Hermann Haase, FB Mathematik/Informatik, E. M. Arndt Universität, F. L. Jahnstr. 15a, 17489 Greifswald, Germany

CHAOTIC MAPS IN HYPERSPACES

Abstract

The dynamical system $(\mathcal{F}(X), T)$ which arises from an iterated function system $\left(X ; w_{1}, \ldots, w_{m}\right)$, where X is a compact metric space identified with the attractor of the system and the w_{i} 's are contractive invertible maps, is chaotic provided that the iterated function system satisfies the open set condition. The map T on the hyperspace $\mathcal{F}(X)$ of the closed subsets of X is defined for a closed subset E as $$
T(E)=w_{1}^{-1}(E) \cup \ldots \cup w_{m}^{-1}(E)
$$

This extends results about the shift dynamical system for the nonoverlapping case [1].

1 Notation

Let $\left(X ; w_{1}, \ldots, w_{m}\right)$ be an iterated function system. X denotes a compact metric space with some metric d. The w_{i} for $i=1, \ldots, m$ are invertible contractive maps $w_{i}: X \rightarrow X$ such that $d\left(w_{i}(x), w_{i}(y)\right) \leq r_{i} d(x, y)$ for all $x, y \in X$ and some $0<r_{i}<1$ with $i=1, \ldots, m$. Note that $w_{i}^{-1}: w_{i}(X) \rightarrow X$ is a continuous map for all i. For simplicity we assume that X is also the attractor of the given iterated function system which means

$$
X=w_{1}(X) \cup w_{2}(X) \cup \ldots \cup w_{m}(X)
$$

We always assume that $w_{i}(X) \cap w_{j}(X)=\emptyset$ for $i \neq j, i, j=1, \ldots, m$. This implies that X is totally disconnected. If this property holds, a map $T: X \rightarrow$ X can be uniquely defined by

$$
T(x)=w_{i}^{-1}(x) \text { provided that } x \in w_{i}(X)
$$

[^0]The dynamical system (X, T) is called the shift dynamical system associated with a totally disconnected hyperbolic IFS. It can be proved that it is chaotic; that is

1. (X, T) is sensitive to initial conditions; i.e. there exists some $\delta>0$ such that for any $x \in X$ and any ball $B(x, \varepsilon)$ with radius $\varepsilon>0$ there is some $y \in B(x, \varepsilon)$ and an integer $n \geq 0$ such that $d\left(T^{n}(x), T^{n}(y)\right)>\delta$;
2. (X, T) is transitive, i.e. if, whenever U and V are open subsets of X, there exists an integer n such that $U \cap T^{n}(V) \neq \emptyset$;
3. the set of periodic points of T is dense in X.

If the subsets $w_{i}(X)$ overlap, T cannot be defined in this way. It may happen that more than one w_{i}^{-1} can be applied to x. In [1] the construction of a so called lifted IFS is recommended. This ensures that the lifted map \tilde{T} can again be defined in a unique way. To this end, let $\Sigma=\prod_{i=1}^{\infty}\{1, \ldots, m\}$ and

$$
d_{C}(\omega, \sigma)=\sum_{n=1}^{\infty} \frac{\left|\omega_{n}-\sigma_{n}\right|}{(m+1)^{n}}
$$

The space $\left(\Sigma, d_{C}\right)$ is called the code space on the m symbols $\{1, \ldots, m\}$. The following is well-known [1]. For each $\sigma \in \Sigma, n \in \mathbb{N}$, and $x \in X$ let

$$
\phi(\sigma, n, x)=w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \cdots \circ w_{\sigma_{n}}(x)
$$

Then the limit $\phi(\sigma)=\lim _{n \rightarrow \infty} \phi(\sigma, n, x)$ exists, belongs to the attractor of the IFS, and is independent of $x \in X . \phi: \Sigma \rightarrow X$ is a continuous function from the code space onto the attractor X of the IFS. An address of $x \in X$ is any member of the set

$$
\phi^{-1}(x)=\{\omega \in \Sigma ; \phi(\omega)=x\}
$$

The lifted IFS associated with an IFS $\left(X ; w_{1}, \ldots, w_{m}\right)$ is the IFS $(X \times$ $\left.\Sigma ; \tilde{w}_{1}, \ldots, \tilde{w}_{m}\right)$ where $\tilde{w}_{i}(x, \sigma)=\left(w_{i}(x), i \sigma\right)$ for all $(x, \sigma) \in X \times \Sigma$ and all $i=1, \ldots, m$. Its attractor becomes totally disconnected and \tilde{T} can be uniquely defined in the same way as T before.

