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CHAOTIC MAPS IN HYPERSPACES

Abstract

The dynamical system (F(X), T ) which arises from an iterated func-
tion system (X;w1, . . . , wm), where X is a compact metric space identi-
fied with the attractor of the system and the wi’s are contractive invert-
ible maps, is chaotic provided that the iterated function system satisfies
the open set condition. The map T on the hyperspace F(X) of the
closed subsets of X is defined for a closed subset E as

T (E) = w−1
1 (E) ∪ . . . ∪ w−1

m (E).

This extends results about the shift dynamical system for the non-
overlapping case [1].

1 Notation

Let (X;w1, . . . , wm) be an iterated function system. X denotes a compact
metric space with some metric d. The wi for i = 1, . . . ,m are invertible
contractive maps wi : X → X such that d(wi(x), wi(y)) ≤ rid(x, y) for all
x, y ∈ X and some 0 < ri < 1 with i = 1, . . . ,m. Note that w−1i : wi(X)→ X
is a continuous map for all i. For simplicity we assume that X is also the
attractor of the given iterated function system which means

X = w1(X) ∪ w2(X) ∪ . . . ∪ wm(X).

We always assume that wi(X) ∩ wj(X) = ∅ for i 6= j, i, j = 1, . . . ,m. This
implies that X is totally disconnected. If this property holds, a map T : X →
X can be uniquely defined by

T (x) = w−1i (x) provided that x ∈ wi(X).
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The dynamical system (X,T ) is called the shift dynamical system associated
with a totally disconnected hyperbolic IFS. It can be proved that it is chaotic;
that is

1. (X,T ) is sensitive to initial conditions; i.e. there exists some δ > 0 such
that for any x ∈ X and any ball B(x, ε) with radius ε > 0 there is some
y ∈ B(x, ε) and an integer n ≥ 0 such that d(Tn(x), Tn(y)) > δ;

2. (X,T ) is transitive, i.e. if, whenever U and V are open subsets of X,
there exists an integer n such that U ∩ Tn(V ) 6= ∅;

3. the set of periodic points of T is dense in X.

If the subsets wi(X) overlap, T cannot be defined in this way. It may
happen that more than one w−1i can be applied to x. In [1] the construction
of a so called lifted IFS is recommended. This ensures that the lifted map T̃
can again be defined in a unique way. To this end, let Σ =

∏∞
i=1{1, . . . ,m}

and

dC(ω, σ) =

∞∑
n=1

|ωn − σn|
(m+ 1)n

.

The space (Σ, dC) is called the code space on the m symbols {1, . . . ,m}. The
following is well-known [1]. For each σ ∈ Σ, n ∈ N, and x ∈ X let

φ(σ, n, x) = wσ1
◦ wσ2

◦ · · · ◦ wσn
(x).

Then the limit φ(σ) = limn→∞ φ(σ, n, x) exists, belongs to the attractor of the
IFS, and is independent of x ∈ X. φ : Σ → X is a continuous function from
the code space onto the attractor X of the IFS. An address of x ∈ X is any
member of the set

φ−1(x) =
{
ω ∈ Σ;φ(ω) = x

}
.

The lifted IFS associated with an IFS (X;w1, . . . , wm) is the IFS (X ×
Σ; w̃1, . . . , w̃m) where w̃i(x, σ) = (wi(x), iσ) for all (x, σ) ∈ X × Σ and all
i = 1, . . . ,m. Its attractor becomes totally disconnected and T̃ can be uniquely
defined in the same way as T before.

The IFS is said to be totally disconnected if each point of X possesses
a unique address. The IFS is said to be just touching if it is not totally
disconnected yet X contains an open set O such that

(i) wi(O) ∩ wj(O) = ∅ for i 6= j,

(ii)
⋃m
i=1 wi(O) ⊂ O.

An IFS whose attractor obeys (i) and (ii) is said to obey the open set
condition. For the open set O we have X = Ō [2]. The IFS is said to be
overlapping if it is neither just touching nor disconnected.
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2 The Main Result

We give a sequence of lemmas.

Lemma 1 If the open set condition is satisfied with the open set O and

Au =

∞⋂
n=1

(⋃{
wσ1
◦ . . . ◦ wσn

(O) |σ1, . . . , σn ∈ {1, . . . ,m}
})

,

then Au is a dense subset of X which consists of points with a unique address.

Proof. This follows immediately by Baire’s Category Theorem and the prop-
erties of the open set O. �

Example 1 Let a ∈ [0, 1] and define w1(x) = ax and w2(x) = ax + (1 − a)
on R. Then the attractor X of the IFS {R;w1, w2} is equal to [0, 1] for a ≥ 1

2
and equal to some Cantor set for a < 1

2 . If Au denotes the set of points with
a unique address, then Au = X whenever a < 1

2 , but Au = {0, 1} for a > 1
2 .

