Benedetto Bongiorno, Department of Mathematics, University of Palermo, Via Archirafi 34, Palermo, Italy

T. V. Panchapagesan[†] Department of Mathematics, Universidad de Los Andes, Mérida, Venezuela

ON THE ALEXIEWICZ TOPOLOGY OF THE DENJOY SPACE

Abstract

The paper deals with the space of all Denjoy-Perron integrable functions on a fixed interval endowed with the Alexiewicz norm and the completion of this space. The relatively weakly compact subsets of each space are characterized.

Let H be the space of all Denjoy-Perron integrable functions on [a, b]. If H is endowed with the Alexiewicz norm

$$\|f\|_{H} = \sup_{x} \left| \int_{a}^{x} f(t) dt \right|,$$

then it is called the *Denjoy space* of [a, b].

The Banach dual of H is isomorphic to the space BV of all functions of bounded variation on [a, b]. (See [2].) and the completion \mathcal{H} of H is isomorphic to the space of all distributions each of which is the distributional derivative of a continuous function. (See [3] or Theorem 6(i) below.)

A characterization of relatively weakly compact subsets of H and \mathcal{H} is given in [3]. The aim of the present paper is to complete the study begun in [3] and obtain several new characterizations of these sets.

Key Words: Denjoy integral, relatively compact set, relatively weakly compact set Mathematical Reviews subject classification: Primary: 26A39. Secondary: 54C35, 54D30

Received by the editors July 21, 1995

^{*}This work was supported by C.N.R. and M.U.R.S.T. of Italy

[†]This work was supported by by the C.D.C.H.T. project C-586 of the Universidad de los Andes, Mérida, Venezuela and by the international cooperation project between CONICIT-Venezuela and C.N.R. Italy

1 Relatively Weakly Compact Subsets of C(S)

In this section we obtain a characterization of relatively weakly compact subsets of $\mathcal{C}(S)$, the Banach space of all real valued continuous functions on a compact metric space S. To this end we first prove the following result.

Theorem 1 Let (X, d) and (Y, d') be metric spaces and suppose that (X, d) is complete. Given a sequence $f_n : X \to Y$, n = 1, 2, ..., of continuous functions, converging pointwise on X to some function f, the following assertions hold.

- (i) (f_n) is equicontinuous on a set D dense in X.
- (ii) If (f_n) is equicontinuous on X, then f is uniformly continuous in X.
- (iii) If X is compact and (f_n) is equicontinuous on X, then $f_n \to f$ uniformly.

The proof is based on the following lemma.

Lemma 2 Let X, Y and (f_n) satisfy the conditions of Theorem 1. Then given a closed ball $\overline{B}(x_o, r) = \{x \in X : d(x, x_o) \leq r\}$ in X and given $\varepsilon > 0$, there exists $w_o \in X$ and $0 < \delta < 2^{-1}r$ such that $\overline{B}(w_o, \delta) \subset B(x_o, r)$ and $d'(f_n(x), f_n(w_o)) < \varepsilon$ for each $x \in \overline{B}(w_o, \delta)$ and for each n.

PROOF. Let 0 < r' < r. Consider the closed sets

$$X_n = \left\{ x \in \overline{B}(x_o, r') : d'(f_h(x), f_k(x)) \le \frac{\varepsilon}{3}, \text{ for each } h, k \ge n \right\}.$$

It is clear that $\bigcup_{n=1}^{\infty} X_n = \overline{B}(x_o, r')$ and hence by Baire's theorem, there exists n_o such that X_{n_o} contains a closed ball $\overline{B}(w_o, \eta)$. Let $k > n_o$. Since the functions $f_n, n = 1, 2, \ldots, k$, are continuous, there exists $0 < \delta < \min(\eta, 2^{-1}r)$ such that

$$d'(f_n(x), f_n(w_o)) < \frac{\varepsilon}{3}$$
, for each $x \in \overline{B}(w_o, \delta)$ and for $n = 1, 2, \dots, k$.

