Real Analysis Exch
RESEARCH Vol. 21(2), 1995-96, pp. 637 647

Zbigniew Grande, Mathematics Department, Pedagogical University,
Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON EQUI-DERIVATIVES

Abstract

The notion of equi-derivatives is introduced and is compared with
approximate equicontinuity. Moreover, it is proved that a function f
of two variables whose sections f, are equi-derivatives and sections fY
are measurable (derivatives) [have the Baire property] is measurable
(a strong derivative) [has the Baire property].

1 Preliminaries and Notations

Let R be the set of all reals and let p. (1) denote outer Lebesgue measure
(Lebesgue measure) in R. Let

dy(A,x) = limsup pe (AN (x — h,z + h))/2h

h—0*t

(di(A,z) = liminf p. (AN (x — h,z + h))/2h)
h—0+

be the upper (lower) density of a set A C R at x. A point z € R is called
a density point of a set A C R if there exists a (Lebesgue) measurable set
B C A such that d;(B,z) = 1. The family 73 = {A C R; A is measurable
and every point € A is a density point of A} is a topology called the density
topology [1].

A function f: R — R is called 74-continuous or approximately continuous
at a point z if it is continuous at x as a function from (R, 7;)) into (R, 7),
where 7. denotes the Euclidean topology in R.

A family of functions f, : R — R, s € 5, is called 7g-equicontinuous or
approximately equicontinuous at a point z if the functions fs;, s € S, are
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equicontinuous at z as the functions from (R,73) into (R, 7.), i.e. for every
1 > 0 there is a set B € T3 such that x € B and for all t € B and s € S the
inequality |fs(t) — fs(z)| < n holds.

A family of locally Henstock-Kurzweil integrable functions fg; : R — R,
s € S, is called a family of equi-derivatives at a point « € R if for every
positive n there is a r > 0 such that for every real h with 0 < |h| < r and for
every s € S we have

x+h
%/ fs(t)dt — fo(x)

<.

2 Equi-derivatives and Approximate Equicontinuity

It is well known [1] that every locally bounded (Lebesgue) measurable function
f which is approximately continuous at a point z is also a derivative at z, i.e.

li L
m —
h—0 h

x+h
[ swa=rw.
By a similar proof we obtain:

Remark 1 If locally integrable functions fs : R — R, s € S, are approxi-
mately equicontinuous at x and if there are M > 0, r > 0 such that for all
s €S and for allt € (x —r,x + 1) the inequality |fs(t)] < M is true, then the
functions fs, s € S, are equi-derivatives at x.

In the above remark the existence of the constant M is important. Indeed,
if (an)n is a sequence of positive reals such that a; > as > -+ > a, > - \(0

and
du <U [a2n7 a2n71]7 0) = 0,

n=1
then let f,, n = 1,2,..., be a continuous function such that f,(z) = 0 for
x € R\ [agn, azn—1] and f;ﬁ?’l fn(t)dt = nas,—1. Then the functions f,,
n=1,2, ..., are continuous, bounded and approximately equicontinuous, but
they are not equi-derivatives at 0.

From Lipinski’s theorem in [6] it follows that if for all reals a,b with a < b
the functions min(b, max(a, f)) are derivatives, then f is approximately con-
tinuous. So, we obtain the following question:

Suppose that for all reals a,b with a < b the functions min(b, max(a, fs))
are equi-derivatives. Must the functions fs, s € S, be approximately equicon-
tinuous?
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Example 1 shows that the answer is “no”.

Example 1 For every positive integer n let J, C (1/(n+1),1/n) be a closed
interval such that n(n+1)|J,| > 1—1/n, where |J,| denotes the length of J,.
Define the continuous function f, to be 1 on J,, 0 on R\ (1/(n +1),1/n)
and linear otherwise on R. The functions f,, n = 1,2,..., are continu-
ous everywhere on R and approximately equicontinuous (even equicontinuous)
at all points « # 0. Since dy(,, Jn,0) = 1/2, the functions fp,, n > 1,
are not approximately equicontinuous at 0. To prove that for all a < b
the functions min(b, max(a, f,)), n > 1, are equi-derivatives, it suffices to
show that they are equi-derivatives at 0. Fiz a, b such that a < b and let
gn = min(b, max(a, f,)) forn > 1. Fixn > 0. There is a positive integer k
such that 1/k < n. Let r = 1/(k+ 1) and let real h be such that 0 < |h| < r.
Ifa>1o0orb<0orifb>0,a<1andh <0, then for every n > 1 we
have

h
7 [ 90t = 0.0 = b9, = 5,01 =0 <.

