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POROSITY, NOWHERE DENSE SETS AND
A THEOREM OF DENJOY

Abstract

In the 1940’s, A. Denjoy proved that the typical point of a perfect
nowhere dense set in R is a point of strong porosity for that set. We
prove two stronger versions of this for arbitrary metric spaces. Theorem
3 says that if E is any closed nowhere dense set in a metric space, and h
is any porosity scale function, then the typical point in E is a point at
which E is h-porous. Thus, if the metric space is complete, then ”most”
points of E are points at which E is very thin in the sense of porosity.
Theorem 4 says that if F is closed and h-porous in R, then there exists
a closed nowhere dense set E in R containing F such that F is h-porous
in the subspace E. Therefore, in the sense of h-porosity, no nontrivial
information about the porosity of a closed set in R can be inferred from
its porosity relative to some closed nowhere dense set in R.

1 Introduction

A. Denjoy [3, pp. 195–196] is credited with the following theorem:

Theorem (Denjoy) Let P be a perfect nowhere dense subset of R. Then
the set of points in P at which P is not strongly bilaterally porous is a first
category subset of P .

This theorem has been used recently to show the existence of a porous (in
fact, strongly bilaterally porous) set in R that is not σ-symmetrically porous
(see [4] and [11]). It is also used in 1.4 on p. 27 of [1], in [9], and in [10].

Denjoy’s theorem seems not to have been generally known until P. S. Bullen
called attention to it at the Fifth Summer Symposium in Real Analysis, held
at the University of Missouri-Kansas City in June 1982. The reader is referred
to Bullen’s article [2] for an exposition of Denjoy’s work in connection with
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porosity. The above theorem is stated, but not proved, at the top of p. 90 of
[2]. Proofs can be found on p. 417 of [13], p. 188 of [14], and in [9].

A proof of a slightly weaker result (replace “strongly bilaterally porous”
with “porosity ≥ 1

3”) can be found within the proof of another result on
pp. 117–118 of [6].1 Also, the proof of lemma 1 on pp. 356–357 of [7] shows
the existence of a dense set of points at which the perfect nowhere dense set
has right porosity ≥ 1

2 . Note these papers predate Bullen’s contribution ([7]
was submitted in April 1982). It seems likely other various less definitive forms
of Denjoy’s theorem can be found scattered throughout the literature (besides
real analysis, dynamical systems theory and ergodic theory come to mind).

Examination of these proofs in R show that “perfect nowhere dense” may
be replaced with “nowhere dense”. A proof of this result for nowhere dense
subsets of Rn (with “strongly porous” in place of “strongly bilaterally porous”)
can be found on p. 195 of [5].2 L. Zaj́ıček states on p. 321 of [15] that this
actually holds for any metric space replacing Rn, but to the author’s knowledge
no proof currently appears in the literature. Finally, a stronger version of the
theorem we stated above for R which utilizes the notion of h-porosity (see
below) can be found on p. 200 of B. S. Thomson’s book [14].3

In this paper we prove an h-porous strengthening of Zaj́ıček’s statement
(Theorem 3), as well as a more precise porosity version (Theorem 1) that
will imply this strengthening for σ-compact metric spaces. We also include
some additional remarks and results relating to these issues. For example,
Theorem 4 says that the condition of being nowhere dense relative to some
closed nowhere dense subset of R is no stronger (in the sense of smallness
measured by almost any notion of porosity) than simply being nowhere dense
relative to R.

For more on porosity, see [10], the appendix of [14] or [15]. We warn the
reader, however, that the convention used in [10] regarding primed symbols
β′, h′, etc. is not followed here.

2 Definitions

Throughout this paper, unless otherwise stated, let (X, d) be a metric space,
E ⊆ X, x ∈ X, and H be the collection of continuous4 strictly increasing
functions h(t) : [0,∞) → [0,∞) such that h(0) = 0. The open ball in X of

1In the definition of E∗ on p. 117 of [6], 1
2

should be replaced by 1.
2It is stated in this paper that the proof originally was for graphs of continuous functions

in R2, and it was a referee’s observation that the result continues to hold for any nowhere
dense set in Rn.

3Our formulation of h-porosity differs slightly from what one finds in [14].
4Actually, our theorems hold without the assumption of continuity, including the Borel

classification aspects.
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radius r and center c is denoted by BX(c, r); closure and complementation of
E ⊆ X relative to X are denoted by Ē and Ec, respectively. By d(x,E) we
mean sup{d(x, y) : y ∈ E}.

