Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, e-mail: hrosen@@gp.as.ua.edu

EVERY REAL FUNCTION IS THE SUM OF TWO EXTENDABLE CONNECTIVITY FUNCTIONS

Abstract

It is shown that an arbitrary function $f : \mathbb{R} \to \mathbb{R}$ can be written as the sum of two extendable connectivity functions.

Let K be any one of the following three classes of functions from \mathbb{R} into \mathbb{R} : Darboux functions, connectivity functions, or almost continuous functions. It is known that an arbitrary function $f : \mathbb{R} \to \mathbb{R}$ is the sum of two functions belonging to K [8], [3], [10], [2] and [7]. We show that this result is also true for the class K of extendable connectivity functions. This answers a question of Gibson in [4]. Consequently, just like for the other classes, summation does not preserve for extendable functions any topological properties.

For a <u>Darboux</u> function $g : \mathbb{R} \to \mathbb{R}$, g(C) is connected whenever C is connected. Let $X = \mathbb{R}$ or \mathbb{R}^2 . A function $G : X \to \mathbb{R}$ is called <u>connectivity</u> if the graph of the restriction G|C is connected for each connected subset C of X. According to [6], [14], [13], when $X = \mathbb{R}^2$, this last concept is equivalent to the notion of <u>peripheral continuity</u>, which means that for each $x \in X$ and each open neighborhood U of x and V of G(x), there exists an open neighborhood W of x in U such that $G(\operatorname{bd}(W)) \subset V$, where $\operatorname{bd}(W)$ denotes the set-theoretic boundary of W in X. We say $g : \mathbb{R} \to \mathbb{R}$ is an <u>extendable</u> connectivity function if there exists a connectivity function $G : \mathbb{R}^2 \to \mathbb{R}$ such that G(x, 0) = g(x) for all $x \in \mathbb{R}$, and we say a set $A \subset \mathbb{R}$ is g-<u>negligible</u> if every function from \mathbb{R} into \mathbb{R} obtained by arbitrarily redefining g on A is still an extendable connectivity function. Every open neighborhood of the graph of an <u>almost continuous</u> function $g : \mathbb{R} \to \mathbb{R}$ contains the graph of some continuous function from \mathbb{R}

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08 Received by the editors June $16,\!1995$

²⁹⁹

into \mathbb{R} . Let I = [0, 1]. There is an extendable connectivity function $g: I \to I$ whose graph is dense in I^2 [1], [5] and [12]. Natkaniec remarks in [9] that it is unknown whether there exists an extendable connectivity function $g: I \to \mathbb{R}$ which is dense in $I \times \mathbb{R}$. We give such an example and use it and some results of Natkaniec [9] to verify the title.

Example 1 There exists an extendable connectivity function $g : \mathbb{R} \to \mathbb{R}$ whose graph is dense in \mathbb{R}^2 .

PROOF. We outline how to show this. Let $Q = \{r_1, r_2, r_3, ...\}$ be the set of rational numbers in $\mathbb{R} \times \{0\}$, and let

$$\{d_1, d_2, d_3, d_4, d_5, d_6, \ldots\} = \{1, -1, 2, -2, 3, -3, \ldots\}.$$

In what follows, a "triangle" t will consist of the points interior to the three sides along with the points on its open base b. First we want to define partially a function $G : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ which is peripherally continuous. For n = $1, 2, 3, \ldots$ we let T_n denote a countable collection of triangles t_i in $\mathbb{R} \times [0, \infty)$ whose bases b_i form a locally finite countable collection B_n of open intervals of $\mathbb{R} \times \{0\}$ with irrational endpoints. Furthermore, let G be a function such that

- (1) diam $(t_i) < \frac{1}{n}$,
- (2) T_{n+1} is a refinement of T_n and B_{n+1} is a refinement of B_n ,
- (3) each element r_j of $\{r_1, r_2, \ldots, r_n\}$ belongs to exactly two members b'_j , b''_j of B_n which are bases of triangles t'_j, t''_j in T_n with $\operatorname{cl}(t'_j) \subset t''_j$,
- (4) $T_n^* = T_n \setminus \{t_j'' : 1 \le j \le n\}$ is a "sawtooth" countable collection of disjoint triangles, $B_n^* = B_n \setminus \{b_j'' : 1 \le j \le n\}$ is a countable collection of disjoint open intervals, and $\mathbb{R} \times \{0\} = \cup \{\operatorname{cl}(b_i) : b_i \in B_n^*\}$,
- (5) for $1 \leq j \leq n$, $G(\operatorname{bd}(t'_j) \setminus b'_j) = d_n$ and $G(\operatorname{bd}(t''_j) \setminus b''_j) = 0$,
- (6) for each $t_i \in T_n$ the variation of G(x) on $bd(t_i) \setminus b_i$ is $< \frac{1}{n}$, and
- (7) G maps the closed set $(\mathbb{R} \times [0, \infty)) \setminus \cup T_n^*$ continuously onto $[-d_n + 1, d_n]$ if n is odd or onto $[-|d_n|, |d_n|]$ if n is even.

