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WEIGHTED SOBOLEV INEQUALITIES OF
MIXED NORM

Abstract

We obtain weighted Sobolev inequalities of mixed norm on paral-
lelepipeds and then generalize them to product of domains satisfying
the chain condition.

1 Introduction

Recently, there has been quite a number of papers on weighted Sobolev’s in-
equalities. For example, Brown and Hinton [1], [2], Chanillo and Wheeden [4],
Sawyer and Wheeden [16] and Chua [5], [6] and [7]. Also, Shi and Torchinsky
[17] proved some weighted Sobolev inequalities on parallelepipeds. We would
also like to study weighted Sobolev inequalities on product spaces, namely we
would like to generalize those inequalities to mixed norm inequalities.

In what follows, C denotes various positive constants. They may differ even
in a same string of estimates. Moreover, sometimes, we will use C(α, β, . . . )
instead of C to emphasize that the constant is depending on α, β, . . . . Cubes
are open with sides parallel to the coordinate axes. By a weight, we mean a
positive locally integrable function. Following [17], we say that a weight w on
Rn × Rm satisfies Muckenhoupt’s Ap(Rn × Rm) condition, 1 < p <∞ if

1

|I × J |

(∫
J

∫
I

w(x, y) dx dy

)1/p(∫
J

∫
I

w−1/(p−1) dx dy

)(p−1)/p

≤ C
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for all parallelepipeds I × J , I ⊂ Rn, J ⊂ Rm, are cubes. (This definition
is actually equivalent to that given in [9] or [10].) Moreover, we say that a
weight w is doubling on Rn × Rm if

w(2I, 2J) ≤ Cw(I, J) for all open cubes I ⊂ Rn, J ⊂ Rm

where w(I, J) =
∫
I

∫
J
w(x, y) dx dy. Also, we say that a weight w is reverse

doubling on Rn × Rm if there exists an ε > 0 such that

w(I, J) ≥ C
(
|I × J |
|I0 × J0|

)ε
w(I0, J0)

for all cubes I, I0, J , J0, I ⊆ I0 ⊂ Rn, J ⊆ J0 ⊂ Rm. Note that Ap weights
are doubling and hence reverse doubling on Rn × Rm. In what follows, Q,
I, J are always cubes and p′ will denote p/(p − 1) if 1 < p < ∞. Finally,
if f is a function defined on an open set of Rn × Rm such that it is weakly
differentiable, we denote by ∇1f(x, y) the partial gradient of f containing the
x-derivatives; similarly for ∇2f(x, y), the partial gradient of f containing the
y-derivatives.

Let 1 ≤ q1, q2 <∞ and let w be a weight on Rn×Rm. If E is a measurable
set in Rn × Rm, we will let

||f ||
Lq̃w(E)

=

(∫
Rn

[∫
Rm
|f(x, y)|q1χE(x, y)w(x, y) dy

]q2/q1
dx

)1/q2

and

||f ||
Lq̂w(E)

=

(∫
Rm

[∫
Rn
|f(x, y)|q2χE(x, y)w(x, y) dx

]q1/q2
dy

)1/q1

.

Moreover, we will define ||f ||
Lp̂v(E)

and ||f ||
Lr̂µ(E)

similarly.

Shi and Torchinsky proved the following.

Theorem 1.1 [17, Theorem 1] Let 1 < p ≤ q <∞. Assume f is a Lipschitz
continuous function on a parallelepiped R = I×J and suppose that the doubling
weights w, v satisfy the following conditions:

(i) v ∈ Ap(Rn × Rm) and

(ii)
(
I′|
|Ĩ|

)α/n ( |J′|
|J̃|

)β/m (
w(I′,J′)

w(Ĩ,J̃)

)1/q

≤ C
(
v(I′,J′)

v(Ĩ,J̃)

)1/p

for all cubes I ′ ⊂ Ĩ ⊂
Rn, J ′ ⊂ J̃ ⊂ Rm, with 0 < α, β < 1, and α+ β < 1.
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If fR denotes the average of f over R, then

1

w(R)1/q
||f − fR||Lqw(R)

≤ C |I|
1/n

v(R)1/p
||∇1f ||Lpv(R)

+ C
|J |1/m

v(R)1/p
||∇2f ||Lpv(R)

.

