Jadwiga Wolnicka, Institute of Mathematics, Technical University of Łódź, al. Politechniki 11, 93-590, Łódź, Poland.

QUASI-UNIFORM CONVERGENCE OF SEQUENCES OF 1-IMPROVABLE DISCONTINUOUS FUNCTIONS

Abstract

In the paper it is shown that the strongly quasi-uniform limit of a sequence of 1-improvable discontinuous functions on a complete space X is a 1-improvable discontinuous function or a continuous function. Automatically the same result will be valid for uniform convergence.

Definition 1 ([3]) Let $f : X \to Y$ (X, Y metric spaces). The function f has at some point x_0 an improvable discontinuity if $\lim_{x\to x_0} f(x)$ exists and $\lim_{x\to x_0} f(x) \neq f(x_0)$.

In this paper we consider the class A_1 of real-valued functions f on some metric space X such that the function

$$f^{(1)}(x) = \begin{cases} \lim_{t \to x} f(t) & \text{if the limit exists} \\ f(x) & \text{if } \lim_{t \to x} f(t) \text{ doesn't exist} \end{cases}$$
(1)

are continuous.

We shall prove that the strongly quasi-uniform limit of a sequence of functions of the class A_1 belongs to A_1 . The problem was suggested by T. Świątkowski.

Let A_0 denote the class of continuous functions. If a function $f \in A_1 \setminus A_0$, then it is called a 1-improvable discontinuous function ([1] and [2]). First we shall consider a subclass $\widetilde{A_1}$ of the class A_1 ; namely $f \in \widetilde{A_1}$ if and only if

$$\forall_{x \in X} f(x) \ge 0 \text{ and } \forall_{x \in X} f^{(1)}(x) = 0 \tag{2}$$

750

Key Words: 1-improvable discontinuous functions, quasi-uniform convergence Mathematical Reviews subject classification: Primary: 54C30; Secondary 26A15 Received by the editors May 31, 1995

QUASI-UNIFORM CONVERGENCE

Lemma 1 Let $f : X \to \mathbb{R}$ and f(x) = 0 if x is an isolated point. Then the function f belongs to \widetilde{A}_1 if and only if

$$\forall_{x \in X} f(x) \ge 0 \text{ and } \forall_{\sigma > 0} (\{x \in X : f(x) \ge \sigma\}^d \cap A(f) = \emptyset), \tag{3}$$

where $A(f) = \{x \in X : f(x) > 0\}$. (The notation $\{\cdot\}^d$ means the set of limit points of a set).

PROOF. First we assume that $f \in \widetilde{A_1}$. If $f \in A_0 \cap \widetilde{A_1}$, then $f \equiv 0$ and the above condition is obvious. Assume that $f \in \widetilde{A_1} \setminus A_0$. Suppose that there exist a real number $\sigma_0 > 0$ and a point $x_0 \in X$ such that $f(x_0) > 0$ and $x_0 \in \{x \in X : f(x) \ge \sigma_0\}^d$. Hence there exists a sequence $\{x_n\}$ such that $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} f(x_n) \ge \sigma_0 > 0$. Simultaneously $f(x_0) > 0$ and $f^{(1)}(x_0) = 0$; so $\lim_{x\to x_0} f(x) = 0$. Thus we have a contradiction. Hence condition (3) holds.

Now, we assume that condition (3) holds. If $A(f) = \emptyset$, then $f \equiv 0$ and $f \in A_0 \cap \widetilde{A_1}$. Assume that $A(f) \neq \emptyset$. Let us take an arbitrary $x_0 \in X$. We will consider two cases. First, we assume that $x_0 \in A(f)$. Then $x_0 \notin \{x \in X : f(x) \geq \sigma\}^d$ for each $\sigma > 0$. Thus

$$\forall_{\sigma>0} \exists_{r>0} (K(x_0, r) \setminus \{x_0\}) \cap \{x : f(x) \ge \sigma\} = \emptyset,$$

where $K(x_0, r) = \{x \in X : \rho(x, x_0) < r\}$. So

$$\forall_{\sigma>0} \exists_{r>0} \forall_{x \in K(x_0, r) \setminus \{x_0\}} \ (0 \le f(x) < \sigma),$$

which means that $\lim_{x\to x_0} f(x) = 0$ and then $f^{(1)}(x_0) = 0$.

Now, we assume that $x_0 \notin A(f)$. If $\lim_{x\to x_0} f(x)$ does not exist, then $f^{(1)}(x_0) = f(x_0) = 0$. Assume that $\lim_{x\to x_0} f(x)$ exists and equals y with y > 0. Then there exists a real number r > 0 such that f(x) > y/2 for $x \in K(x_0, r) \setminus \{x_0\}$. Let $x' \in K(x_0, r) \setminus \{x_0\}$ be arbitrary. There exists a sequence $\{x_n\}$ such that $\lim_{n\to\infty} x_n = x'$ and, for each $n \in \mathbb{N}$, $x_n \in K(x_0, r) \setminus \{x_0\}$. Then $x' \in \{x : f(x) > y/2\}^d \cap A(f)$, a contradiction. Hence $\lim_{x\to x_0} f(x) = 0$ and then $f^{(1)}(x_0) = 0$. Thus $f^{(1)}(x) = 0$ for each $x \in X$. Hence $f \in \widetilde{A_1}$ and the proof is complete.