Definition (h-porosity) We say that E is h-porous in X at x if x /∈ Ē or
there exists a sequence {B(cn, rn)} of open balls lying in Ec such that cn → x
and d(x, cn) < rn + h(rn) for each n. If E is h-porous in X at x for each
x ∈ E, then we will say that E is h-porous in X. Any subset of X which can
be written as a countable union of h-porous in X sets is said to be σ−h-porous
in X. If the ambient space X relative to which these various porosities are
computed is clear from context, we may omit reference to it.

Definition (porosity function) We say that H : E → H is a porosity
function for E in X if, for each e ∈ E, E is H(e)-porous in X at e.

One can view “E is h-porous” (resp., “H is a porosity function for E”)
as a generalization of E being uniformly porous (resp., porous). We note
that our formulation of h-porosity, unlike some formulations used elsewhere,
allows for both stronger and weaker versions of ordinary porosity. Clearly, E
is uniformly porous in the usual sense if and only if E is h-porous for some
linear function h ∈ H, and E is h-porous for some h ∈ H if and only if E has
a constant porosity function. Moreover, if E is porous in the usual sense, then

E is h-porous for each h ∈ H satisfying limt→0
h(t)
t =∞.

It is easy to see that E is nowhere dense in X if and only if E has a
porosity function in X (use first countability of X for the “only if” direction).
Moreover, if X is σ-compact and E is nowhere dense in X, then E is h-porous
in X for some h ∈ H.5 Indeed, E is h-cp in X (see below) for some h ∈ H,
since the closure of any nowhere dense set is nowhere dense. However, this
may fail if X is not σ-compact. The author has constructed a nonseparable
counterexample and, answering a question posed by the author during the
writing of [10], M. Repický [12] has constructed an example in the Hilbert
space `2.6 Consequently, while our Theorem 1 implies our Theorem 3 for
σ-compact metric spaces (e.g. Rn), this is not the case for arbitrary metric
spaces.

Definition (closure porosity) We say that E is h-closure porous (h-cp) in
X if E is h-porous in X at x for each x ∈ X (equivalently, for each x ∈ Ē).
Any subset of X which can be written as a countable union of h-cp in X sets
is said to be σ − h-closure porous (σ − h-cp) in X.

Because a set is h-porous at x if and only if the closure of that set is h-
porous at x, a set is h-cp if and only if it is contained in some closed h-porous

5These results are proved in Chapter 4 of [10].
6Both examples appear in chapter 4 of [10].
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set. Therefore, the collection of σ−h-cp sets is equal to the σ-ideal generated
by the closed h-porous sets (equivalently, the σ-ideal generated by the Fσ
h-porous sets).

One reason for our introduction of closure porosity is due to the fact that,
unlike the case with nowhere dense sets, being a countable union of closed
porous sets is in general a stronger notion of smallness than simply being a
countable union of porous sets. (In this regard, porosity behaves like Lebesgue
measure zero.) There exists in R a porous set that is not σ-cp in R (see [6]
and [8]). In fact, given any h, h′ ∈ H, there exists in R a bilaterally h-porous
set that is not σ-h′-cp (see [10]; the proof uses Thomson’s strengthening of
Denjoy’s theorem).

Another reason for our introduction of closure porosity is that its corre-
sponding σ-ideals are in general much more sensitive to the growth rate of
functions from H than is the case with ordinary porosity. We feel that this
is an important consideration for stating our results as precise as we do. Re-
marks (c) and (g) in [8] imply that given any 0 < β′ < β < ∞, there exists
a closed βt-porous set in R that is not σ − β′t-cp in R. Moreover, results in

chapter 6 of [10] suggest if h, h′ ∈ H with lim inft→0
h(t)
h′(t) > 1, then there

exists a closed h-porous set in R that is not σ − h′-cp in R.

To prevent possible confusion, we point out that “contained in an Fσ σ−h-
porous set” is not in general the same as “σ− h-cp”. (In this regard, porosity
does not behave like Lebesgue measure zero.) Clearly, every σ − h-cp set
is contained in some Fσ σ − h-porous set. However, Zaj́ıček has shown if
0 < β′ < β < ∞, then any σ − βt-porous set (Fσ or not) is a σ − β′t-porous
set (see 2.15 on p. 319, and the remark following 2.24 on p. 321, of [15])7.
Zaj́ıček’s result, along with the examples mentioned in the previous paragraph,
show that (in R, at least) there is a noncommutativity of the conditions (a)
“contained in an Fσ such set” and (b) “is a countable union of such sets” in
the case of h-porosity. The σ−h-cp sets arise from imposing on the collection
of h-porous sets (a) first, and then (b), whereas subsets of Fσ σ−h-porous sets
arise from imposing on the collection of h-porous sets (b) first, and then (a).