We will first generalize this to mixed norm inequalities on parallelepipeds
(see Theorem 1.2) and then to inequalities on product of domains satisfying
the chain condition (see Theorem 3.9). Finally, in the case u = v = w ∈
Ap(Rn × Rm), we obtain a simple weighted Sobolev inequality on product of
domains satisfying the chain condition (see Corollary 3.12 and Definition 3.6).

Theorem 1.2 Let 1 < r1, r2, p1, p2 ≤ q1, q2 <∞, and pi, ri < qi for i = 1, 2.
Let µ, v, w be weights such that µ′, v′, w̃ are reverse doubling on Rn × Rm
where

µ′(I, J) =

∫
J

[∫
I

µ−
1

r2−1 (x, y) dx

]r′1/r′2
dy (1.1)

v′(I, J) =

∫
J

[∫
I

v−
1

p2−1 (x, y) dx

]p′1/p′2
dy (1.2)

w̃(I, J) =

∫
I

[∫
J

w(x, y) dy

]q2/q1
dx . (1.3)

Suppose further that there exist 0 < α, β, γ, δ < 1 with α+β ≤ 1, and γ+δ ≤ 1
such that (

w̃(I0, J
′)

w̃(I0, J)

)1/q2 ( |J ′|
|J |

) β
m−1(

v′(I, J ′)

v′(I, J)

)1/p′1

≤ C (iii)

(
w̃(I ′, J)

w̃(I, J)

)1/q2 ( |I ′|
|I|

)α
n−1

(
v′(I ′, J̃)

v′(I, J̃)

)1/p′1

≤ C (iv)

(
w̃(Ĩ , J ′)

w̃(Ĩ , J)

)1/q2 (
|J ′|
|J |

) δ
m−1(

µ′(I, J ′)

µ′(I, J)

)1/r′1

≤ C (v)

(
w̃(I ′, J)

w̃(I, J)

)1/q2 ( |I ′|
|I|

) γ
n−1

(
µ′(I ′, J̃)

µ′(I, J̃)

)1/r′1

≤ C (vi)

for all cubes I, I ′, Ĩ in Rn, J , J ′, J̃ in Rm, such that I ′ ⊂ I and J ′ ⊂ J .
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Then

|I||J |
w̃(I, J)1/q2

||f − fI×J ||
Lq̃w(I×J)

≤ Cv′(I, J)1/p′1 |I|1/n||∇1f ||
Lp̂v(I×J)

+ µ′(I, J)1/r′1 |J |1/m||∇2f ||
Lr̂µ(I×J)

for all parallelepipeds I×J in Rn×Rm and any Lipschitz continuous function
f on I × J .

Remarks 1.3
(a) When 1 < p < q, we are able to extend Theorem 1.1 by including the case
α+ β = 1 under slightly stronger condition. See Theorem 3.10.
(b) We can also obtain similar inequality if we take fI×J to be the weighted
average

aI×J =
1

w(I, J)

∫
I

∫
J

f(x, y)w(x, y) dy dx.

Indeed, by the triangle inequality and Hölder’s inequality, we can obtain

‖f − aI×J‖
Lq̃w(I×J)

≤ ‖f − fI×J ||
Lq̃w(I×J)

×

1 + w̃(I, J)1/q2

(∫
I

[∫
J

w(x, y) dy

]q′2/q′1
dx

)1/q′2

w(I, J)−1

 .
2 Some Preliminary Results

First, the following theorem is a consequence of the proof of Theorem 1B
in [16].

Theorem 2.1 Let 1 < p < q < ∞, 0 < α < n and let v and w be weights
such that w and v−1/(p−1) are reverse doubling on Rn. Suppose further that
there exists an A > 0 such that

w(Q)1/q|Q|αn−1(v−1/(p−1)(Q))1/p′ ≤ A for all cubes Q in Rn.

Then there exists a positive constant C0 depending only on the reverse doubling
constants and A such that

||Iαf ||Lqw(Rn)
≤ C0||f ||Lpv(Rn)

(2.1)

for all f ∈ Lpv(Rn) where Iαf(x) =
∫
Rn

|f(y)|
|x−y|n−α dy.
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Proof. Theorem 1B of [16] states that the constant C0 in (2.1) depends only
on v and w. However, the proof given in [16] actually proves that C0 depends
only on the reverse doubling constants and A. �

The previous theorem immediately implies the following.