The IFS is said to be totally disconnected if each point of X possesses a unique address. The IFS is said to be just touching if it is not totally disconnected yet X contains an open set O such that
(i) $w_{i}(O) \cap w_{j}(O)=\emptyset$ for $i \neq j$,
(ii) $\bigcup_{i=1}^{m} w_{i}(O) \subset O$.

An IFS whose attractor obeys (i) and (ii) is said to obey the open set condition. For the open set O we have $X=\bar{O}$ [2]. The IFS is said to be overlapping if it is neither just touching nor disconnected.

2 The Main Result

We give a sequence of lemmas.

Lemma 1 If the open set condition is satisfied with the open set O and

$$
A_{u}=\bigcap_{n=1}^{\infty}\left(\bigcup\left\{w_{\sigma_{1}} \circ \ldots \circ w_{\sigma_{n}}(O) \mid \sigma_{1}, \ldots, \sigma_{n} \in\{1, \ldots, m\}\right\}\right)
$$

then A_{u} is a dense subset of X which consists of points with a unique address.
Proof. This follows immediately by Baire's Category Theorem and the properties of the open set O.

Example 1 Let $a \in[0,1]$ and define $w_{1}(x)=a x$ and $w_{2}(x)=a x+(1-a)$ on \mathbb{R}. Then the attractor X of the $\operatorname{IFS}\left\{\mathbb{R} ; w_{1}, w_{2}\right\}$ is equal to $[0,1]$ for $a \geq \frac{1}{2}$ and equal to some Cantor set for $a<\frac{1}{2}$. If A_{u} denotes the set of points with a unique address, then $A_{u}=X$ whenever $a<\frac{1}{2}$, but $A_{u}=\{0,1\}$ for $a>\frac{1}{2}$. At $a=\frac{1}{2}$ we obtain that $A_{u}=[0,1] \backslash\left\{k / 2^{n} \mid 1 \leq k<2^{n}, n \in \mathbb{N}\right\}$.

We extend the definition of the map T to the hyperspace $\left(\mathcal{F}(X), d_{H}\right)$ as follows:

$$
T(E)=\bigcup_{i=1}^{m} w_{i}^{-1}(E)
$$

This definition includes the totally disconnected, just touching case as well the overlapping case of an IFS. Remember that $\mathcal{F}(X)$ is the set of all non-empty compact subsets of X and d_{H} is the Hausdorff metric, which is defined as

$$
d_{H}(E, F)=\inf \left\{\varepsilon>0 ; E \subseteq U_{\varepsilon}(F) \text { and } F \subseteq U_{\varepsilon}(E)\right\}
$$

for $E, F \in \mathcal{F}(X)$, where $U_{\varepsilon}(E)$ stands for the parallel body of E at distance ε. The ε-parallel body will be defined with the help of the distance function of the set $E \mathrm{~d}(x, E)=\inf \{d(x, y) \mid y \in E\}$. Then $U_{\varepsilon}(E)=\{x \mid \mathrm{d}(x, E) \leq \varepsilon\}$.

Lemma 2 The extended map $T: \mathcal{F}(X) \rightarrow \mathcal{F}(X)$ is sensitive with respect to initial conditions provided that the $\operatorname{IFS}\left(X ; w_{1}, \ldots, w_{m}\right)$ satisfies the open set condition.

We need some further lemmas. For this purpose we use $d(E)$ as the notation for the diameter of the set $E \subseteq X$, i.e. $d(E)=\sup \{d(x, y) \mid x, y \in E\}$.

