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Abstract

The paper deals with the space of all Denjoy-Perron integrable func-
tions on a fixed interval endowed with the Alexiewicz norm and the
completion of this space. The relatively weakly compact subsets of each
space are characterized.

Let H be the space of all Denjoy-Perron integrable functions on [a, b]. If
H is endowed with the Alexiewicz norm

‖f ‖H= sup
x

∣∣∣∣∫ x

a

f(t) dt

∣∣∣∣ ,
then it is called the Denjoy space of [a, b].

The Banach dual of H is isomorphic to the space BV of all functions of
bounded variation on [a, b]. (See [2].) and the completionH of H is isomorphic
to the space of all distributions each of which is the distributional derivative
of a continuous function. (See [3] or Theorem 6(i) below.)

A characterization of relatively weakly compact subsets of H and H is
given in [3]. The aim of the present paper is to complete the study begun
in [3] and obtain several new characterizations of these sets.
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1 Relatively Weakly Compact Subsets of C(S)

In this section we obtain a characterization of relatively weakly compact sub-
sets of C(S), the Banach space of all real valued continuous functions on a
compact metric space S. To this end we first prove the following result.

Theorem 1 Let (X, d) and (Y, d′) be metric spaces and suppose that (X, d) is
complete. Given a sequence fn : X → Y , n = 1, 2, . . . , of continuous functions,
converging pointwise on X to some function f , the following assertions hold.

(i) (fn) is equicontinuous on a set D dense in X.

(ii) If (fn) is equicontinuous on X, then f is uniformly continuous in X.

(iii) If X is compact and (fn) is equicontinuous on X, then fn → f uniformly.

The proof is based on the following lemma.

Lemma 2 Let X, Y and (fn) satisfy the conditions of Theorem 1. Then
given a closed ball B(xo, r) = {x ∈ X : d(x, xo) ≤ r} in X and given ε > 0,
there exists wo ∈ X and 0 < δ < 2−1r such that B(wo, δ) ⊂ B(xo, r) and
d′(fn(x), fn(wo)) < ε for each x ∈ B(wo, δ) and for each n.

Proof. Let 0 < r′ < r. Consider the closed sets

Xn =
{
x ∈ B(xo, r

′) : d′(fh(x), fk(x)) ≤ ε

3
, for each h, k ≥ n

}
.

It is clear that ∪∞n=1Xn = B(xo, r
′) and hence by Baire’s theorem, there exists

no such that Xno
contains a closed ball B(wo, η). Let k > no. Since the

functions fn, n = 1, 2, . . . , k, are continuous, there exists 0 < δ < min(η, 2−1r)
such that

d′(fn(x), fn(wo)) <
ε

3
, for each x ∈ B(wo, δ) and for n = 1, 2, . . . , k.

If n > k and x ∈ B(wo, δ), then x ∈ B(wo, η) and hence from the definition of
Xno

we have

d′(fn(x), fn(wo)) ≤ d′(fn(x), fk(x)) + d′(fk(x), fk(wo))

+ d′(fk(wo), fn(wo)) < ε. �

Proof of Theorem 1. (i) Let U = B(xo, r) be an arbitrary ball in X. Then
by Lemma 2 we can find a decreasing sequence B(wn, rn) of closed balls with
2rn < rn−1, n = 1, 2, . . ., where 0 < ro < r, such that

d′(fk(x), fk(wn)) <
1

n
, for all k ∈ N and for all x ∈ B(wn, rn).
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Since X is complete, by Cantor’s theorem there exists wo ∈ X such that

∞⋂
n=1

B(wn, rn) = {wo}.

