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Abstract

The paper is devoted to a topology of von Neumann type which is
associated with a special invariant extension of the classical Lebesgue
measure. The structure of the sets of density points for some sets having
the Baire property with respect to this topology is investigated. In
particular, a problem of Wilczynski concerning density points in the
sense of category is solved.

1 Introduction

Let R be the real line and let l be the classical Lebesgue measure on R. If we
want to estimate how big a Lebesgue measurable set X ⊆ R is near a point
x ∈ R, then we consider the real number

d(X,x) = lim
h→0+

(l(X ∩ [x− h, x+ h])/2h)

and call it the density of the set X at the point x. If d(X,x) = 1, then we
simply say that x is a Lebesgue density point of X. Hence we may put

Φd(X) = {x ∈ R : d(X,x) = 1}

for each Lebesgue measurable subset X of R. We can also consider the class
of sets

Td = {X ⊆ R : X ⊆ Φd(X)}.
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It is well known that this class of sets is a topology on the set R extending the
usual Euclidean topology of R. The topology Td is called the density topology
on R. (See, for example, [1] where some interesting properties of this topology
are considered; see also [2] where some additional properties of the density
topology are discussed, as well.)

It is not difficult to check that 0 is a density point of a Lebesgue measurable
set X ⊆ R if and only if

lim
n→∞

n l(X ∩ [−1/n, 1/n]) = 2 .

Obviously, this is equivalent to saying that limn→∞ l((nX) ∩ [−1, 1]) = 2
where nX denotes the set {nx : x ∈ X}. The last relation means that the
sequence of characteristic functions

{χnX ∩ [−1,1] : n ∈ N}

tends in measure to the characteristic function of the segment [−1, 1]. By
the well-known Riesz theorem from measure theory, we can describe the con-
vergence in measure in terms of the convergence almost everywhere. This
simple observation inspired W. Wilczynski to introduce in 1982 the concept
of a density point with respect to category (see [3] or [5]).

Let T be a topology on R satisfying the following three conditions:

(1) the segment [−1, 1] has the Baire property with respect to T ,

(2) for every positive integer n and for each set X having the Baire property
with respect to T , the set nX also has the Baire property with respect
to T ,

(3) for each translation h of R and for each set X having the Baire property
with respect to T , the set h+X also has the Baire property with respect
to T .

Notice that all the topologies T considered below are assumed, as a rule, to
satisfy these three conditions. Notice also that conditions (1) and (3) imply
that all Borel subsets of R have the Baire property with respect to T . Let
B(R, T ) denote the σ-algebra of all sets with the Baire property with respect
to the topology T and let K(R, T ) denote the σ-ideal of all first category sets
with respect to T . Let X be an arbitrary set from the σ-algebra B(R, T ).
We shall say that 0 is a K(R, T )-density point of the set X if the sequence of
characteristic functions {fn : n ∈ N} = {χnX ∩ [−1,1] : n ∈ N}converges to
χ[−1,1] with respect to the ideal K(R, T ). The last sentence means that 0 is
a K(R, T )-density point of X if and only if, for each infinite subset N1 of N,
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there exists an infinite subset N2 of N1 such that the corresponding partial
sequence of functions {fn : n ∈ N2} converges to χ[−1,1] on the complement
of a member of K(R, T ) (in other words, this partial sequence of functions
converges K(R, T )-almost everywhere).

Now, let x be an arbitrary point of R. We shall say that x is a K(R, T )-
density point of the set X if 0 is a K(R, T )-density point of the translated set
{y − x : y ∈ X}.

For any set X having the Baire property with respect to the topology T ,
let us put ΦT (X) = the set of all K(R, T )-density points of X. In this way
we obtain the following family of sets:

T ∗ = {X ∈ B(R, T ) : X ⊆ ΦT (X)}.

If the family T ∗ forms a topology on the set R, then this topology is called the
Wilczynski topology on R associated with T or the K(R, T )-density topology
on R (see [3]).

Example 1 Let us consider a particular case of the above construction.
Namely, let us take as T the usual Euclidean topology on R. In this case,
T ∗ is the topology on R called the I-density topology on R. This topology
has a number of interesting properties and was investigated by many authors.
Among various works devoted to the I-density topology we mention especially
book [4] which is a good survey of the subject.