Definition 2 ([3]) The sequence $\{f_n\}$ is quasi-uniformly convergent on X to f if f_n approaches f on X and

$$\forall_{\epsilon>0}\forall_{n\in\mathbb{N}}\exists_{p\in\mathbb{N}}\forall_{x\in X}\exists_{0\leq l\leq p}\mid f_{n+l}(x)-f(x)\mid<\epsilon.$$

Theorem 1 If functions f_n (n = 1, 2, ...) belong to $\widetilde{A_1}$ and $\{f_n\}$ is quasiuniformly convergent on X to f, then f belongs to $\widetilde{A_1}$. PROOF. In view of the above assumption and Lemma 1 we confirm that

$$\forall_{n\in\mathbb{N}}\forall_{\sigma>0}(\{x\in X: f_n(x)\geq\sigma\}^d\cap A(f_n)=\emptyset),\tag{4}$$

where $A(f_n) = \{x \in X : f_n(x) > 0\}.$

Suppose that f does not belong to $\widetilde{A_1}$. Then there exists a real number $\sigma_0 > 0$ such that $\{x \in X : f(x) \ge \sigma_0\}^d \cap A(f) \ne \emptyset$. Now let $x_0 \in A(f)$ and $\{x_k\}$ be a sequence such that $\lim_{k\to\infty} x_k = x_0$ and

$$\forall_{k \in \mathbb{N}} (f(x_k) \ge \sigma_0). \tag{5}$$

Put $\epsilon_0 = 1/2 \min(\sigma_0, f(x_0))$. Since the sequence $\{f_n(x_0)\}$ converges to $f(x_0)$, there exists $n' \in \mathbb{N}$ such that

$$\forall_{n>n'} (f_n(x_0) > f(x_0) - \epsilon_0).$$
(6)

This follows from the assumption that the sequence $\{f_n\}$ is quasi-uniformly convergent to f on X, and thus also on $\{x_k\}$. Therefore there exists a number $p_0 \in \mathbb{N}$ such that

$$\forall_{k\in\mathbb{N}}\exists_{0\leq l\leq p_0} (f_{n'+l}(x_k) > f(x_k) - \epsilon_0).$$

Hence, by (5) and by the selection of ϵ_0 , we have

 $\forall_{k \in \mathbb{N}} \exists_{0 \leq l \leq p_0} (f_{n'+l}(x_k) > \sigma_0/2).$

Thus there exist $l' \in \{0, 1, \ldots, p_0\}$ and a subsequence $\{x_{k_m}\}$ of $\{x_k\}$ such that $f_{n'+l'}(x_{k_m}) > \sigma_0/2$ for each $m \in \mathbb{N}$. Simultaneously, by (6) and by the selection of $\epsilon_0, f_{n'+l'}(x_0) > 0$. Then $x_0 \in \{x \in X : f_{n'+l'}(x) \ge \sigma_0/2\}^d \cap A(f_{n'+l'})$. This contradicts (4).

Definition 3 ([4]) The sequence $\{f_n\}$ of functions is said to be strongly quasi-uniformly convergent to f on X if every subsequence $\{f_{n_k}\}$ converges quasi-uniformly to f.

Theorem I ([5]) For $n \in \mathbb{N}$ let f_n be continuous on X and let $\{f_n\}$ converge strongly quasi-uniformly on some dense subset Z of X to a function $f: Z \to \mathbb{R}$. Then $\{f_n\}$ is strongly quasi-uniformly convergent on X to a function φ , obviously continuous, whose restriction to Z coincides with f.

Theorem 2 For $n \in \mathbb{N}$ let f_n belong to the class A_1 and let $\{f_n\}$ converge strongly quasi-uniformly on a complete space X. Then the sequence $\{f_n^{(1)}\}$ (where each $f_n^{(1)}$ is defined by formula (1)) is also strongly quasi-uniformly convergent on X to a continuous function φ . PROOF. We denote by E_n the set of all points in which the function f_n has an improvable discontinuity (n = 1, 2, ...). E_n is a set of the first category ([3]). The restriction of f_n to $X \setminus E_n$ is continuous. Put $E = \bigcup_{n=1}^{\infty} E_n$. The set E is of the first category; so $X \setminus E$ is a residual subset of X and since X is complete, $X \setminus E$ is a dense subset of X. The sequence $\{f_n\}$ converges strongly quasi-uniformly on $X \setminus E$, and $f_n^{(1)} \mid (X \setminus E) = f_n \mid (X \setminus E)$. Then the sequence $\{f_n^{(1)}\}$ converges strongly quasi-uniformly on the dense subset $X \setminus E$ of X. Since each $f_n^{(1)}$ is continuous on X, we conclude that $\{f_n^{(1)}\}$ converges strongly quasi-uniformly on X to a continuous function φ , by Theorem 1. \Box

Lemma 2 If a function |f| belongs to $\widetilde{A_1}$, then f belongs to A_1 and $f^{(1)}(x) = 0$ for each $x \in X$.