Given ε > 0, choose n0 such that 2 < εn0. Since

{ω0} =

∞⋂
n=1

B(ωn, rn) ⊃
∞⋂
n=1

B(ωn, rn) ⊃
∞⋂
n=1

B(ωn+1, rn+1) = {ω0},

it follows that {ω0} =
⋂∞
n=1B(ωn, rn). Then, for x ∈ B(ωn0

, rn0
), we have

d′(fk(x), fk(w0)) ≤ d′(fk(x), fk(wn0
)) + d′(fk(wn0

), fk(w0))

<
1

n0
+

1

n0
< ε ,

for k = 1, 2, . . .. Since ω0 ∈ B(ωn0
, rn0

), there exists η > 0 such that
B(ω0, η) ⊂ B(ωn0 , rn0) and hence the sequence (fk) is equicontinuous in w0.
Thus (i) holds.

(ii) Obvious.
(iii) This follows from Lemma 29 in the proof of Ascoli’s Theorem on pages

154–155 of [7]. �

Definition 3 A sequence fn : X → R, n = 1, 2, . . ., of continuous functions
on a metric space (X, d) is said to be asymptotically continuous on X if, given
ε > 0, there exists η > 0 such that limn|fn(x′) − fn(x′′)| < ε for x′, x′′ ∈ X
with d(x′, x′′) < η.

Theorem 4 Let (X, d) be a separable complete metric space and let fn : X →
R, n = 1, 2, . . . , be a sequence of continuous functions. Then (fn) has a
pointwise convergent subsequence with its limit f uniformly continuous in X
if and only if there exists a subsequence (fnk

) of (fn) such that

(i) (fnk
) is equicontinuous on a dense set D in X,

(ii) (fnk
) is asymptotically continuous on X, and

(iii) {fnk
(x) : k = 1, 2, . . .} is bounded for each x ∈ X.

Proof. Suppose (fn) has a pointwise convergent subsequence (fnk
) with limit

f uniformly continuous in X. Then by Theorem 1(i), (fnk
) is equicontinuous

on a dense set D. Moreover, as f is uniformly continuous in X, clearly (ii)
holds. (iii) is obvious.
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Conversely, suppose there exists a subsequence (fnk
) such that conditions

(i), (ii) and (iii) hold. By (i) and (iii) and by the version of Ascoli’s theorem on
page 155 of [7], there exists a subsequence (gl) of (fnk

) such that (gl) converges
pointwise in D to a function g continuous on D. Then the hypothesis (ii)
implies that g is uniformly continuous in D and hence has a unique uniformly
continuous extension to X. Let us denote this extension also by g.

Let ε > 0. By the uniform continuity of g in X, there exists η > 0 such
that

|g(x′)− g(x′′)| < ε

3
(1)

for x′, x′′ ∈ X with d(x′, x′′) < η. Moreover, choosing η sufficiently small, by
(ii) there exists lo(ε) such that

|gl(x′)− gl(x′′)| <
ε

3
for l ≥ lo(ε) (2)

and for x′, x′′ ∈ X with d(x′, x′′) < η. Now let x ∈ X \D. Since D is dense in
X, there exists y ∈ D such that d(x, y) < η. Then by (2) and (1) we have

|gl(x)− g(x)| ≤ |gl(x)− gl(y)|+ |gl(y)− g(y)|+ |g(y)− g(x)|

<
ε

3
+ |gl(y)− g(y)|+ ε

3

for l ≥ lo(ε). Since gl(y) → g(y), we can choose l1 > lo(ε) such that |gl(y) −
g(y)| < ε

3 for l ≥ l1. Thus |gl(x)−g(x)| < ε for l ≥ l1 and hence gl(x)→ g(x).
�

As a simple application of the above theorem and the Eberlein-Šmulian
theorem we can give the following characterization of relatively weakly com-
pact sets in C(S).

Theorem 5 Let S be a compact metric space. Then a subset K of C(S) is
relatively weakly compact if and only if K is bounded and each sequence (fn)
in K has a subsequence (fnk

) which is equicontinuous on a dense set D and
asymptotically continuous on S.

