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EXTENDING ISOMETRICALLY
INVARIANT MEASURES ON Rn — A
SOLUTION TO CIESIELSKI’S QUERY

Abstract

We prove that if m : M → [0,+∞] is an isometrically invariant σ-
finite countably additive measure on Rn, then there exists a countably
additive isometrically invariant extension m′ : M′ → [0,+∞] of m such
that the canonical embedding e : M/m → M′/m′ of measure algebras
defined by e([A]m) = [A]m′ is not surjective. This answers a question of
Ciesielski [2].

Introduction

Given a group G of isometries of Rn and a G-invariant σ-finite σ-additive
measure m : M → [0,+∞] on Rn, does there exist a proper G-invariant ex-
tension of m i.e., a G-invariant σ-additive measure m′ : M′ → [0,+∞] such
that M ⊆ M′, M′ 6= M and m′|M = m? This question was first posed by
Sierpiński (for the case when G = Isom (Rn) is the group of all isometries of
Rn and m is an isometrically invariant extension of the Lebesgue measure) and
then studied by several authors. (See [1] for historical details.) Sierpiński’s
problem was finally solved by Ciesielski and Pelc [3] and subsequent investiga-
tions by Ciesielski [1], Krawczyk and Zakrzewski [7, 10]) showed, in particular,
that for any G, a proper G-invariant extension of m exists in either of the fol-
lowing cases.
• m is a G-invariant extension of the Lebesgue measure andM 6= P(Rn). (See

[7, Theorem 2.10].)
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• m does not vanish on the set of all points with uncountable G-orbits. (See
[10, Theorem 2.2].)

If we move from measure spaces to the respective measure algebras, then we
see that extending the measure m to m′ does not necessarily mean extending
the associated measure algebra. More precisely, it may happen that

∀Y ∈M′ ∃X ∈M m′(Y4X) = 0.

This means that the canonical embedding e : M/m → M′/m′ of measure
algebras defined by e([A]m) = [A]m′ is an isomorphism.

After realizing that the methods by which Sierpiński’s problem was solved
led exactly to this type of extensions, Ciesielski [2] posed the problem, whether
one could always extend an isometrically invariant measure so that the measure
algebra gets extended too. It was known that a technique of Hulanicki [5]
easily gives the positive answer under the additional asumption that there is
no real-valued measurable cardinal less than or equal to the cardinality of the
continuum and it later turned out that in the case when n = 1 the positive
answer follows from a construction due to Kharazǐshvili [4].

The aim of this note is to give a strong affirmative answer to Ciesielski’s
question. It is proved that for any G, if m has a proper G-invariant extension,
then it also has one as required.

The Method

All measures considered here are assumed to be σ-additive, extended real-
valued, vanishing on singletons and σ-finite. Suppose that G is a subgroup of
the group Isom(Rn) of all isometries of Rn and that m : M→ [0,+∞] is a G-
invariant measure on Rn. Call a set A ⊆ Rn almost invariant if m(A4gA) = 0
for every g ∈ G. The following two ways of obtaining a G-invariant extension
m′ : M′ → [0,+∞] of m are well known.

(I) Find a G-invariant σ-ideal I 6⊆ M of subsets of Rn consisting of sets of
m inner measure zero and let

M′ =
{

(M ∪N1) \N2 : M ∈M and N1, N2 ∈ I
}

m′((M ∪N1) \N2) =m(M).

(See [9].)
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(II) Find an almost invariant set A /∈M and let

M′ ={(M1 ∩A) ∪ (M2 \A) : M1, M2 ∈M},

m′
(
(M1 ∩A) ∪ (M2 \A)

)
=

1

2
·
[
m∗(M1 ∩A) +m∗(M2 \A)

+m∗(M1 ∩A) +m∗(M2 \A)
]
,

where m∗ and m∗ stand for the inner and outer measure for m, respec-
tively. (See [8].)