Corollary 2.2 Let 1 < p < q < ∞, 0 < α < n and let v and w be weights
such that w and v−1/(p−1) are reverse doubling on Rn. Suppose further that
there exists an A > 0 such that(

w(Q′)

w(Q)

)1/q ( |Q′|
|Q|

)α
n−1(

v−1/(p−1)(Q′)

v−1/(p−1)(Q)

)1/p′

≤ A

for all cubes Q,Q′ in Rn, Q′ ⊂ Q. Then there exists a C > 0 depending only
on the reverse doubling constants and A such that

||Iαf ||Lqw(Q)
≤ Cw(Q)1/q|Q|αn−1(v−1/(p−1)(Q))1/p′ ||f ||

Lpv(Q)

for all f ∈ Lpv(Rn) and all cubes Q in Rn.

Next, let us state a lemma from [17].

Lemma 2.3 [17, Corollary 1] Let 0 < γ, λ < 1 and f is a Lipschitz continuous
function in R = I × J and (x, y) ∈ R. Then there exists a constant C > 0
independent of f and R such that

|f(x, y)− fR| ≤C
(
|I|1/n

|J |1/m

)γ ∫ ∫
R

|∇1f(u, z)|
|u− x|n−(1−γ)|z − y|m−γ

du dz

+ C

(
|J |1/m

|I|1/n

)λ ∫ ∫
R

|∇2f(u, z)|
|u− x|n−λ|z − y|m−(1−λ)

du dz.

Finally, let us prove a mixed norm inequality for fractional integrals on
product spaces.

Lemma 2.4 Let 0 < α < n, 0 < β < m, 1 < p1, p2 ≤ q1, q2 <∞ and pi < qi
for i = 1, 2. Let v, w be weights such that v′ and w̃ are reverse doubling on
Rn ×Rm where v′ and w̃ are defined as in Theorem 1.2. Suppose further that
they satisfy (iii) and (iv) in Theorem 1.2. Then there exists C > 0 such that
for any parallelepiped I × J in Rn × Rm, we have(∫

I

[∫
J

(∫
I

∫
J

|f(u, z)|
|u− x|n−α|z − y|m−β

dz du

)q1
w(x, y) dy

]q2/q1
dx

)1/q2

≤ Cv′(I, J)1/p′1w̃(I, J)1/q2 |I|αn−1|J |
β
m−1||f ||

Lp̂v(I×J)
.
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Proof. Let I × J be a parallelepiped in Rn × Rm. Let

v0(y) =
(
v
−1
p2−1 (I, y)

)−p1/p′2
and let

k(x) = w(x, J)1/q1 |J |
β
m−1(v

−1
p1−1

0 (J))1/p′1 = w(x, J)1/q1 |J |
β
m−1 (v′(I, J))

1/p′1 .

Note that ∫
I′
k(x)q2 dx = w̃(I ′, J)|J |(

β
m−1)q2(v′(I, J))q2/p

′
1 .

Thus,

(∫
I

[∫
J

(∫
J

∫
I

|f(u, z)|
|u− x|n−α|z − y|m−β

du dz

)q1
w(x, y) dy

]q2/q1
dx

)1/q2

≤ C

(∫
I

[∫
J

(∫
I

|f(u, y)|
|u− x|n−α

du

)p1
v0(y) dy

]q2/p1
k(x)q2dx

) p1
q2

1
p1

by (iii) and Corollary 2.2

≤ C

(∫
J

[∫
I

(

∫
I

|f(u, y)|
|u− x|n−α

du)q2k(x)q2 dx

]p1/q2
v0(y) dy

)1/p1

by Minkowski’s inequality since q2 ≥ p1

≤ C

(∫
J

[∫
I

|f |p2v(x, y) dx

]p1/p2 [∫
I

v
−1
p2−1 (x, y) dx

]p1/p′2
v0(y) dy

)1/p1

× w̃(I, J)1/q2 |J |
β
m−1|I|αn−1v′(I, J)1/p′1 by (iv) and Corollary 2.2

≤ C|I|αn−1|J |
β
m−1w̃(I, J)1/q2v′(I, J)1/p′1

(∫
J

[∫
I

|f |p2v(x, y) dx

]p1/p2
dy

)1/p1

.

