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Abstract

In this article I prove that the difference of Darboux upper semi-
continuous functions possesses the Darboux property. Moreover I show
that each Darboux function which is the difference of two (bounded)
upper semicontinuous functions can be written as the difference of two
(bounded) Darboux upper semicontinuous functions.

In 1984, J. G. Ceder and T. L. Pearson asked, “Which functions can be
written as the difference of two Darboux upper semicontinuous functions?”
[5, p. 186]. As each upper semicontinuous function is the sum of two Darboux
upper semicontinuous functions [7, Corollary], one could expect that the same
holds for the differences of Darboux upper semicontinuous functions. However,
it was pointed out in [7] that it is not true.

Since upper semicontinuous functions are Baire one, their difference is Baire
class one, also. In 1921, W. Sierpiński constructed a bounded Baire one func-
tion which cannot be written as the difference of two upper semicontinuous
functions [13]. As in [6, p. 132], we will denote the class of all differences of

upper semicontinuous functions by B̂1. An easy line of reasoning yields that
the difference of two Darboux upper semicontinuous functions possesses the
Darboux property(Proposition 3). So we get a conjecture that the class of all

Darboux functions in B̂1 is the answer to the above mentioned question. This
conjecture is proved as Theorem 4.

The real line is denoted by R and the set of positive integers by N. The
word function always denotes a mapping from R into R. The oscillation of
a function f on a non-empty set A ⊂ R will be denoted by ω(f,A)

(
i.e.,

ω(f,A) = sup
{
|f(x) − f(y)| : x, y ∈ A

})
. Similarly, the oscillation of a
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function f at a point x ∈ R will be denoted by ω(f, x)
(

i.e., ω(f, x) =

limr→0+ ω
(
f, [x− r, x+ r]

))
.

There are many conditions which are equivalent to the Darboux property
of a Baire one function [1, Theorem 1.1, p. 9]. We will use two of them. The
first is due to H. Sen & J. L. Massera, and the other one to I. Maximoff.

Theorem 1 For a Baire one function f the following are equivalent:

1) f is Darboux

2) for each x ∈ R

max
{

lim inf
t→x−

f(t), lim inf
t→x+

f(t)
}
≤ f(x) ≤ min

{
lim sup
t→x−

f(t), lim sup
t→x+

f(t)
}

3) for each x ∈ R there is a perfect set P such that x is a point of bilateral
accumulation of P and f |P is continuous at x.

Proposition 2 There is a bounded Darboux Baire one function which does
not belong to B̂1.

Proof. Clearly B̂1 is closed with respect to addition. Suppose that each
bounded Darboux Baire one function is in B̂1. Using that each bounded Baire
one function is the sum of two Darboux Baire one functions [8, Corollary 9](
see also [2, Theorem B]

)
, we get that each bounded Baire one function is

in B̂1, contrary to the Sierpiński’s result [13]. �

Remark 1 By Maximoff’s theorem [12] and the above proposition, we get that

there is a bounded Lebesgue function which does not belong to B̂1.

Proposition 3 Let f1 and f2 be Darboux upper semicontinuous functions.
Then f1 − f2 has the Darboux property.

Proof. Clearly f1 − f2 is in Baire class one. To prove it is Darboux, we will
use the Sen & Massera’s condition. Let x ∈ R. Since f2 is Darboux, there is
a sequence xn ↗ x such that f2(xn)→ f2(x). So

lim inf
t→x−

(f1 − f2)(t) ≤ lim inf
n→∞

(f1 − f2)(xn)

= lim inf
n→∞

f1(xn)− lim
n→∞

f2(xn) ≤ (f1 − f2)(x).

Similarly we can prove the other necessary inequalities. �

Theorem 4 Let f1 and f2 be upper semicontinuous functions such that f1−f2
is Darboux. There is a function α such that f1+α and f2+α are Darboux and
upper semicontinuous, and 0 ≤ α ≤ sup

{
ω(fi, x) : x ∈ R, i ∈ {1, 2}

}
on R.
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Proof. For i ∈ {1, 2} put

Ai =
{
x ∈ R : lim sup

t→x−
fi(t) < fi(x) or lim sup

t→x+

fi(t) < fi(x)
}
.