If n > k and $x \in \overline{B}(w_o, \delta)$, then $x \in \overline{B}(w_o, \eta)$ and hence from the definition of X_{n_o} we have

$$d'(f_n(x), f_n(w_o)) \le d'(f_n(x), f_k(x)) + d'(f_k(x), f_k(w_o)) + d'(f_k(w_o), f_n(w_o)) < \varepsilon.$$

PROOF OF THEOREM 1. (i) Let $U = B(x_o, r)$ be an arbitrary ball in X. Then by Lemma 2 we can find a decreasing sequence $\overline{B}(w_n, r_n)$ of closed balls with $2r_n < r_{n-1}, n = 1, 2, \ldots$, where $0 < r_o < r$, such that

$$d'(f_k(x), f_k(w_n)) < \frac{1}{n}$$
, for all $k \in \mathbb{N}$ and for all $x \in \overline{B}(w_n, r_n)$.

Since X is complete, by Cantor's theorem there exists $w_o \in X$ such that

$$\bigcap_{n=1}^{\infty} \overline{B}(w_n, r_n) = \{w_o\}$$

Given $\varepsilon > 0$, choose n_0 such that $2 < \varepsilon n_0$. Since

$$\{\omega_0\} = \bigcap_{n=1}^{\infty} \overline{B}(\omega_n, r_n) \supset \bigcap_{n=1}^{\infty} B(\omega_n, r_n) \supset \bigcap_{n=1}^{\infty} \overline{B}(\omega_{n+1}, r_{n+1}) = \{\omega_0\},\$$

it follows that $\{\omega_0\} = \bigcap_{n=1}^{\infty} B(\omega_n, r_n)$. Then, for $x \in B(\omega_{n_0}, r_{n_0})$, we have

$$d'(f_k(x), f_k(w_0)) \le d'(f_k(x), f_k(w_{n_0})) + d'(f_k(w_{n_0}), f_k(w_0))$$

$$< \frac{1}{n_0} + \frac{1}{n_0} < \varepsilon,$$

for k = 1, 2, ... Since $\omega_0 \in B(\omega_{n_0}, r_{n_0})$, there exists $\eta > 0$ such that $B(\omega_0, \eta) \subset B(\omega_{n_0}, r_{n_0})$ and hence the sequence (f_k) is equicontinuous in w_0 . Thus (i) holds.

(ii) Obvious.

(iii) This follows from Lemma 29 in the proof of Ascoli's Theorem on pages 154–155 of [7]. $\hfill \Box$

Definition 3 A sequence $f_n : X \to \mathbb{R}$, n = 1, 2, ..., of continuous functions on a metric space (X, d) is said to be asymptotically continuous on X if, given $\varepsilon > 0$, there exists $\eta > 0$ such that $\overline{\lim}_n |f_n(x') - f_n(x'')| < \varepsilon$ for $x', x'' \in X$ with $d(x', x'') < \eta$.

Theorem 4 Let (X, d) be a separable complete metric space and let $f_n : X \to \mathbb{R}$, n = 1, 2, ..., be a sequence of continuous functions. Then (f_n) has a pointwise convergent subsequence with its limit f uniformly continuous in X if and only if there exists a subsequence (f_{n_k}) of (f_n) such that

- (i) (f_{n_k}) is equicontinuous on a dense set D in X,
- (ii) (f_{n_k}) is asymptotically continuous on X, and
- (iii) $\{f_{n_k}(x): k = 1, 2, \ldots\}$ is bounded for each $x \in X$.

PROOF. Suppose (f_n) has a pointwise convergent subsequence (f_{n_k}) with limit f uniformly continuous in X. Then by Theorem 1(i), (f_{n_k}) is equicontinuous on a dense set D. Moreover, as f is uniformly continuous in X, clearly (ii) holds. (iii) is obvious.

ON THE ALEXIEWICZ TOPOLOGY OF THE DENJOY SPACE

Conversely, suppose there exists a subsequence (f_{n_k}) such that conditions (i), (ii) and (iii) hold. By (i) and (iii) and by the version of Ascoli's theorem on page 155 of [7], there exists a subsequence (g_l) of (f_{n_k}) such that (g_l) converges pointwise in D to a function g continuous on D. Then the hypothesis (ii) implies that g is uniformly continuous in D and hence has a unique uniformly continuous extension to X. Let us denote this extension also by g.