Call m′ a weak extension of m if ∀Y ∈ M′ ∃X ∈ M m′(Y4X) = 0. Other-
wise call it strong. Clearly, the first construction produces a weak extension,
whereas the second procedure gives a strong one.

Our idea is to perform both of these methods in two steps. The first (weak)
one will supply enough almost invariant sets so that the second (strong) one
may be performed. More precisely, we shall use the following lemma.

Lemma 1 Let m be a G-invariant measure on Rn and suppose that {Qα : α <
ω1} is a partition of Rn such that

(i) the minimal G-invariant σ-ideal I of subsets of Rn containing the family
{Qα : α < ω1} consists of sets of m inner measure zero,

(ii ) ∀ g ∈ G ∃β < ω1 ∀α > β gQα = Qα.

Then m has a strong G-invariant extension.

Proof. First extend m to m′ such that m′(N) = 0 for every N ∈ I. Then
use a classical argument of Hulanicki [5]. Namely, for every T ⊆ ω1, the set
AT =

⋃
α∈T Qα is m′-almost-invariant, since if g ∈ G and gQα = Qα for

all α > β, then AT4gAT ⊆
⋃
α≤β Qα ∪ g[

⋃
α≤β Qα] ∈ I. It follows that

AT /∈ dom (m′) for a certain T ⊆ ω1, since otherwise it is easy to define a
measure on P(ω1), which is impossible. (See e.g. [6, Lemma 27.7].) �

The following fact is a convenient tool for checking condition (i) of the
above lemma.

Lemma 2 (Kharazǐshvili, see [10, Lemma 1.5]) Let m be a G-invariant mea-
sure on Rn and let I be the minimal G-invariant σ-ideal containing a family
Q of subsets of Rn. If for every sequence 〈Qk : k < ω〉 of elements from Q and
arbitrary sequence 〈gk : k < ω〉 of elements of G there is a sequence 〈fi : i < ω〉
of elements of G such that

m

(⋂
i<ω

fi

[⋃
k<ω

gkQk

])
= 0,
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then I consists of sets of m inner measure zero.

The Results

The following theorem is a direct answer to Ciesielski’s question.

Theorem 3 Every isometrically invariant measure on Rn has a strong iso-
metrically invariant extension.

Proof. Represent R as the union of a strictly increasing sequence 〈Lα : α <
ω1〉 of its subfields. For each α < ω1 let Xα = Lnα, Qα = Xα+1 \Xα and let
Gα consist of all isometries of the form gx = Ax+ b, where A is a matrix with
all entries in Lα and b ∈ Lnα. It is enough to check that {Qα : α < ω1} is a
partition of Rn which satisfies the hypotheses of Lemma 1.

To prove (i), we will use Lemma 2. If gk ∈ Isom (Rn) and αk < ω1

for each k < ω, then there is α < ω1 such that
⋃
k<ω gkQαk ⊆ Xα. But

(x+Xα)∩Xα = ∅, whenever x /∈ Xα. To prove (ii), note that if g ∈ Gβ , then
gQα = Qα for all α > β. �

With the help of ideas from [1] and [10] the above result may be generalized
as follows. Recall that a measure is complete, if it measures every subset of an
arbitrary set of measure zero. (Obviously, it assigns value zero to such a set.)
Note that if m is a measure on Rn, invariant with respect to a given group G
of isometries, then its measure completion m̄, i.e., the minimal extension of m
to a complete measure, is G-invariant too. It is also easy to see that if there
does not exist a proper G-invariant extension of m̄, then m does not have any
strong G-invariant extensions. It turns out that the converse is also true, as
the next theorem shows. In its proof, we will use the following two lemmas.

Lemma 4 Let m : M −→ [0,∞] be a G-invariant measure on Rn and let
Y ∈ M be a G-invariant subset of Rn of positive measure. Consider a G-
invariant measure mY : M→ [0,∞] defined by mY (A) = m(A ∩ Y ) for every
A ∈M. If mY has a strong G-invariant extension, then so does m.

