

∨(
|mj(C)| : C ∈ L with C ⊂ Hn

)
= 0. (49)

Since 0 ≤ ‖mj‖L(F ) ≤ ‖mj‖L(Hn) for every n ∈ N, from (49) it follows that
‖mj‖L(F ) = 0, and a fortiori mj(F ) = 0.

Now, for every A ⊂ N, set µj(A) = mj

( ⋃
n∈A

Bn

)
. We claim that

‖µj‖P(N)({n, n+ 1, n+ 2, . . .})

=
∨(
|µj(B)| : B ⊂ {n, n+ 1, n+ 2 . . .}

)
(50)

=
∨(
|µj(C)| : C ∈ L with C ⊂ Hn

)
= ‖mj‖L(Hn)
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for all n ∈ N. Indeed, in order to prove that

‖µj‖P(N)({n, n+ 1, n+ 2, . . .}) ≤ ‖mj‖L(Hn),

it is enough to associate to every B ⊂ {n, n+1, n+2, . . .} the set C =
⋃
n∈B

Bn,

which is contained in Hn. Conversely, observe that by Lemma 3.8 we have

‖mj‖L(Hn) = ‖mj‖K
( ∞⋃
l=n

Bl

)
(51)

for every n ∈ N.
If C ∈ K and C ⊂

⋃∞
l=nBl, then there is B ⊂ {n, n + 1, n + 2, . . . , } such

that C =
⋃
n∈B Bn. The equality (50) follows from this and (51). From (49)

and (50) we obtain∧
n

‖µj‖P(N)({n, n+ 1, n+ 2, . . .}) = 0. (52)

By virtue of (52) and Proposition 2.10 we get that µj is a σ-additive measure
on P(N).

Now, for each A ⊂ N, set µ0(A) = m0

( ⋃
n∈A

Bn

)
. The equiboundedness of

the µj ’s and (RD)-convergence of the µj ’s to µ0 follow easily from the equi-
boundedness of the mj ’s and (RD)-convergence of the mj ’s to m0 respectively.
By the Schur lemma 3.1, the measures µj , j ∈ N, are uniformly σ-additive on
P(N). By Remark 2.11 we get∧

n

∨
j

‖µj‖P(N)({n, n+ 1, n+ 2, . . .}) = 0. (53)

From (50) and (53) we obtain that
∧
n

∨
j ‖mj‖L(Hn) = 0 for all j ∈ N,

and thus the set functions mj , j ∈ N, are uniformly ν-absolutely continuous.
From this it follows easily that m0 is ν-absolutely continuous too. This ends
the proof.

The proof of our version of the Nikodým convergence theorem is similar to the
one of the Vitali-Hahn-Saks theorem and uses the Schur Lemma 3.1 too.

Proof. Theorem 3.3: Let (Hn)n be any disjoint sequence of elements of A,

and for every n ∈ N put En =

∞⋃
l=n

Hl. Let L be the σ-algebra generated by

the Hn’s in the set

∞⋃
n=1

Hn.
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Choose arbitrarily j ∈ N. Since mj is σ-additive, we have∧
n

‖mj‖L(En) =
∧
n

∨(
|mj(C)| : C ∈ L with C ⊂ En

)
= 0. (54)

Now, for every A ⊂ N, set µj(A) = mj

( ⋃
n∈A

Hn

)
. By arguing similarly as

in (50), it follows that

‖µj‖P(N)({n, n+ 1, n+ 2, . . .}) = ‖mj‖L(En) (55)

for all n ∈ N. From (54) and (55) we obtain∧
n

‖µj‖P(N)({n, n+ 1, n+ 2, . . .}) = 0. (56)

By virtue of (56) and Proposition 2.10 we obtain that µj is a σ-additive mea-
sure on P(N).

For each A ⊂ N, put µ0(A) = m0

( ⋃
n∈A

Hn

)
. The equiboundedness of the

µj ’s and (RD)-convergence of the µj ’s to µ0 are easy consequences of the
equiboundedness of mj ’s and (RD)-convergence of the mj ’s to m0 respectively.
By the Schur lemma 3.1, the measures µj , j ∈ N, are uniformly σ-additive and
µ0 is σ-additive. Now, proceeding analogously as in the final part of the proof
of Theorem 3.2, we get that

∧
n

∨
j ‖mj‖L(En) = 0 for all j ∈ N. Thus the

measures mj , j ∈ N, are uniformly σ-additive and m0 is σ-additive too.

Finally, we give the following result, which is a consequence of Lemma 3.8
and connects uniform σ-additivity and uniform absolute continuity. Observe
that every ν-absolutely continuous finitely additive set function m defined on
A has the property that m(S) = 0 whenever S ∈ A and ν(S) = 0.

Theorem 3.9. Let R, G and A be as in Lemma 3.8, mj : A → R, j ∈ N,
be a sequence of uniformly σ-additive measures. Let ν : A → R ∪ {+∞} be a
finitely additive set function. If ν(S) = 0 implies mj(S) = 0 for each j ∈ N
and each S ∈ A, then the mj’s are uniformly ν-absolutely continuous.

Proof. Let (En)n be any decreasing sequence of elements of A such that
limn ν(En) = 0. Put F =

⋂∞
n=1En. As ν(F ) ≤ ν(En) for all n ∈ N, it follows

that ν(F ) = 0. Therefore mj(F ) = 0 for all j ∈ N.
Put Bn = En \ En+1 for all n ∈ N. Denote by K and L the σ-algebras

generated by the Bn’s in E1 and by the En’s in E1 respectively. By Lemma



Limit theorems in (l)-groups 273

3.8 applied to mj , for every j and n ∈ N we get:

‖mj‖L(En) = ‖mj‖K
( ∞⋃
l=n

Bl

)
. (57)

The mj ’s are uniformly σ-additive, thus

(D) lim
n

∨
j

‖mj‖K
( ∞⋃
l=n

Bl

)
=
∧
n

∨
j

‖mj‖K
( ∞⋃
l=n

Bl

)
= 0.

Hence (D) lim
n

∨
j

‖mj‖L(En) =
∧
n

∨
j

‖mj‖L(En) = 0, therefore the mj ’s are

uniformly ν-absolutely continuous.

Open problem: Find some necessary and/or sufficient conditions for
which the semivariation of (l)-group-valued measures introduced in the paper
is equal to the one with respect to the σ-algebra where the measures are
defined.
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[21] J. K. Brooks and J. Mikusiński, On some theorems in Functional Analysis,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18(3) (1970),
151–155.

[22] J. K. Brooks and R. S. Jewett, On finitely additive vector measures, Proc.
Natl. Acad. Sci. USA, 67 (1970), 1294–1298.

[23] F. Cafiero, Sulle famiglie di funzioni additive d’insieme uniformemente
continue, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 12(8)
(1952), 155–162.

[24] D. Candeloro, Sui teoremi di Vitali-Hahn-Saks, Dieudonné e Nikodým,
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