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LARGE SETS CONTAINING COPIES OF
SMALL SETS

Abstract

We investigate what large sets of real numbers such as uncount-
able, open, second Baire category, or positive Lebesgue measure contain
copies of small sets such as finite, countable, or bounded. Some remarks
on the related Erdös problem are included.

1 Introduction, Sets with Copies of 3 Element Sets

Let X and Y be sets of real numbers. We say that X is similar to Y if there
exist real numbers b and c, c ̸= 0 such that

c ·X + b
df
= {c · x + b : x ∈ X} = Y.

A set of real numbers E contains a subset similar to the set X (or copy of
X for short) if there exist real numbers b and c, c ̸= 0 such that c ·X + b ⊆ E.
For example if X is empty, then every set E contains a copy of X. Obviously
if X consists of a single element then every nonempty set E contains a copy
of X. It is also clear that when X consists of exactly two elements, then E
contains a copy of X iff card(E) ≥ 2.

Before we discuss the case with card(X) = 3, we would like to point out
that the concept of similarity is geometric in nature. On the other hand the
sets X and E may originate from any field of mathematics. This gives the
question, “Does E contain a copy of X?” an interdisciplinary character. In
this note we discuss the “classical” types of X and E which involve measure,
the Baire property, and cardinality1.
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1Most definitions and notation can be found in [8].
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Now let X be a set with three elements. Arias de Reyna, using transfinite
induction, proved [1] that there is a large (of the cardinality of the continuum,
full outer Lebesgue measure, and not meager) set E without a copy of X.
Arias de Reyna’s set is very irregular; it doesn’t have the Baire property and
is non-measurable. His result raises the question, “Does there exist a regular
(i.e. measurable and/or with the Baire property) set of the cardinality of
the continuum without a copy of a given three-element set?” A somewhat
stronger result is stated below as Theorem 2. To prove it we need to notice
that Theorem 2 of Mycielski [7] implies the following fact.

Theorem 1 If K ⊂ R is a countable subfield, then there exists an uncountable
closed set E whose elements are linearly independent over K.

Theorem 2 Let X be a countable family of three-element sets. Then there
exists an uncountable closed set E without a copy of any X ∈ X .

Proof. By Mycielski’s Theorem 1 there exists an uncountable, closed set E
whose elements are linearly independent over the field Q(

∪
X ). Now pick any

X ∈ X and suppose that there exist real numbers b and c, c ̸= 0 such that
c · X + b ⊆ E. For some three different e1, e2, e3 ∈ E we have c · x1 + b =
e1, c ·x2 +b = e2, and c ·x3 +b = e3. By subtracting these equations from each
other we obtain c(x1−x2) = e1−e2 and c(x2−x3) = e2−e3. Now by dividing
the first equation by c(x1 − x2), the second by c(x2 − x3) and subtracting we
get a linear combination with coefficients from Q(

∪
X ),

1

c(x1 − x2)
e1 −

(
1

c(x1 − x2)
+

1

c(x2 − x3)

)
e2 +

1

c(x2 − x3)
e3 = 0

which contradicts the linear independence of E. □
The above result leads to the question, “Can we have a regular set that

would be bigger (of positive Lebesgue measure or of second Baire category)
and still not contain a copy of a given three element set?” Here the answer is
negative and it follows from Theorem 3 below.

2 Sets with Copies of Finite Sets

Throughout the rest of the paper all sets will be subsets of the real line R
unless stated otherwise. µ will denote Lebesgue measure on R. The following
theorem is due to Steinhaus.

Theorem 3 If X is finite and E is of positive Lebesgue measure, then E
contains a copy of X.



760 Jakub Jasinski

Proof. Let card(X) = n and let E be of positive Lebesgue measure. It
follows from the Lebesgue Density Theorem (See [8] page 17.) that there
exists an interval [α, β] such that

µ(E ∩ [α, β]) >
2n(β − α)

2n + 1
. (1)

Let E1 = E ∩ [α, β]. Without loss of generality let us assume that X = {x1 <
x2 < ... < xn} and x1 = 0. Pick c > 0 small enough to make cxn < β−α

2n+1 .
Since for every b ∈ E1−cxi, i = 1, 2, ..., n we have cxi + b ∈ E1 ⊆ E, it suffices
to show that

n∩
i=1

(E1 − cxi) ̸= ∅. (2)

To see this, let J = [α − cxn, β] and observe that E1 − cxi ⊆ J for every
i = 1, 2, ...n. Then