Here is how to attain condition (6) for n > 1. Let E denote the set of endpoints of all intervals belonging to B_{n-1} along with the endpoints of each $b'_j, b''_j \in B_n$ described in (3) for each $r_j \in \{r_1, r_2, \ldots, r_n\}$. Suppose c and d are consecutive points of E with $r_j \notin (c, d)$ for $1 \leq j \leq n$. Even if |G(d) - G(c)| is a large value, a sufficient number of consecutive small triangles of diameter $<\frac{1}{n}$ which are to belong to T_n can be constructed forming sawteeth from c to d so that the variation of G(x) on the slanted sides of each of these triangles will be less than $\frac{1}{n}$. We may suppose G(x) varies monotonically from G(c) to G(d) along the slanted edges of the sawteeth from c to d.

We now define G on the rest of $\mathbb{R} \times \{0\}$. Let $\varepsilon > 0$.

Case (i): x is a rational number $r_j \in \mathbb{R} \times \{0\}$. Then define G(x) = 0. For each $n \geq j$, there exist by (2), (3), and (5), open intervals $b'_j, b''_j \in B_n$ such that $G(\operatorname{bd}(t'_j) \setminus b'_j) = d_n$ and $G(\operatorname{bd}(t''_j) \setminus b''_j) = 0$. So diam $(\{G(x)\} \cup G(\operatorname{bd}(t''_j) \setminus b''_j) = \operatorname{diam}(\{0\}) = 0 < \varepsilon$.

Case (ii): x is an irrational number in $\mathbb{R} \times \{0\}$ that is not an endpoint of any b_i in any B_n . Suppose there exists an integer N such that for all n > N, x does not belong to any $b''_j \in B_n$, $1 \le j \le n$. Then by (3), (5) and (6), for each n > N, there exists in T_n a triangle t_i whose base b_i contains x and on whose slanted sides the value of G lies in $[-|d_N|, |d_N|]$. For each n > N, choose a point x_n belonging to a slanted side of t_i . Then there exists a cluster point y of the sequence $G(x_1), G(x_2), G(x_3), \ldots$, and so define G(x) = y. By (1) and (6), diam($\{G(x)\} \cup G(bd(t_i) \setminus b_i)$) $< \epsilon$ for infinitely many n. On the other hand, if we suppose there does not exist such an integer N, then there are infinitely many n such that $x \in b''_j \in B_n$ for some j with $1 \le j \le n$. Because of (5), $G(bd(t''_j) \setminus b''_j) = 0$, and so define G(x) = 0. Therefore diam($\{G(x)\} \cup (G(bd(t''_j) \setminus b''_j)) = 0 < \epsilon$.

Case (iii): x is an irrational number in $\mathbb{R} \times \{0\}$ that is an endpoint of some interval belonging to some B_m . Then G(x) is already defined. By (2) and (4), for each $n \geq m$, x is an endpoint of adjacent intervals b_i and b_k in B_n . Because of (1) and (6), there exists an $n \geq m$ such that $\frac{2}{n} < \epsilon$, $t_i \cup t_k$ has diameter $< \frac{2}{n}$, and the variation of G on $\operatorname{bd}(t_i \cup t_k) \setminus (b_i \cup b_k)$ is $< \frac{2}{n}$. Since, by (7), G restricted to $(\mathbb{R} \times [0, \infty)) \setminus \cup T_n^*$ is continuous at x, there exists an open disk D centered at x and not containing the other vertices of t_i and t_k such that the diameter of the open neighborhood $U = t_i \cup t_k \cup (D \cap (\mathbb{R} \times [0, \infty)))$ of x in $\mathbb{R} \times [0, \infty)$ is $< \frac{2}{n}$ and diam $(\{G(x)\} \cup G(\operatorname{bd}(U))) < \frac{2}{n} < \epsilon$.