Example 2 Let us consider another particular case of the Wilczynski con-
struction. Namely, let us put T = Td where Td is the density topology on R.
Of course, T satisfies conditions (1), (2) and (3). It is easy to check that
Φd(X) = ΦT (X) for each subset X of R having the Baire property with re-
spect to T . Thus we see that T ∗ = T = Td,i.e. the density topology Td can be
considered as a particular case of the Wilczynski topology.

The following question arises in a natural way.

Question 1 Does there exist a topology T on R such that

(a) T satisfies conditions (1), (2) and (3),

(b) all Lebesgue measurable subsets of R have the Baire property with respect
to T ,

(c) there is a subset X of R having the Baire property with respect to T and
also possessing exactly one K(R, T )-density point on R?



Density Points with Respect to von Neumann’s Topology 281

This question was posed by Wilczynski (oral communication), and the aim
of the present paper is to give an affirmative answer to it. We shall show
that the solution of the above Question of Wilczynski can be obtained by
using a certain invariant extension µ of Lebesgue measure l and exploiting
the von Neumann topology associated with µ. We want to observe here that
the required measure µ, besides being invariant with respect to all translations
of R, should satisfy some additional properties. Namely, it should be complete
and, for any µ-measurable set Y and for any positive integer n, the set nY
should also be µ-measurable and the equality µ(nY ) = nµ(Y ) should hold.
Such a situation creates some additional difficulties during the construction of
the measure µ. Notice also that the presented construction of µ differs from the
well-known constructions of S. Kakutani and J. Oxtoby (see [6]), of K. Kodaira
and S. Kakutani (see [7]), and of others (see, for example, [8]). However, in
some details of our construction we essentially use a certain almost invariant
partition of R like the authors mentioned above. Of course, the construction
of the measure µ is mainly made for the purpose of guaranteeing the existence
of a set X described in (c).

This paper consists of three parts. In the second part of the paper we
construct in detail the required measure µ. In the third part we consider the
von Neumann topology T (µ) associated with µ and show that it gives us the
positive answer to Wilczynski’s question.

Throughout the whole paper we use the following notation:

ω — the first infinite cardinal number,

c — the cardinality of the continuum; as a rule, we identify c with the
first ordinal number having the cardinality of the continuum,

card (X) — the cardinality of a given set X,

N — the set of all natural numbers,

R — the set of all real numbers,

l — the classical Lebesgue measure on R,

L — the family of all Lebesgue measurable subsets of R,

dom (ν) — the domain of a given measure ν; in particular, dom (l) = L,

Rm — m-dimensional Euclidean space, where m ∈ N; hence we have
R1 = R,

Dm — the group of all isometric transformations of the space Rm,

lm — the classical m-dimensional Lebesgue measure on Rm,

Lm — the family of all Lebesgue measurable subsets of Rm, i.e. Lm =
dom (lm).



282 J. Hejduk and A. Kharazishvili

2 Preliminary Lemmas and Remarks

Let E be an infinite set and let X and Y be two subsets of E. We shall say
that these subsets are almost identical if

card (X 4 Y ) < card (E),

where the symbol 4 denotes the operation of symmetric difference.
Let G be a group of transformations of the set E (i.e. G is a subgroup of

the group of all bijective mappings acting from E onto E). Let {Ej : j ∈ J}
be a partition of E. We shall say that this partition is almost invariant with
respect to the group G if, for each subset J0 of J and for each element g of G,
the sets ∪{Ej : j ∈ J0} and g(∪{Ej : j ∈ J0}) are almost identical.

Now, let X be a subset of E. We shall say that this subset is almost
invariant with respect to the group G if the partition {X,E \ X} of E is
almost invariant with respect to G.

At this point, it is worth mentioning that some almost invariant parti-
tions were used by Kakutani and Oxtoby in their famous paper [6] devoted to
the construction of a nonseparable invariant extension of Lebesgue measure.
Anyway, much earlier, some almost invariant subsets of the real line R were
considered by Sierpinski in several of his works.

We begin this section with the construction of a certain almost invariant
partition of R. Let us take as the basic group G of transformations of R the
group of all those affine transformations g of R which can be represented in
the form g(x) = qx + r (x ∈ R) where q is an arbitrary nonzero rational
number and r is an arbitrary real number.

It is clear that

1. G contains the group D1 of all isometric transformations of R,

2. G contains the group of all homotheties of R with center 0 and with
nonzero rational coefficients.

Our first aim is to construct a partition of R which is almost invariant with
respect to the above-mentioned group G and has some additional properties.