Proof. By the Eberlein-Šmulian theorem, K is relatively weakly compact
if and only if each sequence (fn) in K has a subsequence which converges
weakly to an element of C(S). By Corollary IV.6.4 of [5], a sequence (gn) in
C(S) converges weakly if and only if it is bounded and converges pointwise
to a continuous function in S. Then the present theorem is an immediate
consequence of Theorem 4. �
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2 Distributional Derivatives of Functions in C[a, b]

In this section we show how each h ∈ H can be identified with the distribu-
tional derivative DF of a continuous function F ∈ C[a, b]. Theorem 6 given
below plays a key role in the development of the subsequent sections. All the
elements of the Banach space H will be denoted in boldface.

Let Ω = {F ∈ C[a, b] : F (a) = 0}. Ω is a Banach space with the sup-norm
and the space ACo of absolutely continuous functions F with F (a) = 0 is
dense in Ω. Now for each h ∈ H, let Φo(h) be the Denjoy-Perron primitive of
h with Φ0(h)(a) = 0. Since Φo(h) is an ACG∗ function taking value zero in
a, Φo is a linear isometry from H onto a dense subset of Ω. Then Φo has a
unique isometric linear extension Φ from H onto Ω. (See Theorem 6 below.)
Given a continuous function F we denote its distributional derivative by DF

and, when F is differentiable, its derivative by F ′.

Theorem 6 The following assertions hold.

(i) h ∈ H if and only if h = DF for some F ∈ C[a, b].1

(ii) For each h ∈ H there exists a unique F ∈ Ω such that h = DF .

(iii) The mapping Φ : H → Ω given by Φ(h) = F if DF = h and F ∈ Ω is
well defined and is an onto linear isometry extending Φo.

Thus the unique isometric linear extension of Φo to H is precisely the map
Φ given above.

Proof. (i) Given h ∈ H, let (hn) be a sequence of Denjoy-Perron integrable
functions converging to h in the Alexiewicz norm. Let Fn = Φo(hn). Since
||Fn − Fm||∞ = ||hn − hm||H → 0, the sequence (Fn) is uniformly convergent
to a continuous function F . Let φ be an infinitely differentiable function with
compact support contained in (a, b). Since φ ∈ BV , φ ∈ H∗ = H∗ (the dual
of H). (See [2].) Then, using the integration by parts formula we have

〈φ,h〉 = lim
n
〈φ, hn〉 = lim

n

∫ b

a

hnφdt = lim
n

[φFn]ba − lim
n

∫ b

a

Fnφ
′ dt

= −
∫ b

a

Fφ′ dt = DF (φ) .

Thus h = DF . (See p. 35 of [8].) This shows that each h ∈ H is the distribu-
tional derivative DF of some F ∈ Ω, as F (a) = 0.

1This assertion has already been established in [2] and we give it here for the sake of
completeness.
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Conversely, let F ∈ C[a, b]. There exists a sequence of absolutely continuous
functions Fn which converges uniformly to F . Then Fn is the Denjoy-Perron
primitive of some hn ∈ H for each n. Thus

||hn − hm||H = ||Fn − Fm||∞ → 0 as n,m→∞

and hence there is some h ∈ H such that hn → h. Now, for each infinitely
differentiable function φ with compact support contained in (a, b), we have

DF (φ) = −
∫ b

a

Fφ′ dt = − lim
n

∫ b

a

Fnφ
′ dt = lim

n
[Fnφ]ba − lim

n

∫ b

a

Fnφ
′ dt

= lim
n

∫ b

a

hnφdt = 〈φ,h〉 .

Thus h = DF .
(ii) The existence follows immediately by (i) and the unicity by Theorem 1

on p. 52 of [8].
(iii) Clearly Φ is well defined and linear from H into Ω. If F ∈ Ω, taking

the Perron-Denjoy primitives Fn in the proof of the converse part of (i) such
that Fn(a) = 0, it follows that F = Φ(h) and hence Φ is onto. Now let h ∈ H.
Then Φ(h) = limn Φo(hn), where (hn) ⊂ H and hn → h. Hence

||Φ(h)||∞ = lim
n
||Φo(hn)||∞ = lim

n
||hn||H = ||h||H .