Proof. If m′Y : M′Y → [0,∞] is a strong G-invariant extension of mY , then
we may define a strong G-invariant extension m′ of m on the σ-algebraM′ =
{A ∈M′Y : A ∩ LG ∈M} by m′(A) = m′1(A ∩ Y ) +m(A \ Y ) for A ∈M′. �

The next lemma may be obtained by an easy refinement of the proof of
Ciesielski’s Lemma 3.2 from [1].

Lemma 5 Let m : M → [0,∞] be a G-invariant measure on Rn and let H
be an uncountable subset of G. Then R is the union of a strictly increasing
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sequence 〈Lα : 0 < α < ω1〉 of its subfields such that if L0 = ∅ and Qα =
Lnα+1 \ Lnα for every α < ω1, then {Qα : α < ω1} is a partition of Rn which
satisfies the following condition.

If gk ∈ G and αk < ω1 for each k < ω, then there are distinct h1, h2 ∈ H
such that

h−11

[⋃
k<ω

gkQαk

]
∩ h−12

[⋃
k<ω

gkQαk

]
⊆ {x ∈ Rn : h1(x) = h2(x)}.

Theorem 6 Let G is a group of isometries of Rn and m : M→ [0,∞] be a G-
invariant measure on Rn. If the completion m̄ of m has a proper G-invariant
extension, then m has a strong G-invariant extension.

In particular, this happens if the set of all points with uncountable G-orbits
has a positive outer measure.

Proof. This is a refinement of the proof of Theorem 2.2 from [10].
Since every strong extension of the completion m̄ of m strongly extends m,

we may assume that the measure m itself is complete. Let LG = {x ∈ Rn : Gx
is at most countable} and consider the following three cases.

Case 1. Rn \ LG /∈ M. Then LG /∈ M and, by method II, we are done, since
LG is G-invariant.

Case 2. Rn \ LG ∈M and m(Rn \ LG) = 0.
Note that the set H = {g |LG : g ∈ G} is at most countable. This can be

proved by the following easy argument. (Compare [10, Lemma 2.1].) Take a
finite subset B of LG spanning the affine space generated by LG. Then the
function g|LG 7→ g|B is one-to-one and, since Gb is at most countable for each
b ∈ B, there are at most countably many functions f : B 7→

⋃
b∈B Gb. Now,

if there is a set A ⊆ Rn, such that HA /∈M, then we are done by method II,
since the set HA is G-invariant. So assume that HA ∈ M for every A ⊆ Rn
and let m′ be a proper G-invariant extension of m. Note that for any A ⊆ Rn,
the following implications are true, where the first holds, since H ⊂ G is
countable, and the last one follows from the completeness of m.

m′(A) = 0→ m′(HA) = 0→ m(HA) = 0 =⇒ m(A) = 0.

This implies that every set A ∈ M′ \M witnesses that the measure m′ is a
strong extension of m.

Case 3. Rn \ LG ∈ M and m(Rn \ LG) > 0. Then, by Lemma 4, we assume
without loss of generality that m(LG) = 0.

Now, let p ≤ n be the smallest dimension of an affine subspace of Rn of
positive outer m measure. Notice, that it may also be assumed that
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(A) there exists an affine subspace L0 of dimension p having positive outer
m measure and such that the set {g[L0] : g ∈ G} is at most countable.

First note that to prove (A) it is enough to show that

(B) any measure satisfying the negation of (A) can be weakly extended to
a measure m′ with the property, that every affine subspace of Rn of
dimension ≤ p has m′ measure zero.

Indeed, if (B) holds, then we can extend m at most n− p times to obtain
a weak extension of m satisfying (A).