µ(
n∩

i=1

(E1 − cxi)) ≥ µ(J) −
n∑

i=1

µ(J \ (E1 − cxi))

≥ (β − α) − n

(
(β − α + cxn) − 2n(β − α)

2n + 1

)
≥ (β − α) − n

(
(β − α +

β − α

2n + 1
) − 2n(β − α)

2n + 1

)
= (β − α) − 2n(β − α)

2n + 1
=

1

2n + 1
> 0

which proves (2) and completes the proof for the c selected above. For any
b ∈

∩n
i=1(E1 − cxi) we have c ·X + b ⊆ E. □

The next natural task would be to prove an analogous theorem for sets E
with the Baire property. It turns out however that a stronger theorem holds.

3 Sets with Copies of Countably Infinite Sets

The following theorem is due to H. I. Miller and P. Xenikakis [6].

Theorem 4 If X is a countable and bounded set and if E is a second Baire
category set with the Baire property, then E contains a copy of X.

Proof. Proceed as in Theorem 3 except that now we can do better in inequal-
ity (1). Namely there exists an interval [α, β] such that [α, β] \ E is meager.
(See [8] page 19.) Let E1 = [α, β] ∩ E. To simplify the rest of the argument,
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assume that X ⊂ R+ and let c > 0 be such that sup(c · X) < α−β
2 . Now it

suffices to show that
∩

x∈X(E1 − cx) ̸= ∅. For x ∈ X it is easy to see the set

E1 − cx is residual in [α, α+β
2 ] and since X is countable, the desired assertion

follows. As in Theorem 3 b ∈
∩

x∈X(E1 − cx) implies that c ·X + b ⊂ E. □
It is worth noting (Also see [6].) that a similar proof gives an analogous

fact.

Theorem 5 If X is a countable and bounded set and if E is of full measure
in some open set (µ(V \E) = 0 for some open set V ), then E contains a copy
of X.

Now, if in Theorem 5 we weaken the assumption “of full measure in some
open set” to “is of positive measure”, then it is no longer true. The strongest
result in this direction is due to K. J. Falconer [3].

Theorem 6 Let {xn}∞n=1 be a decreasing sequence converging to zero such
that lim inf xn+1

xn
= 1. Then there exists a set of positive measure E such that

(c ·{xn : n = 1, 2, 3, ...}+b)\E is infinite for every number b and every number
c ̸= 0.

Falconer’s theorem partially answers an old problem of P. Erdös.
Problem ([2], [5], and also see [4]) Is it true that for every infinite set X there
exists a set of positive Lebesgue measure without a copy of X?

The rest of this note is devoted to the discussion of Erdös’ problem. The
case of unbounded X is trivial. If X is bounded, then it contains a convergent
sequence. Theorem 6 gives a positive answer if X contains a sequence which
converges “slower than geometrically”. It is worth noting that an intriguing
case when X = { 1

2n : n = 1, 2, 3, ...} remains open (see [4]). Below I would
like to present a different partial answer to Erdös’ problem. Its proof is quite
straightforward (geometric) and well illustrates the nature of the problem.
The following lemma converts the Erdös problem to a “tiling puzzle”.

Lemma 7 Let X ⊆ (0, 1) be a set. The following conditions are equivalent.

1. There exists a set E, µ(E) > 0 such that

∀b∀ c ̸= 0(c ·X + b ∩ Ec ̸= ∅) (3)

2. There exists a set E1 ⊆ (0, 1), µ(E1) > 0 such that

∀0 < c < 1 (Ec
1 + c ·X) = R (4)
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Proof. Assume 1. Pick an arbitrary c ̸= 0. Then statement (3) implies that

∀b∃y ∈ Ec∃x ∈ X(cx + b = y)

∀b∃y ∈ Ec∃x ∈ X(−cx + y = b) (5)

(−c ·X + Ec = R)

All statements in (5) are equivalent. It is easy to see that E1 = (E+ t)∩(0, 1),
where t is such that µ((E + t) ∩ (0, 1)) > 0 satisfies 2.