Thus Φ is an isometry. Clearly, Φ |H = Φo. �

The uniqueness of Φ(h) for h ∈ H justifies the following definition.

Definition 7 For h ∈ H, Φ(h) is called the primitive of h and we write

Φ(h) =

∫ x

a

h.

As Φo(h) = Φ(h) for h ∈ H, the primitive and integral are in the sense of
Denjoy-Perron if h ∈ H.

3 Relatively Compact Subsets of H and H

Making use of the isometric isomorphism Φ of Theorem 6, in this section we
give some characterizations for a subset K of H to be relatively compact in H
(resp. in H).
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Theorem 8 Let K ⊂ H. The following assertions are equivalent.

(i) K is relatively compact in H.

(ii) The primitives of K are equicontinuous.

(iii) Each sequence (hn) in K contains a subsequence whose primitives are
equicontinuous.

(iv) Each sequence (hn) in K contains a subsequence whose primitives are
uniformly convergent in [a, b].

(v) Each sequence (hn) in K contains a subsequence whose primitives are
equicontinuous and uniformly convergent in [a, b].

Proof. Since Φ is an isometry, K is relatively compact in H if and only
if Φ(K) is relatively compact in C[a, b]. Moreover, by the compactness of
[a, b], any equicontinuous family of primitives is necessarily uniformly bounded.
With this observation the theorem is immediate from Arzela-Ascoli’s theorem.
(See [6].) �

To characterize relatively compact sets in H we need the following defini-
tions.

Definition 9 A sequence (Fn) in C[a, b] is called asymptotically-AC∗ on a set
E ⊂ [a, b] if, for each ε > 0, there exists a constant η > 0 such that

limn

s∑
i=1

ω(Fn, [x
′
i, x
′′
i ]) < ε,

for each partition {[x′i, x′′i ]; i = 1, 2, . . . , s} in [a, b] with x′i, x
′′
i ∈ E and with∑s

i=1 |x′i − x′′i | < η.

Definition 10 A sequence (Fn) in C[a, b] is called asymptotically-ACG∗ on
[a, b] if [a, b] = ∪kEk, where (Ek) is a sequence of closed sets, and the sequence
(Fn) is asymptotically-AC∗ on each Ek.

Theorem 11 Let K be a subset of H. Then the following are equivalent:

(i) K is relatively compact in H (or equivalently, K is relatively compact in
H and K ⊂ H).

(ii) Given a sequence (hn) in K, there exists a subsequence (hnk
) of (hn) such

that the primitives of (hnk
) converge uniformly to a function F which is

ACG∗ on [a, b].

(iii) Given a sequence (hn) in K, there exists a subsequence (hnk
) of (hn) such

that the primitives of (hnk
) are equicontinuous and asymptotically-ACG∗.
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Proof. Since Φ is an isometry and Φ(h) is ACG∗ if and only if h ∈ H, the
equivalence of (i) and (ii) holds.

(i) ⇒ (iii) Let (hn) be a sequence in K. By (i) and Theorem 8(v) we
can choose a subsequence (hnk

) of (hn) such that their primitives (Fnk
) are

equicontinuous and uniformly convergent to a continuous function F . Then
F (a) = 0. If h = Φ−1(F ), then hnk

→ h and hence by (i), h ∈ H. Con-
sequently, F is ACG∗. Therefore there exists a sequence of closed sets (Xl)
such that [a, b] = ∪∞l=1Xl and F is AC∗ on each Xl. Thus, given l ∈ N
and ε > 0, there exists a constant η > 0 such that

∑s
i=1 ω(F, [x′i, x

′′
i ]) < ε

3 ,
for every partition {[x′i, x′′i ]; i = 1, 2, . . . , s} in [a, b] with x′i, x

′′
i ∈ Xl and with∑s

i=1 |x′i−x′′i | < η. Now, choose ko such that ||Fnk
−F ||∞ < ε

3s for nk ≥ nko .
Then, for such nk and for xi, yi ∈ [x′i, x

′′
i ] we have

s∑
i=1

|Fnk
(xi)− Fnk

(yi)| ≤ 2

s∑
1

||Fnk
− F ||∞ +

s∑
1

|F (xi)− F (yi)|

<
2

3
ε+

s∑
1

ω(F, [x′i, x
′′
i ]) < ε.