Our theorems actually involve countable unions of closed h-porous sets.
Any such set is automatically both a σ−h-cp set and an Fσ σ−h-porous set.
However, we will call such a set an Fσ σ − h-cp set (which involves no loss of
descriptive strength), thereby describing the σ-ideal to which the set belongs
separately from the Borel classification to which the set belongs.

7In fact, it is proved in chapter 6 of [10] that given any h, h′ ∈ H there exists a closed
σ-h-symmetrically porous set in R that is not σ-h′-cp.
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3 Theorems

Theorem 1 Let g and G belong to H and ω > 1. If E is closed and G-porous
in a metric space (X, d), then E∗ = {e ∈ E : E is not g-porous in (X, d) at e}
is an Fσ σ −H-cp set in (E, d |E),8 where H(t) = G(g−1(ωt)) + 2g−1(ωt).

Proof. For each positive integer k, let

E∗k =

{
e ∈ E : 6 ∃BX(x,R) ⊆ Ec with d(e, x) < min{1

k
,R+ g(R)}

}
.

Since E∗ = ∪∞k=1E
∗
k , it will be enough to show that each E∗k is a closed

H-porous set in E . Choose any k which, for the remainder of the proof, we
assume to be fixed. It is easy to see that the complement (relative to E) of E∗k
is open in E. We will show that E∗k is H-porous in E at each point of E∗k .
To this end pick any e0 ∈ E∗k , which (along with k) we assume to be fixed for
the remainder of the proof.

Suppose that e0 is isolated in E. Then from the fact that e0 is not isolated
in X (else E would not be nowhere dense in X) it readily follows that e0 6∈ E∗k ,
a contradiction. Thus, we may assume that e0 is not isolated in E.

Choose δ > 0. We must show there are ẽ ∈ E and r̃ > 0 such that

(a) BE(ẽ, r̃) ⊆ E ∼ E∗k
(b) d(e0, ẽ) < min{δ, r̃ +H(r̃)}.

Because E is G-porous in X at e0, there exist x̃ ∈ X and R̃ > 0 such that
BX(x̃, R̃) ⊆ Ec and d(e0, x̃) < min{ 1

3k ,
δ
2 , G(R̃) + R̃}. By appropriately

expanding any ball satisfying the conditions in the previous sentence, we may
assume that R̃ = d(x̃, E). Choose ẽ ∈ E so that d(x̃, ẽ) = R̃ (recall that E is
closed in X) and let r̃ = min{d(e0, x̃) + R̃ , 1

ω · g(R̃)}.
To prove (a), choose any e ∈ BE(ẽ, r̃). We show that the membership

condition for E∗k fails for e by taking x = x̃ and R = R̃. Clearly, BX(x̃, R̃) ⊆
Ec. Moreover,

d(x̃, e) ≤d(x̃, ẽ) + d(ẽ, e) < R̃+ r̃

≤min{3 · d(e0, x̃) , R̃+
1

ω
· g(R̃)} < min{1

k
, R̃+ g(R̃)}.

To prove (b), we first note that

d(e0, ẽ) ≤ d(e0, x̃) + d(x̃, ẽ) = d(e0, x̃) + R̃ ≤ 2 · d(e0, x̃) < 2 · δ
2

= δ.

Now if r̃ = d(e0, x̃) + R̃, then we have

H(r̃) + r̃ > r̃ = d(e0, x̃) + R̃ = d(e0, x̃) + d(x̃, ẽ) ≥ d(e0, ẽ).

8By d|E we mean the restriction of the metric distance function d to the set E × E.
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On the other hand, if r̃ = 1
ω · g(R̃), then

H(r̃) + r̃ =H(
1

ω
· g(R̃)) +

1

ω
· g(R̃)

=G(g−1(ω · 1

ω
· g(R̃))) + 2 · g−1(ω · 1

ω
· g(R̃)) +

1

ω
· g(R̃)

>G(R̃) + R̃+ R̃ > d(e0, x̃) + R̃ = d(e0, x̃) + d(x̃, ẽ) ≥ d(e0, ẽ),

where G-porosity of E in X at e0 is used via G(R̃)+R̃ > d(e0, x̃) in the second
line of the above. �

It would be interesting to know if Theorem 1 gives the sharpest possible
statement in the following sense. Does there exist H ′ ∈ H such that (for any

