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EVERY REAL FUNCTION IS THE SUM OF
TWO EXTENDABLE CONNECTIVITY

FUNCTIONS

Abstract

It is shown that an arbitrary fucntion f : R → R can be written as
the sum of two extendable connectivity functions.

Let K be any one of the following three classes of functions from R into R:
Darboux functions, connectivity functions, or almost continuous functions. It
is known that an arbitrary function f : R → R is the sum of two functions
belonging to K [8], [3], [10], [2] and [7]. We show that this result is also true
for the class K of extendable connectivity functions. This answers a question
of Gibson in [4]. Consequently, just like for the other classes, summation does
not preserve for extendable functions any topological properties.

For a Darboux function g : R → R, g(C) is connected whenever C is
connected. Let X = R or R2. A function G : X → R is called connectivity if
the graph of the restriction G|C is connected for each connected subset C of
X. According to [6], [14], [13], when X = R2, this last concept is equivalent to
the notion of peripheral continuity, which means that for each x ∈ X and each
open neighborhood U of x and V of G(x), there exists an open neighborhood
W of x in U such that G(bd(W )) ⊂ V , where bd(W ) denotes the set-theoretic
boundary of W in X. We say g : R→ R is an extendable connectivity function
if there exists a connectivity function G : R2 → R such that G(x, 0) = g(x) for
all x ∈ R, and we say a set A ⊂ R is g-negligible if every function from R into
R obtained by arbitrarily redefining g on A is still an extendable connectivity
function. Every open neighborhood of the graph of an almost continuous
function g : R → R contains the graph of some continuous function from R
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into R. Let I = [0, 1]. There is an extendable connectivity function g : I → I
whose graph is dense in I2 [1], [5] and [12]. Natkaniec remarks in [9] that it is
unknown whether there exists an extendable connectivity function g : I → R
which is dense in I ×R. We give such an example and use it and some results
of Natkaniec [9] to verify the title.

Example 1 There exists an extendable connectivity function g : R→ R whose
graph is dense in R2.

Proof. We outline how to show this. Let Q = {r1, r2, r3, . . .} be the set of
rational numbers in R× {0}, and let

{d1, d2, d3, d4, d5, d6, . . .} = {1,−1, 2,−2, 3,−3, . . .}.

In what follows, a “triangle” t will consist of the points interior to the three
sides along with the points on its open base b. First we want to define partially
a function G : R × [0,∞) → R which is peripherally continuous. For n =
1, 2, 3, . . . we let Tn denote a countable collection of triangles ti in R× [0,∞)
whose bases bi form a locally finite countable collection Bn of open intervals
of R × {0} with irrational endpoints. Furthermore, let G be a function such
that

(1) diam(ti) <
1
n ,

(2) Tn+1 is a refinement of Tn and Bn+1 is a refinement of Bn,

(3) each element rj of {r1, r2, . . . , rn} belongs to exactly two members b′j ,
b′′j of Bn which are bases of triangles t′j , t

′′
j in Tn with cl(t′j) ⊂ t′′j ,

(4) T ∗n = Tn\{t′′j : 1 ≤ j ≤ n} is a“sawtooth” countable collection of disjoint
triangles, B∗n = Bn \{b′′j : 1 ≤ j ≤ n} is a countable collection of disjoint
open intervals, and R× {0} = ∪{cl(bi) : bi ∈ B∗n},

(5) for 1 ≤ j ≤ n, G(bd(t′j) \ b′j) = dn and G(bd(t′′j ) \ b′′j ) = 0,

(6) for each ti ∈ Tn the variation of G(x) on bd(ti) \ bi is < 1
n , and

(7) G maps the closed set (R× [0,∞))\∪T ∗n continuously onto [−dn+ 1, dn]
if n is odd or onto [−|dn|, |dn|] if n is even.

Here is how to attain condition (6) for n > 1. Let E denote the set of
endpoints of all intervals belonging to Bn−1 along with the endpoints of each
b′j , b

′′
j ∈ Bn described in (3) for each rj ∈ {r1, r2, . . . , rn}. Suppose c and d are

consecutive points of E with rj 6∈ (c, d) for 1 ≤ j ≤ n. Even if |G(d) − G(c)|
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is a large value, a sufficient number of consecutive small triangles of diameter
< 1

n which are to belong to Tn can be constructed forming sawteeth from c to
d so that the variation of G(x) on the slanted sides of each of these triangles
will be less than 1

n . We may suppose G(x) varies monotonically from G(c) to
G(d) along the slanted edges of the sawteeth from c to d.