Assume 2. By the Lebesgue Density Theorem (See [8] page 17.) there exists
a real number s such that µ(E1 ∩ (−E1 + s)) > 02. Select E ⊆ E1 ∩ (−E1 + s)
such that diam(E) < diam(X). The last inequality gives (3) for c with |c| ≥ 1.
If −1 < c < 0, then (4) yields (Ec+(−c)·X = R) and (5) implies (3) for such c.
On the other hand if 0 < c < 1, then by multiplying the equation (Ec

1+c·X) =
R by (−1) and adding s to both sides we obtain ((−Ec

1 + s) + (−c) ·X) = R.
Ec contains (−Ec

1 + s) and as before (5) completes the proof. □
Part 2. of Lemma 7 may be viewed as a “puzzle”. To better understand

this comparison, suppose we are given an infinite set X ⊆ (0, 1) and we are
looking for a set E1 as in the lemma. Recall that every set of positive measure
contains a closed set of positive measure. (See [8] page 15.) So we may as well
look for a closed set E1. This is equivalent to finding its complement, namely
an open set G such that

µ((0, 1) \G) > 0 and ∀0 < c < 1 (G + c ·X) = R (6)

Now G as any open set is a countable union of disjoint open intervals Gi (tiles),
say G =

∪∞
i=1 Gi. Our job is to choose the length and place for each Gi in

such a way that when each is replaced by the set (Gi + c ·X) they will cover
the entire numberline. Notice that while the Gi do not overlap, the (Gi+c ·X)
may. Also observe that the whole action takes place between zero and one as
we may choose G to include G1 = (−∞, 0) and G2 = (1,∞).

G3:

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.11.2
( )

G3 + c ·X:

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.11.2
( ) ( ) ( )

Figure 1: X = {2/n : n = 1, 2, 3, . . . }, G3 + (.1, .2), c = .5

2−E1 = (−1) · E1.
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The increasing distances between components of Gi + c ·X shown in Fig-
ure 1 above make them difficult “puzzle pieces”. We are going to simplify
the problem by using only the biggest connected component ((0.1, 0.533...) in
Figure 1). To be able to put a finger on its right end, we define k(δ) = min{k :
∀i ≥ k (xi − xi+1) ≤ δ}. We also need to account for the variable c and to do
so we shall cover (0, 1) infinitely many times. In each round the placement of
Gi’s is designed to work for c > 1

n , n = 1, 2, 3, ... . We shall sometimes write
x(n) instead of xn.

Theorem 8 Let X = {xn : n = 1, 2, 3, ...} ⊆ (0, 1) be a decreasing sequence
converging to zero. If there exists a sequence {δn}∞n=1 such that

∞∑
n=1

δn < 1 and
∞∑

n=1

x(k(δn)) = ∞, (7)

then there exists a double sequence of intervals {Gnm}∞n,m=1 such that G =∪∞
n,m=1 Gnm has property (6) .

Proof. Assume that {δn}∞n=1 has property (7). Let σ : N2 −→ N be a
bijection such that

∞∑
m=1

x(k(δσ(n,m))) ≥ n for all n = 1, 2, 3, ... (8)

Now fix an n and define Gnm = (anm, anm + δσ(n,m)) as follows:

an1 = 0

anm =

m−1∑
i=1

[δσ(n,i) +
1

n
x(k(δσ(n,i)))] =

= an m−1 + δσ(n,m−1) +
1

n
x(k(δσ(n,m−1)))

Since µ(Gnm) = δσ(n,m), we have µ((0, 1) \ G) ≥ 1 −
∑∞

n=1 δn > 0. To
verify the second part of (6) pick a 0 < c < 1 and select a natural number n
such that 1

n < c. Due to (8) for any x ∈ (0, 1] we can find an index m such
that anm < x ≤ an m+1. It suffices to prove that Gnm +c ·X ⊇ (anm, an m+1].
For all k ≥ k(δσ(n,m)) the intervals Gnm + cxk and Gnm + cxk+1 overlap. It

follows that Gnm + c ·X ⊇ (anm, anm + δσ(n,m) + cx(k(δσ(n,m))). Since c > 1
n ,

we obtain anm + δσ(n,m) + cx(k(δσ(n,m))) > an m+1. □
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Corollary 9 If both {xn}∞n=1 and {(xn −xn+1)}∞n=1 are decreasing sequences
converging to zero and

∑∞
n=1 xn = ∞, then there exists a set of positive mea-

sure without a copy of X = {xn : n = 1, 2, 3, ...} .

Proof. Note that δn = (xn−xn+1) satisfies condition (7). Corollary 9 follows
from Theorem 8 and Lemma 7. □

With a more careful choice of δn Theorem 8 can be applied to sequences
{xn}∞n=1 for which the series

∑∞
n=1 xn converges.