Lemma 1 There exist two families of sets {Fj : j ∈ J}, {Jα : α < c}
such that the following conditions hold:

(1) card (J) = c,

(2) card (Jα) = c for each ordinal α < c,

(3) {Jα : α < c} is a partition of the set J ,
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(4) for any index j ∈ J , the set Fj is closed in R and l(Fj) > 0,

(5) for any ordinal α < c and for any closed subset F of R with l(F ) > 0,
we have card ({j ∈ Jα : Fj = F}) = c.

This lemma is well-known and its proof is not difficult (see, for exam-
ple, [8]).

Let {Fj : j ∈ J} be a family of closed subsets of R, as in Lemma 1.
Obviously, we can identify the set J of indices with the cardinality of the
continuum. Thus we put {Fj : j ∈ J} = {Fβ : β < c}. Let us denote by the
symbol Γ0 the group of all homotheties of R with center 0 and with nonzero
rational coefficients. Of course, we have card (Γ0) = ω. Now, let {Gβ : β < c}
be a family of subgroups of the group G such that

(a) G0 = Γ0,

(b) this family is increasing with respect to inclusion,

(c) the union of this family is equal to G,

(d) for each ordinal β < c, we have card (Gβ) ≤ card (β) + ω.

By the method of transfinite induction, let us define a family {Zβ : β < c} of
subsets of R satisfying the following relations:

(1) for each ordinal β < c, the set Zβ is a Gβ–orbit of a point of R,

(2) for each ordinal β < c, the set Zβ intersects the set Fβ ,

(3) {Zβ : β < c} is a disjoint family.

Suppose that, for an ordinal β < c, a partial family {Zθ : θ < β} has
already been defined. Let us put Z(β) = ∪{Zθ : θ < β}. It is clear that
card (Gβ(Z(β))) ≤ card (β) + ω. Since l(Fβ) > 0, we have card (Fβ) = c.
Thus there exists a point z ∈ Fβ \ Gβ(Z(β)). Let us put Zβ = Gβ(z). Then
Zβ ∩ Fβ 6= ∅ and Zβ ∩ Z(β) = ∅. Hence, by transfinite induction, we are able
to define the whole family {Zβ : β < c}. Now, taking into account that the
original set J of indices is identified with c, we can write {Zβ : β < c} = {Zj :
j ∈ J}. Let {Jα : α < c} be a partition of the set J , as in Lemma 1. For
each nonzero ordinal α < c, let us put Eα = ∪{Zj : j ∈ Jα}. Finally, put
E0 = R \ ∪{Zj : j ∈ (J \ J0)}. It is obvious that {Eα : α < c} = {Ej : j ∈ J}
is a partition of the real line R.

Lemma 2 The above-mentioned partition has the following properties:
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(1) it is almost invariant with respect to the group G,

(2) for each index j ∈ J , the set Ej is Γ0-invariant, i.e. Γ0(Ej) = Ej,

(3) for each j ∈ J and for each closed subset F of R with l(F ) > 0, the
equality card (Ej ∩ F ) = c holds; in particular, the set Ej is l-thick in
R, i.e. the inner Lebesgue measure of the complement of Ej is equal to
zero.

Lemma 2 can be checked directly, without any difficulty. The construction
of the family {Zβ : β < c} guarantees that properties (1), (2), (3) formulated
in this lemma are valid.

Remark 1 In fact, the method which we used above to define the almost in-
variant partition {Ej : j ∈ J} of the real line goes back to the well known paper
of Kakutani and Oxtoby [6]. Notice that in [6] this method is applied in the
case where the basic set E coincides with the one-dimensional torus equipped
with the probability Lebesgue measure λ invariant with respect to the group of
all rotations of the torus. Applying this method, Kakutani and Oxtoby were
able to construct a nonseparable invariant extension of the measure λ. Much
later, their method was generalized to some classes of topological groups (see,
for instance, [9]).

Now, we shall begin a construction of an extension µ of the Lebesgue
measure l. This extension will be invariant with respect to the group of all
isometric transformations of R and, in addition, it will satisfy µ(qY ) = qµ(Y )
for any positive rational number q and for any µ-measurable subset Y of R.

We start with the partition {Ej : j ∈ J} of the real line R defined above.
First, let us note that, in further considerations, it is convenient for us to
identify the set J with the unit segment [0, 1]. Thus we put

{Ej : j ∈ J} = {Et : t ∈ [0, 1]}.