At a = 1
2 we obtain that Au = [0, 1] \ {k/2n | 1 ≤ k < 2n, n ∈ N}.

We extend the definition of the map T to the hyperspace (F(X), dH) as
follows:

T (E) =

m⋃
i=1

w−1i (E).

This definition includes the totally disconnected, just touching case as well the
overlapping case of an IFS. Remember that F(X) is the set of all non-empty
compact subsets of X and dH is the Hausdorff metric, which is defined as

dH(E,F ) = inf
{
ε > 0;E ⊆ Uε(F ) and F ⊆ Uε(E)

}
for E,F ∈ F(X), where Uε(E) stands for the parallel body of E at distance
ε. The ε-parallel body will be defined with the help of the distance function
of the set E d(x,E) = inf

{
d(x, y) | y ∈ E

}
. Then Uε(E) =

{
x | d(x,E) ≤ ε

}
.

Lemma 2 The extended map T : F(X) → F(X) is sensitive with respect to
initial conditions provided that the IFS (X;w1, . . . , wm) satisfies the open set
condition.

We need some further lemmas. For this purpose we use d(E) as the nota-
tion for the diameter of the set E ⊆ X, i.e. d(E) = sup

{
d(x, y) | x, y ∈ E

}
.
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Lemma 3 Let Y be a dense subset of X. For all E ∈ F(X)

sup
y∈Y

dH({y}, E) ≥ 1

4
d(X).

Proof. First assume that d(E) ≥ 1
2d(X). Let B(x, r) be a ball such that

E ⊆ B(x, r). This implies d(E) ≤ 2r. Hence r ≥ 1
4d(X). As Y = X we can

conclude that the desired inequality holds.
But if d(E) < 1

2d(X), we can choose a, b ∈ X such that d(a, b) = d(X) by
the compactness of X. For arbitrary u, v ∈ E the triangle inequality and the
above assumption implies 1

2d(X) ≤ d(a, u) + d(v, b). This gives

1

2
d(X) ≤ d(a,X) + d(b, E).

Hence for at least one of these points a or b we have, say d(a,X) ≥ 1
4d(X).

This proves the inequality of the lemma for the second case. �

We also use the following Blaschke’s selection theorem.

Lemma 4 (F(X), dH) is a compact metric space provided that (X, d) is a
compact metric space; i.e. every sequence of compact sets contains a
dH-convergent subsequence.

We now give the proof of Lemma 2.

Proof. Let δ = 1
6d(X) and En = T−n(E) for an arbitrary E ∈ F(X).

According to Lemma 4 we can assume that En → K w.r.t. the metric dH and
some K ∈ F(X). Take any y in a set O, which fulfills the open set condition,
such that dH({y},K) ≥ 1

4d(X). Now for a given ε > 0 we define a finite set F
and n ≥ 0 such that dH(E,F ) ≤ ε, but d(Tn(E), Tn(F )) > δ.

Since for any address σ = σ1σ2 . . . we get d(wσ1
◦ wσ2

◦ . . . ◦ wσn
(X)) ↓ 0

provided that n → ∞, we can find some nε ∈ N such that for n ≥ nε n ∈ N
we get d(wσ1

◦ wσ2
◦ . . . ◦ wσn

(X)) ≤ ε for any choice of the σ1, . . . , σn for a
fixed n and, secondly dH(Tn(E),K) ≤ 1

12d(X). Now we define the finite set
F by

F =
{
wσ1
◦ . . . ◦ wσn

(y) | wσ1
◦ . . . ◦ wσn

(X) ∩ E 6= ∅
}

where σ1, σ2, . . . , σn run through all choices up to the fixed n > nε. This
implies that F ⊆ Uε(E) as well as E ⊆ Uε(F ). Hence dH(E,F ) ≤ ε.

Note that for arbitrary n

dH({y},K) ≤ dH({y}, Tn(F )) + dH(Tn(F ), Tn(E)) + dH(Tn(E),K).
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The first term on the right hand side of the last inequality vanishes as n is
chosen as in the definition of F since Tn(F ) = {y}. To see this note that for
y ∈ O

wσ1
◦ wσ2

◦ . . . ◦ wσn
(y) = wτ ◦ wσ2

◦ . . . ◦ wσn
(y)

implies τ = σ1. Moreover since the last term of the right hand side is smaller
than 1

12d(X), the inequality dH(Tn(F ), Tn(E)) > δ follows. �

Lemma 5 If (X;w1, . . . , wn) satisfies the open set condition, then the dynam-
ical system (F(X), T ) is transitive.