Let $\varepsilon > 0$. By the uniform continuity of g in X, there exists $\eta > 0$ such that

$$|g(x') - g(x'')| < \frac{\varepsilon}{3} \tag{1}$$

for $x', x'' \in X$ with $d(x', x'') < \eta$. Moreover, choosing η sufficiently small, by (ii) there exists $l_o(\varepsilon)$ such that

$$|g_l(x') - g_l(x'')| < \frac{\varepsilon}{3} \quad \text{for } l \ge l_o(\varepsilon) \tag{2}$$

and for $x', x'' \in X$ with $d(x', x'') < \eta$. Now let $x \in X \setminus D$. Since D is dense in X, there exists $y \in D$ such that $d(x, y) < \eta$. Then by (2) and (1) we have

$$\begin{aligned} |g_l(x) - g(x)| &\le |g_l(x) - g_l(y)| + |g_l(y) - g(y)| + |g(y) - g(x)| \\ &< \frac{\varepsilon}{3} + |g_l(y) - g(y)| + \frac{\varepsilon}{3} \end{aligned}$$

for $l \ge l_o(\varepsilon)$. Since $g_l(y) \to g(y)$, we can choose $l_1 > l_o(\varepsilon)$ such that $|g_l(y) - g(y)| < \frac{\varepsilon}{3}$ for $l \ge l_1$. Thus $|g_l(x) - g(x)| < \varepsilon$ for $l \ge l_1$ and hence $g_l(x) \to g(x)$. \Box

As a simple application of the above theorem and the Eberlein-Smulian theorem we can give the following characterization of relatively weakly compact sets in $\mathcal{C}(S)$.

Theorem 5 Let S be a compact metric space. Then a subset K of C(S) is relatively weakly compact if and only if K is bounded and each sequence (f_n) in K has a subsequence (f_{n_k}) which is equicontinuous on a dense set D and asymptotically continuous on S.

PROOF. By the Eberlein-Šmulian theorem, K is relatively weakly compact if and only if each sequence (f_n) in K has a subsequence which converges weakly to an element of $\mathcal{C}(S)$. By Corollary IV.6.4 of [5], a sequence (g_n) in $\mathcal{C}(S)$ converges weakly if and only if it is bounded and converges pointwise to a continuous function in S. Then the present theorem is an immediate consequence of Theorem 4.

2 Distributional Derivatives of Functions in C[a, b]

In this section we show how each $\mathbf{h} \in \mathcal{H}$ can be identified with the distributional derivative D_F of a continuous function $F \in \mathcal{C}[a, b]$. Theorem 6 given below plays a key role in the development of the subsequent sections. All the elements of the Banach space \mathcal{H} will be denoted in boldface.

Let $\Omega = \{F \in \mathcal{C}[a, b] : F(a) = 0\}$. Ω is a Banach space with the sup-norm and the space AC_o of absolutely continuous functions F with F(a) = 0 is dense in Ω . Now for each $h \in H$, let $\Phi_o(h)$ be the Denjoy-Perron primitive of h with $\Phi_0(h)(a) = 0$. Since $\Phi_o(h)$ is an ACG_* function taking value zero in a, Φ_o is a linear isometry from H onto a dense subset of Ω . Then Φ_o has a unique isometric linear extension Φ from \mathcal{H} onto Ω . (See Theorem 6 below.) Given a continuous function F we denote its distributional derivative by D_F and, when F is differentiable, its derivative by F'.

Theorem 6 The following assertions hold.

- (i) $\mathbf{h} \in \mathcal{H}$ if and only if $\mathbf{h} = D_F$ for some $F \in \mathcal{C}[a, b]$.¹
- (ii) For each $\mathbf{h} \in \mathcal{H}$ there exists a unique $F \in \Omega$ such that $\mathbf{h} = D_F$.
- (iii) The mapping Φ : H → Ω given by Φ(h) = F if D_F = h and F ∈ Ω is well defined and is an onto linear isometry extending Φ_o.
 Thus the unique isometric linear extension of Φ_o to H is precisely the map Φ given above.

PROOF. (i) Given $\mathbf{h} \in \mathcal{H}$, let (h_n) be a sequence of Denjoy-Perron integrable functions converging to \mathbf{h} in the Alexiewicz norm. Let $F_n = \Phi_o(h_n)$. Since $||F_n - F_m||_{\infty} = ||h_n - h_m||_H \to 0$, the sequence (F_n) is uniformly convergent to a continuous function F. Let ϕ be an infinitely differentiable function with compact support contained in (a, b). Since $\phi \in BV$, $\phi \in H^* = \mathcal{H}^*$ (the dual of \mathcal{H}). (See [2].) Then, using the integration by parts formula we have

$$\begin{split} \langle \phi, \mathbf{h} \rangle &= \lim_{n} \langle \phi, h_n \rangle = \lim_{n} \int_a^b h_n \phi \, dt = \lim_{n} [\phi F_n]_a^b - \lim_{n} \int_a^b F_n \phi' \, dt \\ &= -\int_a^b F \phi' \, dt = D_F(\phi) \ . \end{split}$$

Thus $\mathbf{h} = D_F$. (See p. 35 of [8].) This shows that each $\mathbf{h} \in \mathcal{H}$ is the distributional derivative D_F of some $F \in \Omega$, as F(a) = 0.