�

We can now prove Theorem 1.2.
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Proof of Theorem 1.2. First note that by Lemma 2.4,(
|I|1/n

|J |1/m

)α

×

(∫
I

[∫
J

(∫
I

∫
J

|∇1f(u, z)|
|u− x|n−(1−α)|z − y|m−α

dzdu

)q1
w(x, y)dy

]q2/q1
dx

)1/q2

≤ C
(
|I|1/n/|J |1/m

)α
||∇1f ||p̂v(I×J)

v′(I, J)1/p′1 |I|
1−α
n −1|J | αm−1w̃(I, J)1/q2

= C|I| 1n−1|J |−1w̃(I, J)1/q2v′(I, J)1/p′1 ||∇1f ||
Lp̂v(I×J)

.

Theorem 1.2 now follows from Lemma 2.3 as estimates for ∇2f can be
obtained similarly. �

3 Sobolev Inequalities on Product of Certain Domains

Since one of our main tools will be projection of functions into polynomials,
we will first state some theorems regarding polynomials. The following lemma
is a generalization of [18, Chapter 3, Lemma 7].

Lemma 3.1 If µ is a doubling measure on Rn×Rm and k is a positive integer,
then there exists a positive constant s0(n,m, µ) such that if 0 < s < s0, then
for any parallelepiped I × J in Rn × Rm and λ > 0 such that

µ({(x, y) ∈ I × J : |p(x, y)| > λ}) ≤ sµ(I, J)

we have sup(x,y)∈I×J |p(x, y)| ≤ Cλ, where p is any polynomial of degree ≤ k
and C is a constant independent of λ, I, J and p.

In particular if µ = w̃, note that

w̃({(x, y) ∈ I × J : |p(x, y)| > λ}) ≤
(

1

λ
||p||

Lq̃w(I×J)

)q2
.

Hence, ‖ p ‖
L∞(I×J)

≤ C
w̃(I,J)1/q2

‖ p ‖
Lq̃w(I×J)

with C depending only on k

and the doubling constant of w̃ (and the dimensions m and n).

Proof of Lemma 3.1. We will follow the idea of the proof of [18, Chapter 3,
Lemma 7]. Let p be a polynomial of degree N , N ≤ k, and let R = I × J be
a parallelepiped in Rn ×Rm. First note that it suffices to show that there are
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constants C1, C2 > 0 depending only on the doubling constant of the weight
µ, k and the dimensions n, m such that

µ{z ∈ R : |p(z)| > c1||p||L∞(R)
} ≥ C2µ(R). (3.1)

Let z0 ∈ R such that |p(z0)| = ||p||
L∞(R)

and let R0 = I0 × J0 ⊂ R such

that z0 ∈ R0, l(I0) = l(I)/2, l(J0) = l(J)/2. By a change of coordinates
and scaling if necessary we may assume that z0 = 0 and is a corner of R0

and R0 = {(x, y) ∈ Rn × Rm : 0 ≤ xi ≤ 1, 0 ≤ yj ≤ α for i = 1, . . . , n,
j = 1, . . . ,m} for some α > 0. Let

E = {(x, y) ∈ R0 : |(x, y)| ≤
√
n+mα2/(8k)k, |αx|/2 ≤ |y| ≤ 2|αx|}.

To prove (3.1), let us note that it suffices to show that |p(z)| > |p(z0)|/2k for
z ∈ E.

Let z′ = (x′, y′) such that |z′| = 1, |αx′|/2 ≤ |y′| ≤ 2|αx′|. We then let
t′ = sup{t ∈ R : tz′ ∈ R0} and g(t) = p(tz′) for t ∈ R. Then g is a polynomial
of degree N ≤ k. Consequently, g(t) = a(t− a1) · · · (t− aN ) and

|a(t− a1) · · · (t− aN )|
|aa1 · · · aN |

=
|p(tz′)|
|p(z0)|

≤ 1 for t ∈ [0, t′]. (3.2)

Next, since t′ ≥
√
n+mα2/2, it is easy to see that there exists t0 ∈ [0, t′] such

that

|t0 − aj | ≥
√
n+mα2/4N ≥

√
n+mα2/4k for j = 1, 2, . . . , N.