We proceed similarly in the case a < 1, b >0 and h > 0 forn < 1/h — 1.
Ifa<1,b>0,h>0andn>1/h—1, then

h
/0 gu(t) dt < min(b, 1)/(n(n + 1)) + ga(O)h < 1/(n(n + 1)) + ga(O)h,
whence

<1l/n<n.

h
% /0 gn(t) dt — gn(o)

So, the functions g,, n > 1, are equi-derivatives.

Remark 2 [t is well known ([1, Th. 5.8]) that every lower semi-continuous
locally bounded derivative is approximately continuous. Meanwhile the func-
tions fn, n > 1, from Example 1 are not approximately equicontinuous at 0,
although they are equi-derivatives bounded by a common constant and they are
lower semi-equicontinuous at 0, i.e. for every n > 0 there is a positive real r
such that f,(0) — fn(t) <n for all pointst € (—r,r) and n > 1.

The next theorem gives some sufficient condition for the approximate
equicontinuity of families of equi-derivatives.

Theorem 1 Let measurable functions fs : R — R, s € S, be such that there
is a M > 0 with |fs| < M for all s € S. Suppose that for every n > 0 there
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is an approximately continuous positive function v : R — R such that for all
z€R, s€S and h with 0 < |h| < r(z) the inequality

1

z+h
7/ fs(t) dt — fq(x)

h <

holds. Then the functions fs, s € S, are approzimately equicontinuous.

PROOF. Suppose, to the contrary, that the functions f,, s € S, are not
approximately equicontinuous at a point . Then there is a > 0 such that for
every A € T, containing x there are s € S and ¢t € A such that | fs(¢) — fs(z)] >
7. Let r be a positive function corresponding to n/4 by hypothesis of our
theorem and let A € T; be a set containing z such that |r(t) — r(z)| < r(z)/4
for every t € A. Assume that I C (z —r(x)/4,2 + r(z)/4) is an open interval
containing z such that for every ¢ € I we have 2M|t — z|/r(z) < n/8 and
(Mr(x)/2)(1/((r(x)/2) — |t — z|) — 2/r(x)) < /8. There are an index s € S
and a point u € AN T with |fs(u) — fs(x)] > n. We can assume that u > x,
since in the case u < x the proof is analogous. Observe that x < u < h =
z+r(x)/2 <u+r(u) and

o) [ noa-cpe) [ o)

(1/(h - u)) / fo(t)dt — (2/r(x) / fu(tydt — (2/r(x)) / oL

h u
<1/ (h — u) — (2/r())] / o)l dt + (2/r(2)) / ()] dt

<(Mr(z)/2)(1/((r(2)/2) — |u— z[) — 2/r(z)) + 2M|u — z|/r(2)
)
8 8 4

3

So, we obtain

|fs(u) - fs(x)| <

h
Folw) = (1/(h — ) / fu(tydt

h h
(/- w) / fo(tydt — (1/(h - ) / fu(tydt
+ <1/<h—m>>ths<t>dt—fs<x> <d+l+d<m,
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a contradiction. O

We say that a function f : R — R has property SAC if for every n > 0
there is an approximately continuous positive function r : R — R such that
for every x and h with 0 < |h| < r(z) we have

x+h
s - p@

<n.

It follows from Theorem 1 applied to the family containing one function
that every function having the property SAC is also approximately continuous.

Problem 1 Does every approximately continuous function have property
SAC?

Remark 3 There is a function f: R — [0, 1] having property SAC whose set
of discontinuities is of positive measure.

PRrROOF. Let C C (0,1) be a Cantor set of positive measure and let (I,,), be
an enumeration of all components of the set (0,1) \ C such that I, # I,,, for
n#m, n,m=1,2,.... In every interval I,,, n > 1, we find closed intervals
In1, I, 2 = [cn, dy] having the same center as I, and such that

/lIﬂ,QI)’ (|]Tl,2|/|ln|)> <47,

max((|1,,1

Let f be a function which is continuous at every point € R\ C, equal to 0
at every x € R\ |, I,,1 and such that f(I, 1) = [0,1] for n > 1. Since f is
discontinuous at every point € C, the set of discontinuities of f is of positive
measure. Now we will prove that f has property SAC. Fix n > 0. There is a
positive integer k with 4% 4 2(472F+1) /(1 — 16¥) < 7. Let