We now define G on the rest of R× {0}. Let ε > 0.
Case (i): x is a rational number rj ∈ R× {0}. Then define G(x) = 0. For

each n ≥ j, there exist by (2), (3), and (5), open intervals b′j , b
′′
j ∈ Bn such that

G(bd(t′j)\b′j) = dn and G(bd(t′′j )\b′′j ) = 0. So diam({G(x)}∪G(bd(t′′j )\b′′j ) =
diam({0}) = 0 < ε.

Case (ii): x is an irrational number in R × {0} that is not an endpoint
of any bi in any Bn. Suppose there exists an integer N such that for all
n > N , x does not belong to any b′′j ∈ Bn, 1 ≤ j ≤ n. Then by (3), (5) and
(6), for each n > N , there exists in Tn a triangle ti whose base bi contains
x and on whose slanted sides the value of G lies in [−|dN |, |dN |]. For each
n > N , choose a point xn belonging to a slanted side of ti. Then there
exists a cluster point y of the sequence G(x1), G(x2), G(x3), . . ., and so define
G(x) = y. By (1) and (6), diam({G(x)} ∪ G(bd(ti) \ bi)) < ε for infinitely
many n. On the other hand, if we suppose there does not exist such an integer
N , then there are infinitely many n such that x ∈ b′′j ∈ Bn for some j with
1 ≤ j ≤ n. Because of (5), G(bd(t′′j ) \ b′′j ) = 0, and so define G(x) = 0.
Therefore diam({G(x)} ∪ (G(bd(t′′j ) \ b′′j )) = 0 < ε.

Case (iii): x is an irrational number in R×{0} that is an endpoint of some
interval belonging to some Bm. Then G(x) is already defined. By (2) and
(4), for each n ≥ m, x is an endpoint of adjacent intervals bi and bk in Bn.
Because of (1) and (6), there exists an n ≥ m such that 2

n < ε, ti ∪ tk has
diameter < 2

n , and the variation of G on bd(ti∪ tk)\ (bi∪bk) is < 2
n . Since, by

(7), G restricted to (R× [0,∞)) \∪T ∗n is continuous at x, there exists an open
disk D centered at x and not containing the other vertices of ti and tk such
that the diameter of the open neighborhood U = ti ∪ tk ∪ (D ∩ (R× [0,∞)))
of x in R× [0,∞) is < 2

n and diam({G(x)} ∪G(bd(U))) < 2
n < ε.

Case (iv): x ∈ R × (0,∞). According to (7), G is already defined and
continuous at x.

For each case, we have G is peripherally continuous at x. We can extend
G to a peripherally continuous function G : R2 → R by defining G(s, t) =
G(s,−t) whenever (s, t) ∈ R × (−∞, 0). On account of (5), the extendable
connectivity function g : R → R defined by g(x) = G(x, 0) for x ∈ R has its
graph dense in R2. �

Theorem 1 Let f : R → R be an arbitrary function. Then f = g1 + g2 for
functions g1, g2 : R→ R which are extendable connectivity functions.
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Proof. First let g : R → R be the above example of an extendable con-
nectivity function whose graph is dense in R× R. It follows from Theorem 1
in [11] that there exists a dense Gδ subset A of R that is g-negligible. Since
R \ A is of the first category, it follows from Lemma 3 in [9] that there exists
a homeomorphism h : R → R such that (R \ A ∩ h(R \ A) = ∅. Therefore
h(R \ A) ⊂ A; i.e., R \ A ⊂ h−1(A). According to Corollary 1 and Lemma 2
(which still hold when R replaces I and J there) in [9], g ◦ h is an extendable
connectivity function and h−1(A) is g◦h-negligible. So R\A is g◦h-negligible.
Define extendable connectivity functions g1, g2 : R→ R by

g1 =

{
g ◦ h on A

f − g on R \A
and g2 =

{
f − (g ◦ h) on A

g on R \A.

Then f = g1 + g2. �

Question 1 If f : I → I is an arbitrary bounded function, does f = g1 + g2,
where g1 and g2 are bounded extendable connectivity functions? Natkaniec has
shown that f is the sum of three such functions g1, g2, g3 [9].

Analogous results have been obtained by Ciesielski and Reclaw in their
paper, Cardinal invariants concerning extendable and peripherally continuous
functions, and according to the referee, a negative answer to the above question
follows from latest results of Ciesielski and Maliszewski.
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