PROOF. Let *E* denote the set of points in which the function |f| has an improvable discontinuity. Then by assumption, the function |f| has positive values on the set *E* and is zero on $X \setminus E$. Thus f(x) = 0 for $x \in X \setminus E$. We shall prove that $f^{(1)}(x) = 0$ for each $x \in X$. It suffices to show that $\lim_{t\to x} f(t) = 0$ for each $x \in E$. Obviously, since $x \in E$, we have $\lim_{t\to x} |f(t)| = 0$. So $\lim_{t\to x} f(t) = 0$.

Lemma 3 If a function f belongs to A_1 , then $|f - f^{(1)}|$ belongs to A_1 .

We omit the easy proof.

Theorem 3 If for each $n \in \mathbb{N}$ the function f_n belongs to A_1 and $\{f_n\}$ is strongly quasi-uniformly convergent on a complete space X to f, then f belongs to A_1 and $f^{(1)}$ is the strongly quasi-uniform limit of the sequence $\{f_n^{(1)}\}$.

PROOF. The sequence $\{f_n\}$ is strongly quasi-uniformly convergent on X to f. Then, by Theorem 2, the sequence $\{f_n^{(1)}\}$ is strongly quasi-uniformly convergent on X to a continuous function φ . Therefore the sequence $\{f_n - f_n^{(1)}\}$ is strongly quasi-uniformly convergent on X to $f - \varphi$ ([4]) and consequently the sequence $\{\mid f_n - f_n^{(1)} \mid\}$ is strongly quasi-uniformly convergent on X to $i - \varphi$ ([4]) and consequently the sequence $\{\mid f_n - f_n^{(1)} \mid\}$ is strongly quasi-uniformly convergent on X to $\mid f - \varphi \mid$. Note that each function $\mid f_n - f_n^{(1)} \mid$ belongs to $\widetilde{A_1}$ (Lemma 3). By Theorem 1, we have $\mid f - \varphi \mid \in \widetilde{A_1}$. Then, the function $f - \varphi$ belongs to A_1 .

It remains to prove that $f^{(1)}$ is the strongly quasi-uniform limit of the sequence $\{f_n^{(1)}\}$ or $f^{(1)} = \varphi$. Let $f - \varphi = g$. The function $|g| \in \widetilde{A_1}$; so by Lemma 2, $g^{(1)}(x) = 0$ for each $x \in X$. Let $x \in X$ be arbitrary. First, we assume that $\lim_{t\to x} g(t)$ exists. Then $\lim_{t\to x} f(t)$ exists and $f^{(1)}(x) = \lim_{t\to x} f(t) = \lim_{t\to x} f(t)$

 $\lim_{t\to x} g(t) + \lim_{t\to x} \varphi(t) = 0 + \varphi(x) = \varphi(x). \text{ Now, we assume that } \lim_{t\to x} g(t)$ doesn't exist. Then $\lim_{t\to x} f(t)$ doesn't exist. Hence $f^{(1)}(x) = f(x) = g(x) + \varphi(x) = 0 + \varphi(x) = \varphi(x).$ Thus $f^{(1)}(x) = \varphi(x)$ for each $x \in X.$

Definition 4 ([1]) Let $f : X \to \mathbb{R}$ and let $U(f) = \{x \in X : \lim_{t \to x} f(t) \neq f(x)\}$. For every ordinal α we define a function $f^{(\alpha)}$ by

$$f^{(\alpha)}(x) = \begin{cases} f(x) & \text{if } \{\gamma < \alpha : x \in U(f^{(\gamma)})\} = \emptyset\\ \lim_{t \to x} f^{(\gamma_0)}(t) & \text{where } \gamma_0 = \min\{\gamma < \alpha : x \in U(f^{(\gamma)})\} \end{cases}$$

 $(f^{(0)}(x) = f(x) \text{ for each } x \in X)$. We denote by A_{α} the class of functions f such that the function $f^{(\alpha)}$ is continuous. If a function $f \in A_{\alpha} \setminus \bigcup_{0 \leq \beta < \alpha} A_{\beta}$, then it is called an α -improvable discontinuous function.

Problem 1 Does Theorem 3 remain valid for sequences of functions of the class A_{α} ?

References

- A. Katafiasz, *Improvable functions*, Doctoral dissertation, Łódź University, 1993.
- [2] A. Katafiasz, *Improvable discontinuous functions*, Real Analysis Exchange, this issue.
- [3] R. Sikorski, Funkcje rzeczywiste, P.W.N. Warszawa, 1958.
- [4] T. Świątkowski, On invariants of quasi-uniform convergence, Sc. Bull. of Łódź Technical Univ., Math. 15 (1982).
- [5] T. Świątkowski, Quasi-uniform convergence on dense sets, Sc. Bull. of Śłask Technical Univ., Math.-Phys. 48, Gliwice 1986.