A= U Lo

n<k

Since for every n > k the function f is uniformly continuous on the interval
I, 2, there are positive reals r,, < |I,1], n > k, such that for all z,y € I, 2
with |z — y| < r, we have |f(z) — f(y)| < n. Similarly there is a positive
real ro < minj<g |I;1]/4 such that for all z,y € A with | — y| < 79 we have
|f(z) — f(y)] < n. Put r, = 1o for n < k and a = min(rg, dist(4, C)/4),
where dist(A,C) = inf{|z — yl;z € A,y € C}. Moreover, let dist(z,A) =
inf{|z — y|;y € A} and let

g(x) = a + min(dist(x, A), dist(x, C)) /4 for x € I,, \ int(I,2), n > 1,
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where int(A) denotes the interior of A. For z € CUJ,,~, In we put 7(z) = a.
For the definition of the function r on the intervals I,,, n > k, we observe
that r(c,) = r(d,). Fix a positive integer n > k. If r,, > g(c,), then we put
r(z) = g(cp) for © € I, o and r(z) = g(x) for x € I, \ I, 2. If 7, < g(cp),
then we find a closed interval I, 3 having the same center as I,, and such
that I, o C int(l,3) and |I,3|/|I.] < 47™. Then we define r(z) = r, for
x € I 9, () = g(z) for x € I,,\int(1, 3) and r is linear on the components of
I, 3\int(I, 2). The function r is already defined on the interval (0, 1). Observe
u = lim, oy 7(z) and v = lim,_,;_ r(x) exists and are positive. Put r(z) = u
for x < 0 and r(z) = v for > 1. The positive function r is defined on R,
and continuous at each point € R\ C. Since the function g is continuous
at each z € C, r(z) = g(x) for all x € C and every z € C is a density
point of the set {z;g(x) = r(x)}, the function r is approximately continuous
at all points of the set C. If x € I, » for some integer n, and h is such that
0 < h<r(z)=r, <|Ini|, then [x,x 4+ h] C I, and |f(t) — f(z)| < n for all
t € [x,x + h]. Consequently,

z+h z+h
%L () dt — ()| = %L () = f(2)) dt
z+h
<3 [0 -r@lda < phn =

If x is such that there is not an integer n for which x € I,, » and if h is such
that 0 < h < r(x), then we put K = {i;I; C [z,z + h]} and let L be the set
of such indexes ¢ which are not in K and for which int(Iy) N [z, 2 + h] # 0.
Since r(x) < dist(A,C) for all z, we obtain i > k for every i € K. The set
L contains at most two elements. From the construction of the function r we
obtain that if n € L and n < k, then f(t) = 0 for each ¢ € [x,x + h| N I,,. We

have:
1 x+h
z / F(t) dt

% (Z /I feydt+y" : f(t)dt)‘

x+h
p | wa @

nek leL
1
< 7 (Z | L1 | + Z 11Nz, z+ h]|>
nekK leL
1
< 5(4—’“—% +20472 R /1 - 167Y) < 7.
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If —r(xz) < h < 0 the proof is analogous. So, the function f has the property
SAC and the proof is finished. O

3 Equi-derivatives and Some Properties of Functions of
Two Variables

Let f : R? — R be a function. It is well known ([4]) that if all sections
fo(t) = f(z,t), t,z € R, are approximately equicontinuous and if all sections
fYt) = f(t,y), t,y € R, are (Lebesgue) measurable [have the Baire property],
then f is measurable [has the Baire property] as a function of two variables.
These theorems are also true if we suppose that the sections f,, x € R, are
equi-derivatives.

Theorem 2 Let f : R2 — R be a locally bounded function with all sections
1Y, y € R, being measurable (having the Baire property). Suppose that there
is a set B C R of measure zero (of the first category) such that the sections
fu, © € R\ B, are equi-derivatives at every point y € R. Then the function f
is measurable (has the Baire property).

PRrROOF. It suffices to prove that for every bounded closed interval I C R the
restricted function f[(I x I) is measurable. Assume that I = [a,b]. Since the
set I x I is compact, the function f|(I xI) is bounded. Let g(z,y) = f(x,y) for
x € I\ B and and let g(x,y) = 0 otherwise on I x I. Observe that the restricted
function f|(I x I) is measurable if and only if the function ¢ is measurable.
All sections g, « € I, are derivatives. So, by Lipiriski’s Theorem 3 from [7],
for the measurability of g it suffices to prove that for every t € I the function

t
h($)=/ g(z,y)dy, zel,

is measurable. Fix t € I. We will prove that the function h satisfies the
hypothesis of Davies’ Lemma from [3]. Let n be a positive real and let C C I
be a measurable set of positive measure. For every y € I there is a positive
number r(y) such that for every h with 0 < |h| < r(y) and for every x € I \ B
we have

1

y+h
- / g(z,v) dv — g(z,)| < n/(A(t - a)).

The family {(y — 7(y),y + r(y));y € I} is an open covering of the compact
[a,t]. So, there are points

a=tg <t <...<lp_1<tp,=t
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such that for every z € I\ B and i = 1,...,n we have

<n/(4(t - a)).