Consequently,
∑s
i=1 ω(Fnk

, [x′i, x
′′
i ]) < ε for all nk ≥ nko . Therefore, the se-

quence (Fnk
) is asymptotically-ACG∗ and hence (iii) holds.

(iii) ⇒ (i) By Theorem 8, (iii) implies that K is relatively compact in H.
To show that K is relatively compact in H, it suffices to show that the limit
of any convergent sequence in K belongs to H. So let (hn) be a sequence
in K such that hn → h ∈ H. Then by (iii) and by Theorem 8(v) there is a
subsequence (gk) of (hn) such that the primitives Fk of gk satisfy the following
conditions.
• (Fk) converges uniformly to a continuous function F in [a, b].
• There exists a sequence of closed sets (Xι) such that [a, b] = ∪∞ι=1Xι and

such that, given ε > 0 and l ∈ N, there exists η > 0 such that

limk

s∑
i=1

ω(Fk, [x
′
i, x
′′
i ]) <

1

3
ε (3)

for every partition {[x′i, x′′i ], i = 1, 2, . . . , s} with {x′i, x′′i } ⊂ Xl for each i and
with

∑s
i=1 |x′i−x′′i | < η. Now choose ko such that ||F −Fk||∞ < ε

3s for k ≥ ko.
Then, for such k and for xi, yi ∈ [x′i, x

′′
i ], we have

|F (xi)− F (yi)| ≤ 2||F − Fk||∞ + |Fk(xi)− Fk(yi)|

<
2

3

ε

s
+ ω(Fk, [x

′
i, x
′′
i ]),
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so that

ω(F, [x′i, x
′′
i ]) ≤ 2

3

ε

s
+ ω(Fk, [x

′
i, x
′′
i ]), i = 1, 2, . . . , s. (4)

Then by (3) and (4) it follows that
∑s
i=1 ω(F, [x′i, x

′′
i ]) < ε and hence F is

ACG∗. Therefore h ∈ H and hence (i) holds. �

4 Relatively Weakly Compact Subsets of H and H

As an application of the results of §1, we give some characterizations of rel-
atively weakly compact sets in H and H. Some of these results have been
proved in [3] by a direct argument. We need the following extension of Corol-
lary IV.6.4 of [5].

Theorem 12 A sequence (Fn) in Ω is weakly convergent to F ∈ Ω if and only
if (Fn) is uniformly bounded and Fn → F pointwise in [a, b]. Consequently,
a sequence (hn) in H is weakly convergent to h ∈ H if and only if (hn) is
bounded and the primitives of (hn) converge pointwise to that of h.

Proof. By the Hahn-Banach theorem and the Riesz representation theorem,
each x∗ ∈ Ω∗ is the restriction of a (regular) Borel measure µ so that

x∗(F ) =

∫ b

a

F dµ , F ∈ Ω.

Then, the Lebesgue dominated convergence theorem and the fact that the
norm closed subspace Ω is also weakly closed in C[a, b] imply that the condi-
tions are sufficient for (Fn) to converge to F weakly. Moreover, the mapping
Tx : C[a, b] → R given by Tx(F ) = F (x) is a bounded linear functional. If
Fn → F weakly in Ω, then by the uniform boundedness principle (Fn) is uni-
formly bounded as Ω∗ is a Banach space. Moreover, for each x ∈ [a, b], Tx |Ω
belongs to Ω∗ and hence Fn(x)→ F (x) for each x ∈ [a, b].