Let λ be the probability Lebesgue measure on the segment [0, 1]. Actually, λ
is the restriction of the measure l to this segment. Let us define a mapping
φ : R → R × [0, 1] by φ(x) = (x, t(x)) (x ∈ R), where t(x) = t is the
unique real number from the segment [0, 1] for which x ∈ Et.

Lemma 3 The mapping φ has the following properties:

(1) pr2(φ(qx)) = pr2(φ(x)) for each point x ∈ R and for every nonzero
rational number q (where pr2 denotes the projection into the second co-
ordinate),
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(2) the range of φ is an (l × λ)-thick subset of the product measure space
(R, l)× ([0, 1], λ).

Proof. Relation (1) holds, since, for each t ∈ [0, 1], we have the equality
Γ0(Et) = Et.

Now, let us consider the subset φ(R) of the product R × [0, 1]. For any
t ∈ [0, 1], the section of φ(R) corresponding to t is the set Et. But Et is an
l-thick subset of R. Hence, using the Fubini theorem, we see that φ(R) is an
(l × λ)-thick subset of R× [0, 1]; so relation (2) holds.

The last relation is fundamental for what follows. Let us introduce the
class S = {φ−1(Z) : Z ∈ dom (l× λ)} of subsets of R. Obviously, this class is
a σ-algebra of sets. If X ∈ S, then there exists a set Z ∈ dom (l×λ) such that
X = φ−1(Z). Put µ(X) = (l × λ)(Z) (X ∈ S). The value µ(X) is well
defined since the range of the mapping φ is an (l × λ)-thick set in R × [0, 1].
By a standard argument (see, for example, [8]), it can also be established that
the functional µ is a measure on the σ-algebra S. Moreover, the measure µ
extends Lebesgue measure l. Indeed, take any Lebesgue measurable subset X
of R. Then it is easy to see that X = φ−1(X × [0, 1]). Since λ is a probability
measure, we have µ(X) = (l × λ)(X × [0, 1]) = l(X); so we get the required
result. �

Now, our goal is to show that the measure µ can be extended to a measure
on R invariant under the group of all isometric transformations of R. For this
purpose, we need two auxiliary propositions.

Lemma 4 Let X be a set of the form X = φ−1(A × B) where A is a subset
of R and B is a subset of [0, 1]. Let g be an arbitrary element of the group G.
Then the sets g(X) and φ−1(g(A)×B) are almost identical.

Proof. Indeed, it can be checked directly that X = A ∩ (∪{Et : t ∈ B}).
Hence we have g(X) = g(A) ∩ g(∪{Et : t ∈ B}). But we also have

φ−1(g(A)×B) = g(A) ∩ (∪{Et : t ∈ B}).

Now, using the fact that the partition {Et : t ∈ [0, 1]} of the real line is almost
invariant with respect to the group G, we obtain the required result. �

Lemma 5 Let Z be an arbitrary (l × λ)-measurable set in R × [0, 1] with
(l × λ)(Z) > 0. Then card (φ−1(Z)) = c.

Proof. Indeed, applying the Fubini theorem, we see that there exists a subset
P of the segment [0, 1], satisfying the following conditions:

(1) P is a λ-measurable set,
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(2) λ(P ) > 0; in particular, card (P ) = c,

(3) for each t ∈ P , we have Z(t) ∈ dom (l), l(Z(t)) > 0, where Z(t)
denotes the section of the set Z, corresponding to the point t.

Fix t ∈ P . Since l(Z(t)) > 0 and the set Et is l-thick in R, the set Z(t)∩Et 6= ∅.
Hence there exists an element x ∈ Z(t) ∩ Et. But it is clear that t = t(x),
(x, t) ∈ Z and x ∈ φ−1(Z). Thus, for each t ∈ P , we have Et∩φ−1(Z) 6= ∅.From
this relation we deduce that card (φ−1(Z)) = c, and the lemma is proved. �

Let us introduce the class of sets

S∗ = {Y ⊆ R : there exists X ∈ S such that card (X 4 Y ) < c}.

Lemma 6 For the class S∗, the next two relations hold:

(1) S∗ is a σ-algebra of subsets of R containing the original σ-algebra S,

(2) S∗ is a G-invariant class of sets; i.e., for each set Y ∈ S∗ and for each
transformation g ∈ G, we have g(Y ) ∈ S∗.

Proof. The first relation is trivial. The second can be deduced from Lemma
4 by a standard argument. �

Lemma 7 The measure µ can be uniquely extended to a measure defined on
the σ-algebra S∗ and invariant with respect to the group of all isometric trans-
formations of R.