ω > 1) lim inft→0
H(t)
H′(t) > 1 (i.e. H ′ approaches 0 faster than H does, as t→ 0)

and E∗ is an Fσ σ −H ′-cp set in (E, d|E) for all possible X, E, G, and g as
above? The author does not see how the proof of Theorem 1 can be sharpened,
and so one might conjecture that no such H ′ exists.9 On the other hand, for
certain choices of g and G the statement of Theorem 1 is not very strong. For

example, if lim inft→0
g(t)
G(t) ≥ 1, Theorem 1 simply tells us that the empty set

is σ −H-porous!
If X = R (more generally, any convex subset of a normed space), it is easy

to see that an H ′ as above can always be chosen. In this case note that (using
the notation from our proof of Theorem 1) ẽ can be chosen as the endpoint
of BR(x̃, R̃) closest to e0, so that d(e0, x̃) = d(e0, ẽ) + d(ẽ, x̃). For any (fixed)
g,G ∈ H and ω > 1, let H ′(t) = G(g−1(ωt)) + g−1(ωt) and H(t) be as in
Theorem 1. Let E∗ be the points of non−g-porosity as defined above, and let
E∗b be the larger set of points of non-g-bilateral porosity. Then the following
result, whose proof we only sketch, is easy to establish by tracing through the
proof of Theorem 1 with ẽ chosen to satisfy the condition above.

Theorem 2 Let g,G ∈ H, ω > 1, H and H ′ be as in the paragraph above,
and E be a closed G-porous set in R. Then with E∗ and E∗b defined as above,
we have the following.

(a) E∗ is an Fσ σ −H ′-cp set in E.

(b) E∗b is an Fσ σ −H-cp set in E.

Moreover, if E is assumed to be closed and G-bilaterally porous in R, then E∗b
is an Fσ σ −H ′-cp set in E.

Proof. The remarks preceding the statement of Theorem 2 indicate how
(a) is proved. For (b), define sets E∗+k and E∗−k analogous to E∗k , except the

9More to the point, an H′ such that there exists in E an Fσ σ −H-cp set in E failing
to be σ −H′-cp in E.
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non-porosity behavior “approximated” is that of non-right porosity for E∗+k
and non-left porosity for E∗−k . Then E∗b = ∪∞k=1[E∗+k ∪ E∗−k ] and both E∗+k
and E∗−k are closed in E. One shows that E∗+k is H-porous in E by choosing

ẽ to be the left endpoint of BR(x̃, R̃), and one shows that E∗−k is H-porous

in E by choosing ẽ to be the right endpoint of BR(x̃, R̃). If E is G-bilaterally
porous in R, then there are appropriately sized intervals lying in Ec on both
sides of e0. In this case, one shows that E∗+k is H ′-porous in E by choosing ẽ
to be the left endpoint of an appropriate interval to the right of e0, and one
shows that E∗−k is H ′-porous in E by choosing ẽ to be the right endpoint of
an appropriate interval to the left of e0. �

Of course, one could also ask if Theorem 2 gives the sharpest possible
result. In this case there are many such questions that can be asked.

Because R is σ-compact (see our remarks before the definition of closure
porosity), the strengthening of Denjoy’s theorem for bilateral porosity given
by Thomson on p. 200 of [14] is a corollary of Theorem 2(b). Interestingly, the
analogous result for the set E∗sy of points of non-symmetric porosity fails. In [4,
p. 261] and [11] (lemma on p. 417), it is shown there exists a closed uniformly
symmetrically porous set in R that fails to have any points of strong symmetric
porosity.

By omitting “closed”, we can do much better. Let g ∈ H with limt→0
g(t)
t =

∞. By “E is g-semi-symmetrically porous at x”, we mean

lim sup
δ→0+

1

δ
·min

{
g
(
γ−(E, x, δ)

)
, g

(
γ+(E, x, δ)

)}
> 0

for each x ∈ E, where γ+(E, x, δ) denotes the length of the largest open inter-
val in (x, x+ δ) ∩Ec, and similarly for γ−(E, x, δ). (Note that interchanging
“lim sup” and “min” above gives essentially g-bilateral porosity.) A straight-
forward modification of the construction on p. 260 of [4] (see chapter 5 of [10])
shows that for any such g ∈ H, there exists a nowhere dense set in R having
no points (much less, a residual set of points) of g-semi-symmetric porosity
(i.e. E∗sy = E for that set).10

Theorem 3 Let g ∈ H and N be nowhere dense in a metric space (X, d).
Denoting the closure of N in X by E, then E∗ = {e ∈ E : E is not g-porous
in (X, d) at e} is an Fσ first category set in (E, d|E). Moreover, N∗ = E∗∩N
is a first category set in (N, d|N ).11

10The nowhere dense set in question is Gδ and not closed. It is not known whether a
closed such set exists, but note that the set as a subspace of R is a second category (Baire,
in fact) space. Thus, having E∗sy = E for this set still contradicts the statement that the
typical point of E is a point of g-semi-symmetric porosity of E.