¹This assertion has already been established in [2] and we give it here for the sake of completeness.

Conversely, let $F \in C[a, b]$. There exists a sequence of absolutely continuous functions F_n which converges uniformly to F. Then F_n is the Denjoy-Perron primitive of some $h_n \in H$ for each n. Thus

$$||h_n - h_m||_H = ||F_n - F_m||_{\infty} \to 0 \text{ as } n, m \to \infty$$

and hence there is some $\mathbf{h} \in \mathcal{H}$ such that $h_n \to \mathbf{h}$. Now, for each infinitely differentiable function ϕ with compact support contained in (a, b), we have

$$D_F(\phi) = -\int_a^b F\phi' dt = -\lim_n \int_a^b F_n \phi' dt = \lim_n [F_n \phi]_a^b - \lim_n \int_a^b F_n \phi' dt$$
$$= \lim_n \int_a^b h_n \phi dt = \langle \phi, \mathbf{h} \rangle.$$

Thus $\mathbf{h} = D_F$.

(ii) The existence follows immediately by (i) and the unicity by Theorem 1 on p. 52 of [8].

(iii) Clearly Φ is well defined and linear from \mathcal{H} into Ω . If $F \in \Omega$, taking the Perron-Denjoy primitives F_n in the proof of the converse part of (i) such that $F_n(a) = 0$, it follows that $F = \Phi(\mathbf{h})$ and hence Φ is onto. Now let $\mathbf{h} \in \mathcal{H}$. Then $\Phi(\mathbf{h}) = \lim_n \Phi_o(h_n)$, where $(h_n) \subset H$ and $h_n \to \mathbf{h}$. Hence

$$||\Phi(\mathbf{h})||_{\infty} = \lim_{n} ||\Phi_o(h_n)||_{\infty} = \lim_{n} ||h_n||_H = ||\mathbf{h}||_H.$$

Thus Φ is an isometry. Clearly, $\Phi|_H = \Phi_o$.

The uniqueness of $\Phi(\mathbf{h})$ for $\mathbf{h} \in \mathcal{H}$ justifies the following definition.

Definition 7 For $\mathbf{h} \in \mathcal{H}$, $\Phi(\mathbf{h})$ is called the primitive of \mathbf{h} and we write

$$\Phi(\mathbf{h}) = \int_{a}^{x} \mathbf{h}.$$

As $\Phi_o(h) = \Phi(h)$ for $h \in H$, the primitive and integral are in the sense of Denjoy-Perron if $h \in H$.

3 Relatively Compact Subsets of \mathcal{H} and H

Making use of the isometric isomorphism Φ of Theorem 6, in this section we give some characterizations for a subset K of \mathcal{H} to be relatively compact in \mathcal{H} (resp. in H).

Theorem 8 Let $K \subset \mathcal{H}$. The following assertions are equivalent.

- (i) K is relatively compact in \mathcal{H} .
- (ii) The primitives of K are equicontinuous.
- (iii) Each sequence (h_n) in K contains a subsequence whose primitives are equicontinuous.
- (iv) Each sequence (h_n) in K contains a subsequence whose primitives are uniformly convergent in [a, b].
- (v) Each sequence (h_n) in K contains a subsequence whose primitives are equicontinuous and uniformly convergent in [a, b].

PROOF. Since Φ is an isometry, K is relatively compact in \mathcal{H} if and only if $\Phi(K)$ is relatively compact in $\mathcal{C}[a, b]$. Moreover, by the compactness of [a, b], any equicontinuous family of primitives is necessarily uniformly bounded. With this observation the theorem is immediate from Arzela-Ascoli's theorem. (See [6].)

To characterize relatively compact sets in H we need the following definitions.