This lemma is an easy consequence of the preceding lemmas.
We preserve the same symbol µ for the measure extended in such a way.

Moreover, in our further considerations we use the same symbol to denote the
usual completion of the extension mentioned above.

Lemma 8 Let q be an arbitrary positive rational number and let Y be an
arbitrary µ-measurable subset of R. Then the set qY is also µ-measurable and
we have µ(qY ) = q µ(Y ).

Proof. Without loss of generality we may assume that q 6= 0, and that Y
belongs to the σ-algebra S. Thus there exists a set Z ∈ dom (l × λ) such
that Y = φ−1(Z). Now, consider the bijective Borel mapping f : R× [0, 1]→
R × [0, 1] defined by f(x, t) = (qx, t) (x ∈ R, t ∈ [0, 1]). Taking into
account the fact that t(qx) = t(x) (x ∈ R), we can write qY = φ−1(f(Z)).
Clearly, the set f(Z) is (l × λ)-measurable. Therefore, applying the Fubini
theorem, we conclude that

µ(qY ) = (l × λ)(f(Z)) = q(l × λ)(Z) = q µ(Y ),
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and our lemma is proved. �

The next remark is not necessary for what follows, but it is of independent
interest.

Remark 2 The method used above also makes it possible to construct a non-
separable analogue of the measure µ. Indeed, let us take the Tychonoff cube
[0, 1]c with the topological weight c. Equip this cube with the probability product
measure λc. It is known that there exists a λc-thick subset J of this cube with
card (J) = c (actually, the existence of J follows from the fact that the cube is
a separable topological space). Moreover, we can assume that card (J ∩Z) = c
for each Borel subset Z of [0, 1]c having a strictly positive λc-measure. Now,
we take the partition {Ej : j ∈ J} of R considered above and define a mapping
ψ : R→ R×[0, 1]c by the formula ψ(x) = (x, j(x)) (x ∈ R). It can easily be
shown, by applying the Fubini theorem, that the range of the mapping ψ is an
(l×λc)-thick subset of the product space R×[0, 1]c. Starting with this mapping,
we introduce the class of sets S = {ψ−1(Z) : Z ∈ dom (l × λc)}. Obviously,
this class is a σ-algebra of subsets of R. If we put ν(ψ−1(Z)) = (l × λc)(Z)
for every (l × λc)-measurable set Z, then we obtain a measure ν on S ex-
tending the Lebesgue measure l. Using an argument similar to the above one,
we prove that the measure ν can be uniquely extended to a measure invariant
with respect to the group D1 of all isometric transformations of R. Moreover,
we have ν(qY ) = q ν(Y ) for every positive rational number q and for every
ν-measurable set Y . Finally, we see that ν is a nonseparable measure on R.
More precisely, the topological weight of the metric space canonically associated
with ν is equal to the cardinality of the continuum.

Remark 3 Let us take m-dimensional Euclidean space Rm equipped with the
group Dm of all its isometric transformations. Denote by Γ0 the group of all
homotheties of Rm with center 0 and with nonzero rational coefficients. Let G
be the group of transformations of Rm generated by the set Dm ∪Γ0. Then we
can construct a partition {Ej : j ∈ J} of the space Rm almost invariant with
respect to G and consisting of lm-thick subsets of Rm. Using this partition,
we define a σ-algebra of subsets of Rm containing the class Lm and invariant
under the group G. On this σ-algebra we define a measure µm which is an m-
dimensional analogue of the measure µ, i.e. µm has the properties analogous
to those of µ. Moreover, taking account of Remark 2, we may even assume
that µm is a nonseparable measure. (More precisely, we may assume that the
weight of the metric space associated with µm is equal to c.)
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3 The Main Result

Let E be a nonempty set, let S be a σ-algebra of subsets of E and let ν
be a nonzero complete σ-finite measure defined on S. The well-known von
Neumann-Maharam theorem states that there exists at least one topology
T (ν) on E satisfying the following relations:

(1) T (ν) is a Baire space topology with the countable chain condition (ccc),
i.e. each disjoint subfamily of T (ν) is at most countable,

(2) the ideal of all first category sets with respect to T (ν) coincides with the
ideal of all ν-measure zero sets,

(3) the σ-algebra of all sets having the Baire property with respect to T (ν)
coincides with S.

We say that T (ν) is the von Neumann topology associated with the original
measure ν. Notice that, in general, this topology is not unique for the measure
ν (about the von Neumann topology see, for example, [1] and also Chapter 22
of the Handbook of Boolean Algebras, 1989, Ed. J. D. Monk with R. Bonnet).