By considering two cases |aj | ≥ 2
√
n+mα2 and |aj | < 2

√
n+mα2, and using

the fact that |t0 − aj | ≥
√
n+mα2/4k and |t0| ≤

√
n+mα2, it is easy to see

that |t0 − aj |/|aj | ≥ 1/8k for all j. Hence by (3.2), we see that

|t0 − aj |
|aj |

≤ (8k)N−1 ≤ (8k)k−1

for all j. Thus

|aj | ≥
|t0 − aj |
(8k)k−1

≥
√
n+mα2/4k

(8k)k−1
=

2
√
n+mα2

(8k)k

for all j. Now if 0 ≤ t ≤
√
n+mα2/(8k)k, then

|aj | ≤ |aj − t|+ t ≤ |aj − t|+
|aj |
2

and hence
|aj − t|
|aj |

≥ 1

2
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for all j and therefore |g(t)|/|g(0)| ≥ 1/2N ≥ 1/2k. Thus |p(z)| ≥ |p(z0)|/2k if
z ∈ E and this completes the proof. �

Next the following is a generalized form of [5, Theorem 2.2].

Lemma 3.2 Let R be a parallelepiped and let E be a measurable set in R with
|E| > γ|R|. If p is a polynomial of degree ≤ k, then

‖ p ‖
L∞(E)

≥ C(γ, k) ‖ p ‖
L∞(R)

. (3.3)

Proof. In [5], (3.3) was proved to hold for R = Q0 the unit cube in Rn×Rm
with center at the origin. Now if R is any parallelepiped, same as the proof
in [5], there exists an affine transformation T mapping R isomorphically onto
Q0. It is now easy to see that (3.3) holds. �

The following lemma is an immediate consequence of the previous lemma.

Lemma 3.3 Let E and F be parallelepipeds such that E ⊂ F and |E| > γ|F |.
If p is a polynomial of degree ≤ k, then

‖ p ‖
L∞(E)

≥ C(γ, k) ‖ p ‖
L∞(F )

.

The next theorem is an immediate consequence of Lemmas 3.1 and 3.3.

Theorem 3.4 Let E and F be parallelepipeds such that E ⊂ F and |E| >
γ|F |. Let 1 ≤ q1, q2 <∞. If w is a weight such that w̃ is doubling on Rn×Rm
with doubling constant A, and p is a polynomial of degree ≤ k, then

‖ p ‖
Lq̃w(F )

≤ C(γ,m, n, k,A)

(
w̃(F )

w̃(E)

)1/q2

‖ p ‖
Lq̃w(E)

.

Lemma 3.5 [6, Lemma 2.5] or [19, Lemma 2.3] Let w be a doubling measure
on Rn with doubling constant A. Let {Qα}α∈I be an arbitrary family of cubes
in Rn. If {aα}α∈I is a family of non-negative real numbers, then for 1 ≤ p <∞
and N ≥ 1, we have∥∥∥∥∥∑

α

aαχNQα

∥∥∥∥∥
Lpw(Rn)

≤ C(A,n, p,N)

∥∥∥∥∥∑
α

aαχQα

∥∥∥∥∥
Lpw(Rn)

. (3.4)

Note that even though it was stated in the references that the constant in
(3.4) depends on w, n, p and N , however, the constant actually depends only
on n, p, N and the doubling constant A.
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Definition 3.6 [12] An open set Ω in Rn is said to be a member of F(σ,N),
σ ≥ 1, N ≥ 1, if there exists a covering W of Ω consisting of open cubes such
that:

(a)
∑
Q∈W

χ
σQ

(x) ≤ Nχ
Ω

(x) ∀x ∈ Rn.

(b) There is a ‘central cube’ Q0 ∈ W that can be connected with every cube
Q ∈W by a finite chain of cubes Q0, Q1, . . . , Qk(Q) = Q from W such
that Q ⊂ NQj for j = 0, 1, . . . , k(Q). Moreover, Qj ∩ Qj+1 contains a

cube Q̃j such that Qj ∪Qj+1 ⊂ NQ̃j.