By Lemma 4 of [4], the cardinality of A1 ∪A2 is less than that of continuum.
But A1∪A2 is a Borel set, so it is countable.

(
See also Lemma A1 of [11].

)
For

i ∈ {1, 2} arrange the elements of Ai in a sequence, {ain : n < ri}, where ri is
a finite number or the infinity.

For each i and n use Maximoff’s condition and find a perfect set Pin such
that ain is a point of bilateral accumulation of Pin and (f1 − f2)|Pin is con-
tinuous at ain; clearly we may assume that for each x ∈ Pin

max
{
|(f1 − f2)(x)− (f1 − f2)(ain)|, f1(x)− f1(ain), f2(x)− f2(ain)

}
≤ 1/n.

Then for each i, each n and each k > n the sets Kink1 = Pin ∩ (ain −
1/k, ain) and Kink2 = Pin ∩ (ain, ain + 1/k) are Fσ and have the cardinal-
ity of continuum. So by Lemma 2 of [14], we can find a family

{
Qinkj :

i, j ∈ {1, 2}, n < ri, k > n
}

, consisting of pairwise disjoint non-empty nowhere
dense perfect sets, Qinkj ⊂ Kinkj \ (A1 ∪ A2) for each i, n, k, and j. Using
that Borel measurable functions are also Marczewski measurable, we may as-
sume that f1|Qinkj and f2|Qinkj are continuous

(
also see [9]

)
. We may also

assume that ω(fs, Qinkj) ≤ 1/k for s ∈ {1, 2}. Let S = sup
{
ω(fi, x) : x ∈

R, i ∈ {1, 2}
}

. For each i, n, k, and j set winkj = min
{

max
{
fi(ain) −

sup fi(Qinkj), 0
}
, S
}

, and construct a Darboux upper semicontinuous func-

tion αinkj such that αinkj = 0 outside of Qinkj , sup
{
αinkj(x) : x ∈ R

}
=

winkj , and 0 ≤ αinkj ≤ winkj on R [3].

Let α =
∑2
i=1

∑
n<ri

∑
k>n

∑2
j=1 αinkj . It is obvious that 0 ≤ α ≤ S

on R. To complete the proof fix an s ∈ {1, 2} and an x ∈ R.

I. First we will prove that fs + α is upper semicontinuous at x. Take a
sequence xm → x with lim

m→∞
(fs+α)(xm) = lim supt→x(fs+α)(t). We consider

several cases.
If α(xm) = 0 for infinitely many m, then

lim
m→∞

(fs + α)(xm) = lim
m→∞

fs(xm) ≤ fs(x) ≤ (fs + α)(x).

So we may assume that xm ∈ Qimnmkmjm for each m. Since im, jm ∈ {1, 2}, we
may assume there are i, j ∈ {1, 2} such that im = i and jm = j for each m. If
nm+km does not tend to infinity, then there are n and k such that xm ∈ Qinkj
for infinitely many m. Hence x ∈ Qinkj , and since fs|Qinkj is continuous and
αinkj is upper semicontinuous; so

lim
m→∞

(fs + α)(xm) = lim
m→∞

fs(xm) + lim
m→∞

α(xm) ≤ (fs + α)(x).
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Now let nm + km → ∞. If nm does not tend to infinity, then km → ∞ and
there is an n such that xm ∈ Qinkmj for infinitely many m. Hence x = ain,
and

• i = s implies

lim
m→∞

(fs + α)(xm) ≤ lim sup
m→∞

(
fs(xm) + wsnkmj

)
≤ lim sup

m→∞
max

{
fs(asn), fs(xm)

}
= fs(x) = (fs + α)(x).