Suppose also that a group G of transformations of E is given, and that our
measure ν is invariant (or, more generally, quasiinvariant) under G. Then it is
obvious that G preserves both the ideal of all first category sets with respect
to the topology T (ν) and the class of all sets having the Baire property with
respect to the same topology.

Now, let G be again the group of transformations of the real line R gen-
erated by the union D1 ∪ Γ0. Returning to the measure µ constructed in the
preceding section, we can take the von Neumann topology T (µ) associated
with µ. We see that for this topology the following relations are true:

(1) all Lebesgue measurable subsets of R have the Baire property with re-
spect to T (µ),

(2) the class K(R, T (µ)) is invariant with respect to G,

(3) the class B(R, T (µ)) is invariant with respect to G.

Let Y be a µ-measurable subset of R and let y be a point of R. We say that
y is a density point of Y with respect to the measure µ if

lim
n→∞

nµ(Y ∩ [y − 1/n, y + 1/n]) = 2.

In particular, if the point y coincides with 0 and is a density point of Y , then
we have limn→∞ nµ(Y ∩ [−1/n, 1/n]) = 2. Since our measure µ satisfies the
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condition µ(qY ) = qµ(Y ) for every positive rational number q and for every
µ-measurable set Y , we see that 0 is a density point of Y with respect to µ if
and only if limn→∞ µ(nY ∩ [−1, 1]) = 2. Now, applying the Riesz theorem on
convergence in measure, we obtain the following result.

Lemma 9 Let Y be an arbitrary µ-measurable subset of R and let y ∈ R.
Then the following are equivalent:

(1) y is a density point of the set Y with respect to the measure µ,

(2) y is a K(R, T (µ))-density point of the set Y , i.e. y is a density point
of Y in the Wilczynski sense with respect to the von Neumann topology
T (µ) associated with µ.

Lemma 10 There exists a µ-measurable subset X of R such that 0 is the
unique density point of X with respect to the measure µ.

Proof. Endow the product space R× [0, 1] with the product measure l × λ.
Of course, we can suppose that this space is a subspace of the Euclidean plane
R2. Let Z be the convex hull of {(1, 1/2), (−1, 1/2), (0, 0), (0, 1)}. Obviously,
Z is an (l × λ)-measurable subset of R × [0, 1]. Put X = φ−1(Z). We assert
that the set X is the required one. Indeed, fix any point x of R. Then it
is not difficult to check that limn→∞(nµ(X ∩ [x − 1/n, x + 1/n]))/2 exists
and is equal to limn→∞(n(l × λ)(Z ∩ Zn))/2, where Zn denotes the rectangle
[x − 1/n, x + 1/n] × [0, 1]. But it is clear that the second limit is equal to
max{0, 1− |x|}. Hence only the point 0 is a density point of the set X with
respect to the measure µ. �

Remark 4 Let k ∈ N. By Lemma 10 we deduce that there exists a µ-
measurable subset Xk of R having exactly k density points with respect to µ.
Also, it is easy to see that there exists a µ-measurable set Xω such that the
cardinality of the set of density points of Xω with respect to µ is ω. Finally,
there exists a µ-measurable subset Y of R with µ(Y ) > 0 such that no point
of R is a density point for Y with respect to µ.

Lemmas 9 and 10 immediately give us the desired result concerning the
question posed by Wilczynski. Namely, we have the following theorem.

Theorem 1 There is a topology T on R satisfying the following conditions:

(1) T is a Baire space topology with ccc,
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(2) all Lebesgue measurable subsets of R have the Baire property with respect
to T ,

(3) the classes K(R, T ) and B(R, T ) are invariant under the group G,

(4) there exists a subset X of R having the Baire property with respect to T
and possessing exactly one density point in the sense of Wilczynski.

Remark 5 Taking Remark 3 of the preceding section into account, we can
conclude that the proposition analogous to Theorem 1 is true for m-dimensional
Euclidean space Rm where m ≥ 2.

Remark 6 In [10] it is proved that there exists a measure ν on R satisfying
the following conditions:

(1) ν extends the Lebesgue measure l,

(2) ν is invariant under the group D1,

(3) ν has the uniqueness property on its domain, i.e. each σ-finite measure
defined on dom (ν) and invariant under all translations of R is propor-
tional to ν,

(4) there exists a ν-measurable subset of R having exactly one density point
with respect to ν.
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