Definition 9 A sequence (F_n) in C[a, b] is called asymptotically- AC_* on a set $E \subset [a, b]$ if, for each $\varepsilon > 0$, there exists a constant $\eta > 0$ such that

$$\overline{\lim}_n \sum_{i=1}^s \omega(F_n, [x'_i, x''_i]) < \varepsilon,$$

for each partition $\{[x'_i, x''_i]; i = 1, 2, ..., s\}$ in [a, b] with $x'_i, x''_i \in E$ and with $\sum_{i=1}^s |x'_i - x''_i| < \eta$.

Definition 10 A sequence (F_n) in C[a, b] is called asymptotically- ACG_* on [a, b] if $[a, b] = \bigcup_k E_k$, where (E_k) is a sequence of closed sets, and the sequence (F_n) is asymptotically- AC_* on each E_k .

Theorem 11 Let K be a subset of H. Then the following are equivalent:

- (i) K is relatively compact in H (or equivalently, K is relatively compact in \mathcal{H} and $\overline{K} \subset H$).
- (ii) Given a sequence (h_n) in K, there exists a subsequence (h_{nk}) of (h_n) such that the primitives of (h_{nk}) converge uniformly to a function F which is ACG_{*} on [a, b].
- (iii) Given a sequence (h_n) in K, there exists a subsequence (h_{n_k}) of (h_n) such that the primitives of (h_{n_k}) are equicontinuous and asymptotically- ACG_* .

PROOF. Since Φ is an isometry and $\Phi(h)$ is ACG_* if and only if $h \in H$, the equivalence of (i) and (ii) holds.

(i) \Rightarrow (iii) Let (h_n) be a sequence in K. By (i) and Theorem 8(v) we can choose a subsequence (h_{n_k}) of (h_n) such that their primitives (F_{n_k}) are equicontinuous and uniformly convergent to a continuous function F. Then F(a) = 0. If $\mathbf{h} = \Phi^{-1}(F)$, then $h_{n_k} \rightarrow \mathbf{h}$ and hence by (i), $\mathbf{h} \in H$. Consequently, F is ACG_* . Therefore there exists a sequence of closed sets (X_l) such that $[a,b] = \bigcup_{l=1}^{\infty} X_l$ and F is AC_* on each X_l . Thus, given $l \in \mathbf{N}$ and $\varepsilon > 0$, there exists a constant $\eta > 0$ such that $\sum_{i=1}^{s} \omega(F, [x'_i, x''_i]) < \frac{\varepsilon}{3}$, for every partition $\{[x'_i, x''_i]; i = 1, 2, \ldots, s\}$ in [a, b] with $x'_i, x''_i \in X_l$ and with $\sum_{i=1}^{s} |x'_i - x''_i| < \eta$. Now, choose k_o such that $||F_{n_k} - F||_{\infty} < \frac{\varepsilon}{3s}$ for $n_k \ge n_{k_o}$. Then, for such n_k and for $x_i, y_i \in [x'_i, x''_i]$ we have

$$\sum_{i=1}^{s} |F_{n_k}(x_i) - F_{n_k}(y_i)| \le 2 \sum_{i=1}^{s} ||F_{n_k} - F||_{\infty} + \sum_{i=1}^{s} |F(x_i) - F(y_i)|$$
$$< \frac{2}{3}\varepsilon + \sum_{i=1}^{s} \omega(F, [x'_i, x''_i]) < \varepsilon.$$

Consequently, $\sum_{i=1}^{s} \omega(F_{n_k}, [x'_i, x''_i]) < \varepsilon$ for all $n_k \ge n_{k_o}$. Therefore, the sequence (F_{n_k}) is asymptotically- ACG_* and hence (iii) holds.

(iii) \Rightarrow (i) By Theorem 8, (iii) implies that K is relatively compact in \mathcal{H} . To show that K is relatively compact in H, it suffices to show that the limit of any convergent sequence in K belongs to H. So let (h_n) be a sequence in K such that $h_n \rightarrow \mathbf{h} \in \mathcal{H}$. Then by (iii) and by Theorem 8(v) there is a subsequence (g_k) of (h_n) such that the primitives F_k of g_k satisfy the following conditions.

• (F_k) converges uniformly to a continuous function F in [a, b].