We say that Ω satisfies the Boman chain condition if Ω ∈ F(σ,N) for some
N, σ ≥ 1. There are many types of domains that satisfy the Boman chain
condition, for example, balls, cubes and John domains (see [12]). Moreover, it
is easy to check that bounded (ε,∞) domains (see [13] or [5] for the definition)
satisfy the Boman chain condition. Hence so do bounded Lipschitz domains.

First let us state a consequence of the proof of Theorem 1.5 in [5].

Theorem 3.7 Let σ, N ≥ 1, 1 ≤ q <∞, and D ∈ F(σ,N), D ⊂ Rn and let
f be a measurable function defined on D. Suppose w is a doubling weight on
Rn with doubling constant A. Let W be a collection of cubes that satisfies the
chain condition and let P (f,Q) be a polynomial of degree < k associated to
each cube Q in W . Then

‖f − P (f,Q0)‖q
Lqw(D)

≤ C
∑
Q∈W

‖f − P (f,Q)‖q
Lqw(Q)

(3.5)

where Q0 is the ‘central cube’ in D and C depends only on n, q, A, k and N .

Let us generalize this theorem to products of domains satisfying the chain
condition.

Theorem 3.8 Let σ, N ≥ 1, 1 ≤ q2 ≤ q1 < ∞ and D1,D2 ∈ F(σ,N),
D1 ⊂ Rn, D2 ⊂ Rm and let f be a measurable function defined on D = D1×D2.
Also, let v be a weight and let w be a doubling weight on Rn × Rm. Let W1

(W2) be a collection of cubes in D1 (D2) that satisfies the chain condition.
Let P (f,R) be a polynomial of degree ≤ k associated to each parallelepiped
R = I × J with I ∈W1, J ∈W2. Then

‖f − P (f,I0 × J0)‖q2
Lq̃w(D)

≤ C
∑
I∈W1

∑
J∈W2

‖f − P (f, I × J)‖q2
Lq̃w(I×J)

(3.6)

where I0 is the ‘central cube’ in D1 and J0 is the ‘central cube’ in D2 and C
depends only on m, n, q1, q2, w, k and N .
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Proof. We will modify the proof of Theorem 1.5 in [6]. Let J ∈ W2. For
any I ∈ W1, there exists a chain I0, I1, . . . , Iθ = I that connects I to I0 (see
Definition 3.6(b)) and

(∫
I

[∫
J

|P (f, I × J)− P (f, I0 × J)|q1w(x, y) dy

]q2/q1
dx

)1/q2

≤
θ∑
k=1

(∫
I

[∫
J

|P (f, Ik × J)− P (f, Ik−1 × J)|q1w(x, y) dy

]q2/q1
dx

)1/q2

≤ C
θ∑
k=1

(
w̃(I, J)

w̃(Ik ∩ Ik−1, J)

)1/q2

× ||P (f, Ik × J)− P (f, Ik−1 × J)||
Lq̃w(Ik∩Ik−1×J)

by Theorem 3.4

≤ C
θ∑
k=1

(
w̃(I, J)

w̃(Ik ∩ Ik−1, J)

)1/q2

×
(
||f−P (f, Ik × J)||

Lq̃w(Ik∩Ik−1×J)
+||f−P (f, Ik−1 × J)||

Lq̃w(Ik∩Ik−1×J)

)
≤ C

θ∑
k=0

(
w̃(I, J)

w̃(Ik, J)

)1/q2

||f − P (f, Ik × J)||
Lq̃w(Ik×J)

.