Lemma 3 Let Y be a dense subset of X. For all $E \in \mathcal{F}(X)$

$$
\sup _{y \in Y} d_{H}(\{y\}, E) \geq \frac{1}{4} d(X)
$$

Proof. First assume that $d(E) \geq \frac{1}{2} d(X)$. Let $B(x, r)$ be a ball such that $E \subseteq B(x, r)$. This implies $d(E) \leq 2 r$. Hence $r \geq \frac{1}{4} d(X)$. As $\bar{Y}=X$ we can conclude that the desired inequality holds.

But if $d(E)<\frac{1}{2} d(X)$, we can choose $a, b \in X$ such that $d(a, b)=d(X)$ by the compactness of X. For arbitrary $u, v \in E$ the triangle inequality and the above assumption implies $\frac{1}{2} d(X) \leq d(a, u)+d(v, b)$. This gives

$$
\frac{1}{2} d(X) \leq d(a, X)+d(b, E)
$$

Hence for at least one of these points a or b we have, say $d(a, X) \geq \frac{1}{4} d(X)$. This proves the inequality of the lemma for the second case.

We also use the following Blaschke's selection theorem.

Lemma $4\left(\mathcal{F}(X), d_{H}\right)$ is a compact metric space provided that (X, d) is a compact metric space; i.e. every sequence of compact sets contains a d_{H}-convergent subsequence.

We now give the proof of Lemma 2.
Proof. Let $\delta=\frac{1}{6} d(X)$ and $E_{n}=T^{-n}(E)$ for an arbitrary $E \in \mathcal{F}(X)$. According to Lemma 4 we can assume that $E_{n} \rightarrow K$ w.r.t. the metric d_{H} and some $K \in \mathcal{F}(X)$. Take any y in a set O, which fulfills the open set condition, such that $d_{H}(\{y\}, K) \geq \frac{1}{4} d(X)$. Now for a given $\varepsilon>0$ we define a finite set F and $n \geq 0$ such that $d_{H}(E, F) \leq \varepsilon$, but $d\left(T^{n}(E), T^{n}(F)\right)>\delta$.

Since for any address $\sigma=\sigma_{1} \sigma_{2} \ldots$ we get $d\left(w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \ldots \circ w_{\sigma_{n}}(X)\right) \downarrow 0$ provided that $n \rightarrow \infty$, we can find some $n_{\varepsilon} \in \mathbb{N}$ such that for $n \geq n_{\varepsilon} n \in \mathbb{N}$ we get $d\left(w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \ldots \circ w_{\sigma_{n}}(X)\right) \leq \varepsilon$ for any choice of the $\sigma_{1}, \ldots, \sigma_{n}$ for a fixed n and, secondly $d_{H}\left(T^{n}(E), K\right) \leq \frac{1}{12} d(X)$. Now we define the finite set F by

$$
F=\left\{w_{\sigma_{1}} \circ \ldots \circ w_{\sigma_{n}}(y) \mid w_{\sigma_{1}} \circ \ldots \circ w_{\sigma_{n}}(X) \cap E \neq \emptyset\right\}
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ run through all choices up to the fixed $n>n_{\varepsilon}$. This implies that $F \subseteq U_{\varepsilon}(E)$ as well as $E \subseteq U_{\varepsilon}(F)$. Hence $d_{H}(E, F) \leq \varepsilon$.

Note that for arbitrary n

$$
d_{H}(\{y\}, K) \leq d_{H}\left(\{y\}, T^{n}(F)\right)+d_{H}\left(T^{n}(F), T^{n}(E)\right)+d_{H}\left(T^{n}(E), K\right)
$$

The first term on the right hand side of the last inequality vanishes as n is chosen as in the definition of F since $T^{n}(F)=\{y\}$. To see this note that for $y \in O$

$$
w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \ldots \circ w_{\sigma_{n}}(y)=w_{\tau} \circ w_{\sigma_{2}} \circ \ldots \circ w_{\sigma_{n}}(y)
$$

implies $\tau=\sigma_{1}$. Moreover since the last term of the right hand side is smaller than $\frac{1}{12} d(X)$, the inequality $d_{H}\left(T^{n}(F), T^{n}(E)\right)>\delta$ follows.

Lemma $5 \operatorname{If}\left(X ; w_{1}, \ldots, w_{n}\right)$ satisfies the open set condition, then the dynamical system $(\mathcal{F}(X), T)$ is transitive.