Proof. Since dH generates the Vietoris topology on F(X), we can restrict
our attention to open sets

U =
{
E ∈ F(X) | E ⊆ U1 ∪ . . . ∪ Ul, E ∩ Ui 6= ∅ for i = 1, . . . , l

}
and

V =
{
E ∈ F(X) | E ⊆ V1 ∪ . . . ∪ Vk, E ∩ Vi 6= ∅ for i = 1, . . . , k

}
,

where the Ui and Vi are given non-empty open subsets of X. If U is the
open set which belongs to the open set condition, we fix some xi ∈ U ∩Ui for
i = 1, . . . , l and some n sufficiently large such that for all pairs xi and Vj , where
i = 1, . . . , l and j = 1, . . . , k, there is a finite sequence σ1, . . . , σn ∈ {1, . . . ,m}
such that

yij = wσ1
◦ wσ2

◦ . . . ◦ wσn
(xi) ∈ Vj .

Define then F = {yij | i = 1, . . . , l, j = 1, . . . , k}. It follows that F ∈ V and
Tn(F ) ∈ U . Hence U ∩ Tn(U) 6= ∅. �

The last step is now to consider the periodic points of T .

Lemma 6 If the IFS (X;w1, . . . , wm) satisfies the open set condition, then
the set of periodic points of T is dense in F(X) w.r.t. to the Hausdorff metric
(or Vietoris topology).

Proof. Let σ1, . . . , σn ∈ {1, . . . ,m}. The map fσ1,...,σn = fσ1 ◦ . . . ◦ fσn is
contractive and let xσ1,...,σn be its unique fix point within X. We define

Fn =
{
xσ1,...,σn

| σ1, . . . , σn ∈ {1, . . . ,m}
}

and F =
⋃
n∈N Fn. Then F = X. To see this let x ∈ X and ε > 0. We may

choose nε ∈ N such that for n ≥ nε d(fσ1,...,σn(X)) ≤ ε, the diameter of the
set fσ1,...,σn

is less than ε. We may find σ1, . . . , σn ∈ {1, . . . ,m} such that x ∈
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fσ1,...,σn(X). Also since xσ1,...,σn ∈ fσ1,...,σn(X), we obtain d(X,xσ1,...,σn) ≤ ε,
which proves the density of F within X. Let U be the open set of the open set
condition. We set En = P0(U ∩ Fn) the non-empty (finite) subsets of U ∩ Fn
and E =

⋃
n∈N En. We show that

a) E consists of periodic points of the map T ;

b) E is dense in (F(X), dH).

a) Take any E ∈ En. Since for x ∈ E we always have a unique preimage
for n steps, it follows that Tn(E) = E.

b) For an arbitrary closed F ⊆ X and ε > 0 we select some E ∈ E such that
dH(F,E) < ε. First, we cover F by a finite number of closed balls B(xk, ε/2)
for k = 1, . . . , l such that B(xk, ε/2)∩U 6= ∅ since U is dense in X. Because U
is open, we can find a common n such that for some finite sequence σ1, . . . , σn

fσ1,...,σn
(X) ⊆ B(xk, ε/2) ∩ U.

Hence for the fix point xσ1,...,σn of the map fσ1,...,σn we have

xσ1,...,σn ∈ B(xk, ε/2) ∩ U.

This implies F ⊆
⋃
B(xσ1,...,σn

, ε). If we now take as E all the points xσ1,...,σn
,

we clearly have dH(F,E) ≤ ε and E is also a periodic point of T . �

Hence, we have proved the following assertion.

Theorem 1 (F(X), T ) is a chaotic dynamical system provided that for the
initial IFS the open set condition is satisfied.

Finally, we discuss the overlapping case of Example 1. We have that
w−11 (x) = x

a and w−12 (x) = x
a + a−1

a with the domains [0, a] and [1 − a, 1].
To verify sensitivity with respect to initial conditions it seems to be the best
to start with E = [0, 1] since for all n, we have Tn(E) = E. Is it possible
to find some δ > 0 such that for all ε > 0 there is some n ∈ N and some
F ∈ F([0, 1]) such that dH(Tn(E), Tn(F )) = dH(E, Tn(F )) > δ ? The first
idea is now to use a finite set F of equidistant points

F =

{
i

m
; i = 0, 1, . . . ,m

}
for some n ∈ N. The image T (F ) consists of points of the kind i

am or i
ma+ a−1

a .

If for some integer i the condition i
m = a − 1 is satisfied, then the minimal

distance between points in T (F ) is at least 1
ma . Hence

dH(E, T (F )) =
1

a
dH(E,F ).
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All points of T (F ) have then the form i
am again. If we would iterate this

idea, some times we obtain a sequence (ik)k∈N of integers such that ik
m =

ak−1(a− 1). We conclude that i1(i1 +m)k−1 ≡ 0(mod(mk−1). Since i1 < m,
this is impossible for k ≥ 3. Hence, we can increase the distance between E
and Tn(F ) only twice by the factor 1

a . This motivates the following question.

Question Is it true that the dynamical system (F([0, 1]), Ta) arising from
Example 1 for a > 1

2 is never chaotic?
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