11N∗ ≡ {e ∈ N : N is not g-porous in X at e} = E∗ ∩ N because N is g-porous at e if
and only if E is g-porous at e.
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Proof. Because E is nowhere dense in X, there exists a porosity function
G : E → H for E in X. Define the sets E∗k exactly as we did in the proof of
Theorem 1. Each E∗k is closed in E (same proof), and so it will be enough to
prove that each E∗k is nowhere dense in E. Fixing k for the remainder of the
proof, we will show that H : E∗k → H defined by (H(e))(t) = (G(e)◦g−1)(2t)+
2g−1(2t) for e ∈ E∗k is a porosity function for E∗k in E. To this end, choose
any e0 ∈ E∗k , which (along with k) we assume to be fixed for the remainder of
the proof. Now simply retrace the proof of Theorem 1, beginning after e0 was
chosen, replacing ω, G, and H by 2, G(e0), and H(e0), respectively. To prove
the statement involving N , use the fact that the notions nowhere dense and
first category are hereditary with respect to dense subsets. �

In the theorems above, we have been considering small (first category,
nowhere dense, σ-porous, etc.) subsets of small (nowhere dense) sets. It
seems natural to ask how small a small set in a small set must be. More
specifically, suppose we know that a set F is a nowhere dense set in some
closed nowhere dense set E in R.12 What can one say about the size of F
relative to R? For instance, must F be porous in R? Does F even have to
have Lebesgue measure zero? The following theorem says that any nowhere
dense subset of R is nowhere dense relative to some closed nowhere dense set
in R. In fact, little about the porosity in R of a closed nowhere dense set F
can be said that does not already hold relative to some closed nowhere dense
set in R.

Theorem 4 Let h ∈ H and F be closed and h-porous in R. Then there exists
a closed set E that is nowhere dense in R and such that F is h-porous in E.

Proof. We construct E by adding to F a countable collection of points in
the following manner. For each isolated point of F , choose any convergent
sequence having that isolated point as its only cluster point. To avoid possible
clustering of the “heads” of these sequences, arrange for each sequence to
wander no further from its associated isolated point than one half of that
isolated point’s “radius of isolation”.13 Now include the midpoints of all the
bounded components of the complement (relative to R) of F . If the bounded
component lies between two isolated points, the midpoint may have already

12Such “nested nowhere denseness” of sets plays a crucial role in one of Denjoy’s best
known accomplishments. Denjoy’s reconstruction of a primitive of a function (Denjoy’s
totalization) involves a transfinite well-ordered sequence of perfect sets in R, each set nowhere
dense in the next set.

13More generally, we may use any closed nowhere dense set in R in place of such a sequence,
as long as that closed nowhere dense set lies within the same interval we restricted the
sequence to and it has the corresponding isolated point of F as a limit point. Note that
any limit point of the union of these closed nowhere dense sets must also be a limit point
of these isolated points. Hence their union, together with the closed set F , is closed.
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been included during the previous step (and if not, note that its inclusion will
not affect the properties of the previous construction). Clearly, E is closed
and nowhere dense in R. To see that F is h-porous in E, choose any point of
F that is not isolated in F (h-porosity at the isolated points follows from the
convergent sequences we included). Because F is h-porous in R, there exists
an appropriate “h-sequence” of open intervals belonging to F c converging to
that point. This same sequence of intervals can be used to verify that F is
h-porous in E at this point.14 Note that our placement of certain points of
E ∩ F c at the midpoints of the bounded components of F c was necessary for
the “intervals in E” to be of the appropriate size. �

We have actually proved the following more precise result. Let F be closed
and nowhere dense in R and G be a porosity function for F in R. Then there
exists a closed nowhere dense set E in R such that G is also a porosity function
for F in E. Moreover, whatever “bilateral” or “symmetric” porosity conditions
F has relative to R, F will have the same conditions relative to E. However,
it is not clear to the author that the same can be said for any lim inf porosity
conditions F has relative to R.

It seems that far more subtle geometric reasoning is needed to generalize
Theorem 4 to Rn, even with “nowhere dense” replacing “h-porous”. We leave
as an open question whether any such generalizations are possible.
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