• i = 3− s implies

lim
m→∞

(fs + α)(xm) ≤ lim sup
m→∞

(fs − f3−s)(xm) + lim sup
m→∞

(f3−s + α)(xm)

≤(fs − f3−s)(ain) + (f3−s + α)(ain) = (fs + α)(x).(
We used the previous case and the fact that (fs − f3−s)|Pin is continuous

at ain.
)

Finally let nm →∞. Then |xm − ainm
| ≤ 1/nm → 0, so ainm

→ x and

• i = s implies

lim
m→∞

(fs + α)(xm) ≤ lim sup
m→∞

(
fs(xm) + wsnmkmj

)
≤ lim sup

m→∞
max

{
fs(asnm

), fs(xm)
}
≤ fs(x) ≤ (fs + α)(x).

• i = 3− s implies

lim sup
m→∞

(
(f3−s + α)(xm)− f3−s(ainm

)
)

≤ lim sup
m→∞

max
{
f3−s(xm)− sup f3−s(Qinmkmj), f3−s(xm)− f3−s(ainm

)
}

≤ lim sup
m→∞

1/nm = 0

and

lim
m→∞

(fs + α)(xm) ≤ lim sup
m→∞

(
(fs − f3−s)(xm)− (fs − f3−s)(ainm

)
)

+ lim sup
m→∞

(
(f3−s + α)(xm)− f3−s(ainm

)
)

+ lim sup
m→∞

fs(ainm
)

≤ lim sup
m→∞

1/nm + 0 + fs(x) = fs(x) ≤ (fs + α)(x).

II. To prove that fs + α is Darboux we will use the Sen & Massera’s
condition. We consider several cases.



262 Aleksander Maliszewski

• If x /∈ As and α(x) = 0, then

lim sup
t→x−

(fs + α)(t) ≥ lim sup
t→x−

fs(t) = fs(x) = (fs + α)(x);

similarly lim supt→x+(fs + α)(t) = (fs + α)(x).

• If x /∈ As and α(x) 6= 0, then x ∈ Qinkj for some i, n, k, and j. Since αinkj
is Darboux and upper semicontinuous, and αinkj = 0 on R \ Qinkj , so x is a
point of bilateral accumulation of Qinkj , and there are z1, z2, · · · ∈ Qinkj with
zm ↗ x and limm→∞ αinkj(zm) = αinkj(x). Using that fs|Qinkj is continuous
we get lim supt→x−(fs+α)(t) ≥ limm→∞(fs+α)(zm) = (fs+α)(x); similarly
lim supt→x+(fs + α)(t) = (fs + α)(x).

• If x ∈ As, then x = asn for some n < rs. For m > n let zm ∈ Qsnm1 be such
that αsnm1(zm) ≥ wsnm1 − 1/m. We have

lim sup
t→x−

(fs + α)(t) ≥ lim
m→∞

(fs + α)(zm)

≥ lim
m→∞

min
{
fs(asn)− ω(fs, Qsnm1), fs(zm) + S

}
− 1/m

≥min
{
fs(asn), lim inf

t→x
fs(t) + S

}
= fs(asn) = (fs + α)(x);

similarly lim supt→x+(fs + α)(t) = (fs + α)(x). �

Remark 2 Theorem 4 implies, in particular, that each function which is the
difference of two bounded upper semicontinuous functions can be written as the
difference of two bounded Darboux upper semicontinuous functions. It should
be however emphasized that there is an ambivalent set whose characteristic
function cannot be expressed that way.

(
Recall that a Baire one function whose

range is discrete belongs to B̂1; see, e.g., [6, 2.D.15].
)

Indeed, denote by B̂1 the
class of all differences of bounded upper semicontinuous functions and suppose
that each characteristic function of an ambivalent set belongs to B̂1. It is clear
that B̂1 is closed with respect to addition. We get that each Baire one function
with finite range is in B̂1. Hence B̂1 is dense in the class of all bounded Baire
one functions. But this contradicts Corollary 3.22 of [10].

Remark 3 Using a slightly more complicated method it is possible to prove
that the function α in Theorem 4 can be chosen so that it is continuous when-
ever both f1 and f2 are. I do not know, however, whether each a.e. continuous
function in B̂1 is the difference of two a.e. continuous upper semicontinuous
functions.
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