• There exists a sequence of closed sets (X_{ι}) such that $[a, b] = \bigcup_{\iota=1}^{\infty} X_{\iota}$ and such that, given $\varepsilon > 0$ and $l \in \mathbf{N}$, there exists $\eta > 0$ such that

$$\overline{\lim}_k \sum_{i=1}^s \omega(F_k, [x'_i, x''_i]) < \frac{1}{3}\varepsilon$$
(3)

for every partition $\{[x'_i, x''_i], i = 1, 2, ..., s\}$ with $\{x'_i, x''_i\} \subset X_l$ for each i and with $\sum_{i=1}^s |x'_i - x''_i| < \eta$. Now choose k_o such that $||F - F_k||_{\infty} < \frac{\varepsilon}{3s}$ for $k \ge k_o$. Then, for such k and for $x_i, y_i \in [x'_i, x''_i]$, we have

$$|F(x_i) - F(y_i)| \le 2||F - F_k||_{\infty} + |F_k(x_i) - F_k(y_i)| < \frac{2}{3}\frac{\varepsilon}{s} + \omega(F_k, [x'_i, x''_i]),$$

so that

u

$$\omega(F, [x'_i, x''_i]) \le \frac{2}{3} \frac{\varepsilon}{s} + \omega(F_k, [x'_i, x''_i]), \quad i = 1, 2, \dots, s.$$
(4)

Then by (3) and (4) it follows that $\sum_{i=1}^{s} \omega(F, [x'_i, x''_i]) < \varepsilon$ and hence F is ACG_* . Therefore $\mathbf{h} \in H$ and hence (i) holds.

4 Relatively Weakly Compact Subsets of \mathcal{H} and H

As an application of the results of §1, we give some characterizations of relatively weakly compact sets in \mathcal{H} and H. Some of these results have been proved in [3] by a direct argument. We need the following extension of Corollary IV.6.4 of [5].

Theorem 12 A sequence (F_n) in Ω is weakly convergent to $F \in \Omega$ if and only if (F_n) is uniformly bounded and $F_n \to F$ pointwise in [a, b]. Consequently, a sequence (\mathbf{h}_n) in \mathcal{H} is weakly convergent to $\mathbf{h} \in \mathcal{H}$ if and only if (\mathbf{h}_n) is bounded and the primitives of (\mathbf{h}_n) converge pointwise to that of \mathbf{h} .

PROOF. By the Hahn-Banach theorem and the Riesz representation theorem, each $x^* \in \Omega^*$ is the restriction of a (regular) Borel measure μ so that

$$x^*(F) = \int_a^b F \, d\mu \,, \ \ F \in \Omega.$$

Then, the Lebesgue dominated convergence theorem and the fact that the norm closed subspace Ω is also weakly closed in $\mathcal{C}[a, b]$ imply that the conditions are sufficient for (F_n) to converge to F weakly. Moreover, the mapping $T_x : \mathcal{C}[a, b] \to \mathbb{R}$ given by $T_x(F) = F(x)$ is a bounded linear functional. If $F_n \to F$ weakly in Ω , then by the uniform boundedness principle (F_n) is uniformly bounded as Ω^* is a Banach space. Moreover, for each $x \in [a, b], T_x \mid_{\Omega}$ belongs to Ω^* and hence $F_n(x) \to F(x)$ for each $x \in [a, b]$.

The second part follows immediately from the first, as Φ is an isometric isomorphism from \mathcal{H} onto Ω so that Φ is a linear homeomorphism with respect to the weak topologies.

Corollary 13 If K is relatively compact in H, then all sequential weak limits of K belong to H. Consequently, if K is relatively compact in H and relatively weakly compact in \mathcal{H} , then K is relatively weakly compact in H itself.

PROOF. Let (h_n) be a sequence in K and suppose that $h_n \to \mathbf{h} \in \mathcal{H}$ weakly. By Theorem 11 there exists a subsequence (g_k) of (h_n) such that their primitives (F_k) converge uniformly to a function $F \in \mathcal{C}[a, b]$ such that F is ACG_* .

On the other hand, as $h_n \to \mathbf{h}$ weakly, the subsequence (g_k) also converges to \mathbf{h} weakly and consequently, by Theorem 12 $F_k \to G$ pointwise in [a, b], where G is the primitive of \mathbf{h} . Thus it follows that G = F and hence $\mathbf{h} = \Phi^{-1}(G) \in H$. Therefore the first part holds.

Since each element in the weak closure of a relatively weakly compact set S in a Banach space X is the weak limit of a sequence from S (See p. 45 of [4].), the second part is immediate from the first.