Case (iv): $x \in \mathbb{R} \times (0, \infty)$. According to (7), G is already defined and continuous at x.

For each case, we have G is peripherally continuous at x. We can extend G to a peripherally continuous function $G : \mathbb{R}^2 \to \mathbb{R}$ by defining G(s,t) = G(s,-t) whenever $(s,t) \in \mathbb{R} \times (-\infty,0)$. On account of (5), the extendable connectivity function $g : \mathbb{R} \to \mathbb{R}$ defined by g(x) = G(x,0) for $x \in \mathbb{R}$ has its graph dense in \mathbb{R}^2 .

Theorem 1 Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Then $f = g_1 + g_2$ for functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ which are extendable connectivity functions.

PROOF. First let $g : \mathbb{R} \to \mathbb{R}$ be the above example of an extendable connectivity function whose graph is dense in $\mathbb{R} \times \mathbb{R}$. It follows from Theorem 1 in [11] that there exists a dense G_{δ} subset A of \mathbb{R} that is g-negligible. Since $\mathbb{R} \setminus A$ is of the first category, it follows from Lemma 3 in [9] that there exists a homeomorphism $h : \mathbb{R} \to \mathbb{R}$ such that $(\mathbb{R} \setminus A \cap h(\mathbb{R} \setminus A) = \emptyset$. Therefore $h(\mathbb{R} \setminus A) \subset A$; i.e., $\mathbb{R} \setminus A \subset h^{-1}(A)$. According to Corollary 1 and Lemma 2 (which still hold when \mathbb{R} replaces I and J there) in [9], $g \circ h$ is an extendable connectivity function and $h^{-1}(A)$ is $g \circ h$ -negligible. So $\mathbb{R} \setminus A$ is $g \circ h$ -negligible. Define extendable connectivity functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ by

$$g_1 = \begin{cases} g \circ h & \text{on } A \\ f - g & \text{on } \mathbb{R} \setminus A \end{cases} \quad \text{and} \quad g_2 = \begin{cases} f - (g \circ h) & \text{on } A \\ g & \text{on } \mathbb{R} \setminus A. \end{cases}$$

Then $f = g_1 + g_2$.

Question 1 If $f: I \to I$ is an arbitrary bounded function, does $f = g_1 + g_2$, where g_1 and g_2 are bounded extendable connectivity functions? Natkaniec has shown that f is the sum of three such functions g_1, g_2, g_3 [9].

Analogous results have been obtained by Ciesielski and Reclaw in their paper, Cardinal invariants concerning extendable and peripherally continuous functions, and according to the referee, a negative answer to the above question follows from latest results of Ciesielski and Maliszewski.

References

- J. B. Brown, Totally discontinuous connectivity functions, Colloq. Math. 23 (1971), 53–60.
- [2] A. M. Bruckner and J. G. Ceder, On jumping functions by connected sets, Czech. Math. J. 22 (1972), 435–448.
- [3] H. Fast, Une remarque sur la propriete de Weierstrass, Colloq. Math. 7 (1959), 75–77.
- [4] R. G. Gibson, A property of Borel measurable functions and extendable functions, Real Analysis Exch. 13 (1987–88), 11–15.
- [5] R. G. Gibson, and F. Roush, Connectivity functions defined on Iⁿ, Colloq. Math. 55 (1988), 41–44.
- [6] M. R. Hagan, Equivalence of connectivity maps and peripherally continuous transformations, Proc. Amer. Math. Soc. 17 (1966), 175–177.

- [7] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125–128.
- [8] A. Lindenbaum, Sur quelques proprietes des fonctions de variable reelle, Ann. Soc. Polon. Math. 6 (1927), 129.
- [9] T. Natkaniec, Extendability and almost continuity, preprint.
- [10] D. Phillips, Real functions having graphs connected and dense in the plane, Fund. Math. 75 (1972), 47–49.
- [11] H. Rosen, Limits and sums of extendable connectivity functions, Real Analysis Exch. 20 (1994–95), 183–191.
- [12] H. Rosen, R. G. Gibson, and F. Roush, Extendable functions and almost continuous functions with a perfect road, Real Analysis Exch. 17 (1991– 92), 248–257.
- [13] J. R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.
- [14] G. T. Whyburn, Connectivity of peripherally continuous functions, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1040–1041.