Proof. Since d_{H} generates the Vietoris topology on $\mathcal{F}(X)$, we can restrict our attention to open sets

$$
\mathcal{U}=\left\{E \in \mathcal{F}(X) \mid E \subseteq U_{1} \cup \ldots \cup U_{l}, E \cap U_{i} \neq \emptyset \text { for } i=1, \ldots, l\right\}
$$

and

$$
\mathcal{V}=\left\{E \in \mathcal{F}(X) \mid E \subseteq V_{1} \cup \ldots \cup V_{k}, E \cap V_{i} \neq \emptyset \text { for } i=1, \ldots, k\right\}
$$

where the U_{i} and V_{i} are given non-empty open subsets of X. If U is the open set which belongs to the open set condition, we fix some $x_{i} \in U \cap U_{i}$ for $i=1, \ldots, l$ and some n sufficiently large such that for all pairs x_{i} and V_{j}, where $i=1, \ldots, l$ and $j=1, \ldots, k$, there is a finite sequence $\sigma_{1}, \ldots, \sigma_{n} \in\{1, \ldots, m\}$ such that

$$
y_{i j}=w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \ldots \circ w_{\sigma_{n}}\left(x_{i}\right) \in V_{j}
$$

Define then $F=\left\{y_{i j} \mid i=1, \ldots, l, j=1, \ldots, k\right\}$. It follows that $F \in \mathcal{V}$ and $T^{n}(F) \in \mathcal{U}$. Hence $\mathcal{U} \cap T^{n}(\mathcal{U}) \neq \emptyset$.

The last step is now to consider the periodic points of T.
Lemma 6 If the $\operatorname{IFS}\left(X ; w_{1}, \ldots, w_{m}\right)$ satisfies the open set condition, then the set of periodic points of T is dense in $\mathcal{F}(X)$ w.r.t. to the Hausdorff metric (or Vietoris topology).

Proof. Let $\sigma_{1}, \ldots, \sigma_{n} \in\{1, \ldots, m\}$. The map $f_{\sigma_{1}, \ldots, \sigma_{n}}=f_{\sigma_{1}} \circ \ldots \circ f_{\sigma_{n}}$ is contractive and let $x_{\sigma_{1}, \ldots, \sigma_{n}}$ be its unique fix point within X. We define

$$
F_{n}=\left\{x_{\sigma_{1}, \ldots, \sigma_{n}} \mid \sigma_{1}, \ldots, \sigma_{n} \in\{1, \ldots, m\}\right\}
$$

and $F=\bigcup_{n \in \mathbb{N}} F_{n}$. Then $\bar{F}=X$. To see this let $x \in X$ and $\varepsilon>0$. We may choose $n_{\varepsilon} \in \mathbb{N}$ such that for $n \geq n_{\varepsilon} d\left(f_{\sigma_{1}, \ldots, \sigma_{n}}(X)\right) \leq \varepsilon$, the diameter of the set $f_{\sigma_{1}, \ldots, \sigma_{n}}$ is less than ε. We may find $\sigma_{1}, \ldots, \sigma_{n} \in\{1, \ldots, m\}$ such that $x \in$
$f_{\sigma_{1}, \ldots, \sigma_{n}}(X)$. Also since $x_{\sigma_{1}, \ldots, \sigma_{n}} \in f_{\sigma_{1}, \ldots, \sigma_{n}}(X)$, we obtain $d\left(X, x_{\sigma_{1}, \ldots, \sigma_{n}}\right) \leq \varepsilon$, which proves the density of F within X. Let U be the open set of the open set condition. We set $\mathcal{E}_{n}=\mathcal{P}_{0}\left(U \cap F_{n}\right)$ the non-empty (finite) subsets of $U \cap F_{n}$ and $\mathcal{E}=\bigcup_{n \in \mathbb{N}} \mathcal{E}_{n}$. We show that
a) \mathcal{E} consists of periodic points of the map T;
b) \mathcal{E} is dense in $\left(\mathcal{F}(X), d_{H}\right)$.
a) Take any $E \in \mathcal{E}_{n}$. Since for $x \in E$ we always have a unique preimage for n steps, it follows that $T^{n}(E)=E$.
b) For an arbitrary closed $F \subseteq X$ and $\varepsilon>0$ we select some $E \in \mathcal{E}$ such that $d_{H}(F, E)<\varepsilon$. First, we cover F by a finite number of closed balls $B\left(x_{k}, \varepsilon / 2\right)$ for $k=1, \ldots, l$ such that $B\left(x_{k}, \varepsilon / 2\right) \cap U \neq \emptyset$ since U is dense in X. Because U is open, we can find a common n such that for some finite sequence $\sigma_{1}, \ldots, \sigma_{n}$