1/t~ t0) [ gtan)dy = aletion)

Since all sections g%, i = 0,1, ...,n, are measurable, there is a density point
u € C at which all sections g'i, 1 = 0,1,...,n, are approximately continuous.
Thus there is a measurable set E C C of positive measure such that |g(v,t;) —
g(w,t;)] <n/(2n) for all v,w € F and i =0,...,n. Fix v,w € E. Then

/atg(%y)dy—/:g(w,y)dy‘

ti

|h(v)=h(w)| =

t

g(v,y) — g(w,y)) dy

(o0 - gtwn) dy‘

g(v,y)—g(v,t;_1) dy+2/ g(v,ti—1)—g(w,ti—1)) dy

/t i;<g(w, ) - glw,y)) dy’

1 (/:1 9(v,y)dy — g(v,ti—1)(t:i — tz’l))

(9(v,ti1) — g(w, ti—1))(t; — ti—1)

'M:

1

|

3

+

-

=1

+
-

(oot t) - [ o) )|

=1

3 (ti —tia H 1/(@‘—%‘1))/& 9(v,y)dy — g(v,ti—1)

ti—1

-
Il

+

(1)t — ti1)) / " gw,y) dy — glw,tiiy)

i—

] 4/ (2n)

<

(ti = ti1)(n/(4(t — a)) + 0/ (4t — a))) +1/2 =1

-

Il
i

(2

So, osc(h) < n on the set E and by Davies’ lemma from [3] the function h is
measurable. This completes the proof of the first part of our theorem for the
measurability. The proof of the second part is similar. Instead of Lipinski’s
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theorem from [7] we apply an analogous theorem for the property of Baire from
[4] and instead of Davies’ lemma from [3] we apply an analogous theorem for
the Baire property from [5]. O

In [7] Slezak proved that if all sections f,, x € R, are approximately
continuous and if all sections fY, y € R, are of Baire class a > 1, then f is
also of Baire class a.. So, we obtain the following:

Problem 2 Let f:R? — R be a function such that all sections f, are equi-
derivatives and all sections fY are of Baire class . Is the function f of Baire
class a?

By a standard proof we observe that if all sections f,, x € R, are ap-
proximately equicontinuous and if all sections f¥, y € R, are approximately
equicontinuous, then f is (73 x 7g)-continuous as a function of two variables.
For the equi-derivatives we obtain the following:

Theorem 3 Let f : R? — R be a locally bounded function such that all its
sections fr, © € R, are equi-derivatives at every point y € R and all its
sections fY, y € R, are derivatives. Then f is a strong derivative at every
point (x,y) € R?, i.e. for every (x,y) the equality

x+h y+k
lim (/ / flu,v)du dv) /(4hk) = f(z,y).

h,k*}() —h —k

PRrROOF. Fix a point (z,y) € R? and a > 0. Since all sections f,, = € R,
are equi-derivatives at the point y, there is a r > 0 such that for every h with
0 < |h| < r and for every u € R we have

1

h
h/nyr flu,v)dv — flu,y)| < Z

By the hypothesis the section fY is a derivative at the point . Thus there is
a s > 0 such that for every k with 0 < |k| < s the inequality

1

z+k
! / Fluy) du— f(z,y)

% <

=~
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is true. Fix h,k such that 0 < h < r and 0 < k < s. Then for every
u € (x — s,z + s) we obtain:

1 y+h
3 ), S i)

Yy y+h
S‘th y_hf(u,v)dv— flu,y /2’ ‘;h/y (u,v)dv — f (u7y)/2‘

—h +h
sl s s |7 [ o= )|

1/n n)_n
<(+ —4.

Since f is locally bounded, we can assume that it is bounded on the set
D =[z—k,z+k]x[y—h,y+h]. By Theorem 2 the function f is measurable,
so it is integrable on the rectangle D. For u € (z — s,z + s) we have

y+h

Oh(f (ury) — n/4) < / F(uw) dv < 2h(f (uy) + 1/4).

—h
Consequently,

2h/ —n/4)du < /IJrk /erh f(u,v) dvdu
y

rz—k —h
x+k
<o [ (fwy) +ut)du
z—k
As above we can prove that
z+k

2(f(x.y) — 1/4) < / Fluyy) du < 2(f (2, y) + n/4).

—k

From the above we obtain

x+k
o [ () = /4 du > ARk () = 2Dk = 4k F o) = 1/2)
and

r+k
oh [ () /) du < AWK ) + 0/2).

x+k y+h
flu,v)dudv — f(z,y)| <
il /h (u,0) (2,9)

and the proof is finished. ([

So,

N3

<,
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Remark 4 Observe that in the above theorem the hypothesis that f is locally
bounded can be replaced by the hypothesis that f is locally integrable. Then the
proof is the same, but we needn’t rely on Theorem 2 for the measurability of
the function f.
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