Corollary 10 For any real number α > 0 there exists a set of positive measure
without a copy of X = { 1

kα : k = 1, 2, 3, ...}.

Proof. We only need discuss the case of α > 1. Let x(k) = k−α. It turns

out that if we let δn = n−α+1
α , then x(k(δn)) behaves like 1

n and here is why.
First we find an upper bound on k(δn). There exists a constant ξ such that

1

kα
− 1

(k + 1)α
= α

∫ 1/k

1/k+1

tα−1dt ≤ α

kα−1

(
1

k
− 1

k + 1

)
≤ ξ

kα+1
.

Now since the inequality ξ
kα+1 ≤ n−α+1

α implies k ≥ α′n
1
α for some other

constant α′, we obtain k(δn) ≤ ⌈α′n
1
α ⌉ ≤ βn1/α for some constant β > 0 and

n > n0 . Therefore

∞∑
n=1

x(k(δn)) =

∞∑
n=1

1

k(δn)α
≥

∞∑
n=n0

1

βαn
.

and the last series is divergent. Hence condition (7) is satisfied. □
It should be pointed out that both Corollaries 9 and 10 follow from Fal-

coner’s result 6. Also no sequence {δn}∞n=1 satisfies condition (7) if {xn}∞n=1

is a convergent geometric sequence.

Example 1 If
∑∞

n=1 δn is a convergent series with positive terms and x(k) =
q−k for some constant q > 1, then

∑∞
n=1 x(k(δn)) is also convergent.

Proof. To see this we must first estimate k(δn). By solving the inequality
q−k − q−(k+1) ≤ δn for k we obtain k ≥ η− logq δn for some constant η. Thus

k(δn) ≥ ⌊η⌋ + ⌊− logq δn⌋ and x(k(δn)) ≤ q−⌊η⌋−⌊− logq δn⌋ ≤ η′qlogq δn = η′δn
for some constant η′. □

On the other hand there exist sequences {xn} for which Theorem 6 does
not apply but Theorem 8 does.
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Example 2 For every sequence δn ↘ 0 with
∑

δn < 1 there exists a sequence
xn ↘ 0 with property (7) such that lim inf xn+1

xn
≤ 1

2 .

Proof. Let δn ↘ 0. By induction we shall define increasing sequences of nat-
ural numbers {sn}∞n=0 and {tn}∞n=0 and a decreasing sequence of real numbers
xn ↘ 0 such that for n = 1, 2, 3, ...

xtn+1

xtn

=
1

2

k(δsn) ≤ tn−1 + 1 (9)
sn∑

i=sn−1+1

x(k(δi)) ≥ 1.

Set s0 = t0 = 0. To start the induction select an arbitrary x1 ∈ (0, 1),
let r1 = ⌈ 1

x1
⌉ and s1 = r1. Now find a natural number t1 and a decreasing

arithmetic progression x1, x2, ..., xt1 such that xj −xj+1 ≤ δs1 and 1
2xt1 ≤ δs1 .

Also set xt1+1 = 1
2xt1

3.

Now assume that sn−1, tn−1 and x1, x2, ..., xtn−1+1 are defined and meet
conditions (9) (provided xn ↘ 0). Set rn = ⌈ 1

xtn−1+1
⌉ , sn = sn−1 + rn and

find a natural number tn > tn−1 with a decreasing arithmetic progression
xtn−1+1, xtn−1+2, ..., xtn such that xj − xj+1 < δsn for j = tn−1 + 1, tn−1 +
2, ..., tn − 1 and 1

2xtn < δsn . Also set xtn+1 = 1
2xtn . Again conditions (9) can

be easily verified. □

It should be noted that the above example may be modified to obtain
lim inf xn+1

xn
= 0.

We would like to conclude with a remark on arbitrary infinite sets X. Let
C be a countable set not containing zero. Lemma 7 can be used to show that
there exists a set of positive measure not containing any of the sets c ·X + b
for all b ∈ R and all c ∈ C. We deal with each c individually. Observe that the
ratio µ(Gn +c ·X)/µ(Gn) → ∞ as diam(Gn) → 0. So even though µ(G) < ∞,∑∞

n=1 µ(Gn + c ·X) = ∞ and we shall have enough “extra length” to cover
(0, 1) infinitely many times. We leave the details to the reader.

I am grateful to Irek Rec law for an interesting discussion.

3Without having all xn defined it is impossible to determine x(k(δn)) and verify condi-
tions 9. However, assuming that xn ↘ 0 it follows that 9 hold for n = 1.
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