To see (B) suppose that (A) is false and consider the G-invariant σ-ideal
I generated by the family Q of all affine subspaces L of dimension p. By
method I it is enough to show that I consists of sets of m inner measure zero.
This will be proved by using Lemma 2. So, let 〈Lk : k < ω〉 and 〈gk : k < ω〉 be
arbitrary sequences of elements from Q and G, respectively. For n,m ∈ ω put
Ln,m = gn[Lm] and let K =

⋃
n,m∈ω Ln,m. For every n,m ∈ ω fix fn,m ∈ G

such that f−1n,m[Ln,m] 6= Li,j for all i, j ∈ ω. We have:

K ∩
⋂

n,m∈ω
fn,m[K] ⊆

⋃
n,m,i,j∈ω

(Ln,m ∩ fn,m[Li,j ]).

But Ln,m ∩ fn,m[Li,j ] 6= Ln,m. So, the set Ln,m ∩ fn,m[Li,j ] is either empty or
is an affine subspace of dimension less than p and m(K∩

⋂
n,m∈ω fn,m[K]) = 0.

This finishes the proof of (B) and (A).
Next, define Y =

⋃
g∈G gL0. If Y /∈ M, then we are done by method

II, since Y is G-invariant. So, assume that Y ∈ M. Then m(Y ) > 0. By
Lemma 4 we can also assume that m(Rn \Y ) = 0. Recall that m(LG) = 0 and
that, by (A), the set {g[L0] : g ∈ G} is at most countable. Since m(Y ) > 0, this
implies that L0\LG 6= ∅, i.e., there are points in L0 with uncountable G-orbits.
Consequently, the set {g |L0 : g ∈ G} is uncountable. So fix an uncountable
subset H of G such that h1|L0 6= h2|L0 for any distinct h1, h2 ∈ H and
let {Qα : α < ω1} be a partition from Lemma 5. It suffices to prove that
{Qα : α < ω1} satisfies conditions of Lemma 1.

To check condition (i), use Lemma 2. So let 〈Qk : k < ω〉 and 〈gk : k < ω〉
be arbitrary sequences of elements from Q and G, respectively. Let K =⋃
k<ω gkQk. By the property of 〈Qk : k < ω〉 stated in Lemma 6, there are

distinct h1, h2 ∈ H such that

h−11 [K] ∩ h−12 [K] ∩ L0 ⊆ {x ∈ L0 : h1(x) = h2(x)}.

But h1|L0 6= h2|L0, so the set {x ∈ L0 : h1(x) = h2(x)} is either empty or is
an affine subspace of dimension less than p. Accordingly,

m(h−11 [K] ∩ h−12 [K] ∩ L0) = 0.
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Let 〈Ln : n ∈ λ〉, λ ≤ ω, be a one-to-one enumeration of {g[L0] : g ∈ G}. For
each n ∈ λ let Ln = fn[L0]; it follows that

m((fn ◦ h−11 )[K] ∩ (fn ◦ h−12 )[K] ∩ Ln) = 0.

Consequently,

m∗

( ⋂
k∈λ
i∈{1,2}

(fk ◦ h−1i )[K]

)
=m∗

( ⋂
k∈λ
i∈{1,2}

(fk ◦ h−1i )[K] ∩
⋃
n∈λ

Ln

)

≤
∑
n∈λ

m∗

( ⋂
k∈λ
i∈{1,2}

(fk ◦ h−1i )[K] ∩ Ln

)

≤
∑
n∈λ

m∗
(
(fn ◦ h−11 )[K] ∩ (fn ◦ h−12 )[K] ∩ Ln

)
=0.

Condition (ii) may be established exactly as in the proof of Theorem 3 and
we are done.

Finally, note that the last assertion of the theorem follows from consider-
ations from Case 1 and Case 3. �

The following corollary explains the situation for extensions of the Lebesgue
measure.

Theorem 7 Let G be a group of isometries of Rn and m : M→ [0,+∞] be a
G-invariant complete measure which extends the Lebesgue measure on Rn. If
M 6= P(Rn), then m has a strong G-invariant extension.

Proof. This immediately follows from Theorem 6 and the fact that under
the above assumptions there always exists a proper G-invariant extension of
m. (See [7], Theorem 2.10.) �
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