Theorem 14 Let K be a subset of \mathcal{H} . Then the following assertions are equivalent.

- (i) K is relatively weakly compact in \mathcal{H} .
- (ii) $\Phi(K)$ is relatively weakly compact in $\mathcal{C}[a, b]$.
- (iii) $\Phi(K)$ is relatively weakly compact in Ω .
- (iv) K is bounded and each sequence (\mathbf{h}_n) in K contains a subsequence (\mathbf{h}_{n_k}) such that their primitives are equicontinuous on a dense subset of [a, b]and are asymptotically continuous on [a, b].
- (v) K is bounded and each sequence (\mathbf{h}_n) in K contains a subsequence (\mathbf{h}_{n_k}) such that their primitives converge pointwise to a continuous function.

PROOF. Since Ω is a closed linear subspace of $\mathcal{C}[a, b]$, by the Hahn-Banach theorem Ω is weakly closed and hence (ii) and (iii) are equivalent.

(i) and (iii) are equivalent as Φ is a linear homeomorphism for the weak topologies. (See the proof of Theorem 12.)

(i) and (iv) are equivalent by the equivalence of (i) and (ii), by Theorem 5 and by the Eberlein-Šmulian theorem. Finally, (iv) is equivalent to (v) by Theorem 4, since any continuous function on [a, b] is uniformly continuous.

Remark 1 The equivalence of (i) and (iv) has already been established directly in Theorem 11 of [3].

Theorem 15 Let K be a subset of \mathcal{H} . Then the following assertions are equivalent.

- (i) K is relatively weakly compact in \mathcal{H} and $\overline{K}^{weak} \subset H$.
- (ii) K is bounded and each sequence (h_n) in K contains a subsequence (h_{nk}) such that their primitives are equicontinuous on a dense subset of [a, b] and are asymptotically-ACG* on [a, b]².

²The property asymptotically-ACG* implies the property asymptotically-ACG*. See [3] for details.

(iii) K is bounded and each sequence (\mathbf{h}_n) in K contains a subsequence (\mathbf{h}_{n_k}) such that their primitives converge pointwise to a continuous function, which is ACG_* on [a, b].

PROOF. (i) and (ii) are equivalent by Theorem 16 of [3]. Now suppose (i) holds and let (\mathbf{h}_n) be a sequence in K. Then by the Eberlein-Šmulian theorem there exists a subsequence (\mathbf{h}_{n_k}) of (\mathbf{h}_n) weakly convergent to some $\mathbf{h} \in \mathcal{H}$. Since $\overline{K}^{weak} \subset H$, it follows that $\mathbf{h} \in H$, so that $\Phi(\mathbf{h})$ is ACG_* . Then (iii) holds by Theorem 12.

Conversely, let (iii) hold. Then by Theorem 14, K is relatively weakly compact in \mathcal{H} . Now, let $\mathbf{h} \in \overline{K}^{weak}$. Then there exists a sequence (\mathbf{h}_n) in K such that $\mathbf{h}_n \to \mathbf{h}$ weakly (See p. 45 of [4].) and consequently, by the hypothesis (iii) there exists a subsequence (\mathbf{h}_{n_k}) of (\mathbf{h}_n) such that the primitives F_{n_k} of \mathbf{h}_{n_k} converge pointwise to some function F which is continuous and ACG_* on [a, b]. Then by Theorem 12, it follows that (h_{n_k}) converges weakly to $\Phi^{-1}(F) \in H$ and hence $\mathbf{h} \in H$. Thus (i) holds. \Box

References

- J. B. Brown, Totally discontinuous connectivity functions, Coll. Math., 23 (1971), 53–60.
- [2] A. Alexiewicz, Linear functionals on Denjoy integrable functions, Coll. Math., 1 (1948), 289–293.
- B. Bongiorno, Relatively weakly compact sets in the Denjoy space, J. Math. Study, 27 (1994), 37–43.
- [4] J. Diestel, Uniform integrability: an introduction, Rend. Ist. Mat. Univ. Trieste, 23 (1991), 41–80.
- [5] N. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, 1958.
- [6] I. P. Natanson, *Theory of functions of a real variable*, Vol. 1, F. Ungar Publ. New York, 1964.
- [7] H. L. Royden, Real Analysis, McMillan, New York, 1963.
- [8] L. Schwartz, *Théorie des distributions*, Hermann, Paris, 1966.