$$
f_{\sigma_{1}, \ldots, \sigma_{n}}(X) \subseteq B\left(x_{k}, \varepsilon / 2\right) \cap U
$$

Hence for the fix point $x_{\sigma_{1}, \ldots, \sigma_{n}}$ of the map $f_{\sigma_{1}, \ldots, \sigma_{n}}$ we have

$$
x_{\sigma_{1}, \ldots, \sigma_{n}} \in B\left(x_{k}, \varepsilon / 2\right) \cap U
$$

This implies $F \subseteq \bigcup B\left(x_{\sigma_{1}, \ldots, \sigma_{n}}, \varepsilon\right)$. If we now take as E all the points $x_{\sigma_{1}, \ldots, \sigma_{n}}$, we clearly have $d_{H}(F, E) \leq \varepsilon$ and E is also a periodic point of T.

Hence, we have proved the following assertion.
Theorem $1(\mathcal{F}(X), T)$ is a chaotic dynamical system provided that for the initial IFS the open set condition is satisfied.

Finally, we discuss the overlapping case of Example 1. We have that $w_{1}^{-1}(x)=\frac{x}{a}$ and $w_{2}^{-1}(x)=\frac{x}{a}+\frac{a-1}{a}$ with the domains $[0, a]$ and $[1-a, 1]$. To verify sensitivity with respect to initial conditions it seems to be the best to start with $E=[0,1]$ since for all n, we have $T^{n}(E)=E$. Is it possible to find some $\delta>0$ such that for all $\varepsilon>0$ there is some $n \in \mathbb{N}$ and some $F \in \mathcal{F}([0,1])$ such that $d_{H}\left(T^{n}(E), T^{n}(F)\right)=d_{H}\left(E, T^{n}(F)\right)>\delta$? The first idea is now to use a finite set F of equidistant points

$$
F=\left\{\frac{i}{m} ; i=0,1, \ldots, m\right\}
$$

for some $n \in \mathbb{N}$. The image $T(F)$ consists of points of the kind $\frac{i}{a m}$ or $\frac{i}{m a}+\frac{a-1}{a}$. If for some integer i the condition $\frac{i}{m}=a-1$ is satisfied, then the minimal distance between points in $T(F)$ is at least $\frac{1}{m a}$. Hence

$$
d_{H}(E, T(F))=\frac{1}{a} d_{H}(E, F) .
$$

All points of $T(F)$ have then the form $\frac{i}{a m}$ again. If we would iterate this idea, some times we obtain a sequence $\left(i_{k}\right)_{k \in \mathbb{N}}$ of integers such that $\frac{i_{k}}{m}=$ $a^{k-1}(a-1)$. We conclude that $i_{1}\left(i_{1}+m\right)^{k-1} \equiv 0\left(\bmod \left(m^{k-1}\right)\right.$. Since $i_{1}<m$, this is impossible for $k \geq 3$. Hence, we can increase the distance between E and $T^{n}(F)$ only twice by the factor $\frac{1}{a}$. This motivates the following question.

Question Is it true that the dynamical system $\left(\mathcal{F}([0,1]), T_{a}\right)$ arising from Example 1 for $a>\frac{1}{2}$ is never chaotic?

References

[1] M. F. Barnsley, Fractals everywhere, Academic Press, 1988.
[2] K. J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985

[^0]: Key Words: IFS, hyperspace, set-valued chaotic map
 Mathematical Reviews subject classification: Primary: 54B20, 54H20. Secondary 54C60
 Received by the editors February 29,1996
 *The author thanks the referee for some helpful comments