The second part follows immediately from the first, as Φ is an isometric
isomorphism from H onto Ω so that Φ is a linear homeomorphism with respect
to the weak topologies. �

Corollary 13 If K is relatively compact in H, then all sequential weak limits
of K belong to H. Consequently, if K is relatively compact in H and relatively
weakly compact in H, then K is relatively weakly compact in H itself.

Proof. Let (hn) be a sequence in K and suppose that hn → h ∈ H weakly.
By Theorem 11 there exists a subsequence (gk) of (hn) such that their primi-
tives (Fk) converge uniformly to a function F ∈ C[a, b] such that F is ACG∗.
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On the other hand, as hn → h weakly, the subsequence (gk) also converges to h
weakly and consequently, by Theorem 12 Fk → G pointwise in [a, b], where G
is the primitive of h. Thus it follows that G = F and hence h = Φ−1(G) ∈ H.
Therefore the first part holds.

Since each element in the weak closure of a relatively weakly compact set S
in a Banach space X is the weak limit of a sequence from S (See p. 45 of [4].),
the second part is immediate from the first. �

Theorem 14 Let K be a subset of H. Then the following assertions are
equivalent.

(i) K is relatively weakly compact in H.

(ii) Φ(K) is relatively weakly compact in C[a, b].
(iii) Φ(K) is relatively weakly compact in Ω.

(iv) K is bounded and each sequence (hn) in K contains a subsequence (hnk
)

such that their primitives are equicontinuous on a dense subset of [a, b]
and are asymptotically continuous on [a, b].

(v) K is bounded and each sequence (hn) in K contains a subsequence (hnk
)

such that their primitives converge pointwise to a continuous function.

Proof. Since Ω is a closed linear subspace of C[a, b], by the Hahn-Banach
theorem Ω is weakly closed and hence (ii) and (iii) are equivalent.

(i) and (iii) are equivalent as Φ is a linear homeomorphism for the weak
topologies. (See the proof of Theorem 12.)

(i) and (iv) are equivalent by the equivalence of (i) and (ii), by Theorem 5
and by the Eberlein-Šmulian theorem. Finally, (iv) is equivalent to (v) by
Theorem 4, since any continuous function on [a, b] is uniformly continuous. �

Remark 1 The equivalence of (i) and (iv) has already been established directly
in Theorem 11 of [3].

Theorem 15 Let K be a subset of H. Then the following assertions are
equivalent.

(i) K is relatively weakly compact in H and K
weak ⊂ H.

(ii) K is bounded and each sequence (hn) in K contains a subsequence (hnk
)

such that their primitives are equicontinuous on a dense subset of [a, b]
and are asymptotically-ACG∗ on [a, b] 2.

2The property asymptotically-ACG∗ implies the property asymptotically-ACG∗. See [3]
for details.
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(iii) K is bounded and each sequence (hn) in K contains a subsequence (hnk
)

such that their primitives converge pointwise to a continuous function,
which is ACG∗ on [a, b].

Proof. (i) and (ii) are equivalent by Theorem 16 of [3]. Now suppose (i) holds
and let (hn) be a sequence in K. Then by the Eberlein-Šmulian theorem there
exists a subsequence (hnk

) of (hn) weakly convergent to some h ∈ H. Since

K
weak ⊂ H, it follows that h ∈ H, so that Φ(h) is ACG∗. Then (iii) holds by

Theorem 12.
Conversely, let (iii) hold. Then by Theorem 14, K is relatively weakly

compact in H. Now, let h ∈ K
weak

. Then there exists a sequence (hn) in
K such that hn → h weakly (See p. 45 of [4].) and consequently, by the hy-
pothesis (iii) there exists a subsequence (hnk

) of (hn) such that the primitives
Fnk

of hnk
converge pointwise to some function F which is continuous and

ACG∗ on [a, b]. Then by Theorem 12, it follows that (hnk
) converges weakly

to Φ−1(F ) ∈ H and hence h ∈ H. Thus (i) holds. �
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