Hence for any x ∈ Rn, we have,

||P (f, I × J)− P (f, I0 × J)‖
Lq̃w(I×J)

χI(x)

w̃(I, J)1/q2

≤ C
∑
L∈W1

(
χNL(x)

w̃(L, J)

)1/q2

||f − P (f, L× J)||
Lq̃w(L×J)

.
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And

∑
I∈W1

‖P (f, I × J)− P (f, I0 × J)‖q2
Lq̃w(I×J)

=
∑
I∈W1

∫
Rn
‖P (f, I × J)− P (f, I0 × J)‖q2

Lq̃w(I×J)

χI(x)

w̃(I, J)
w̃(x, J) dx

≤C
∫
Rn

( ∑
L∈W1

χNL(x)

w̃(L, J)1/q2
‖f − P (f, L× J)‖

Lq̃w(L×J)

)q2
w̃(x, J) dx

≤C
∫
Rn

∑
L∈W1

1

w̃(L, J)
‖f − P (f, L× J)‖q2

Lq̃w(L×J)
χL(x)w̃(x, J) dx

by Lemma 3.5

≤C
∑
L∈W1

1

w̃(L, J)
‖f − P (f, L× J)‖q2

Lq̃w(L×J)

∫
Rn
χL(x)w̃(x, J) dx

by the chain condition (a)

≤C
∑
L∈W1

‖f − P (f, L× J)‖q2
Lq̃w(L×J)

.

Hence,

||f − P (f, I0 × J)||q2
Lq̃w(D1×J)

≤C
∑
I∈W1

(
‖f − P (f, I×J)||q2

Lq̃w(I×J)
+||P (f, I×J)− P (f, I0×J)||q2

Lq̃w(I×J)

)
≤C

∑
L∈W1

||f − P (f, L× J)||q2
Lq̃w(L×J)

.
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Next, by Theorem 3.7,∫
D1

[∫
D2

|f − P (f, I0 × J0)|q1w(x, y) dy

]q2/q1
dx

≤C
∫
D1

[ ∑
J∈W2

∫
J

|f − P (f, I0 × J)|q1w(x, y) dy

]q2/q1
dx

since there exists an A > 0 such that w(x, 2Q) ≤ Aw(x,Q)

for all cubes Q in Rm and almost all x ∈ Rn

≤ C
∑
J∈W2

∫
D1

[∫
J

|f − P (f, I0 × J)|q1w(x, y) dy

]q2/q1
dx since q2 ≤ q1

≤ C
∑
I∈W1

∑
J∈W2

‖f − P (f, I × J)‖q2
Lq̃w(I×J)

by the previous estimate. �

We can now extend Sobolev’s inequalities of mixed norm to products of
domains satisfying the chain condition.

Theorem 3.9 Let σ, N ≥ 1 and D1,D2 ∈ F(σ,N), and let f be a weakly
differentiable functions on D = D1 × D2 ⊂ Rn × Rm. Let W1 (W2) be a
collection of cubes in D1 (D2) that satisfies the chain condition. Under the
assumption of Theorem 1.2 and suppose in addition that p2 ≤ p1 ≤ q2 ≤ q1,
r2 ≤ r1 ≤ q2 ≤ q1, and w̃ is doubling on Rn × Rm such that(

w̃(I ′, J ′)

w̃(I, J)

)1/q2 ( |J ′|
|J |

)−1( |I ′|
|I|

) 1
n−1(

v′(I ′, J ′)

v′(I, J)

)1/p′1

≤A (3.7)(
w̃(I ′, J ′)

w̃(I, J)

)1/q2 ( |I ′|
|I|

)−1( |J ′|
|J |

) 1
m−1(

µ′(I ′, J ′)

µ′(I, J)

)1/r′1

≤A (3.8)

for all cubes I, I ′ ∈W1, I ′ ⊂ I and all cubes J, J ′ ∈W2, J ′ ⊂ J , then

1

w̃(I0, J0)1/q2
||f − fI0×J0 ||Lq̃w(D)

≤CA|J0|−1|I0|−1
(
v′(I0, J0)1/p′1 |I0|1/n||∇1f ||

Lp̂v(D)

+ µ′(I0, J0)1/r′1 |J0|1/m||∇2f ||
Lr̂µ(D)

)
where I0 and J0 are the ‘central cubes’ in W1 and W2 respectively.
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Proof. For any parallelepiped I × J , let

A1(I, J) = w̃(I, J)1/q2v′(I, J)1/p′1 |I| 1n−1|J |−1,

A2(I, J) = w̃(I, J)1/q2µ′(I, J)1/r′1 |I|−1|J | 1m−1.

By Theorems 3.8 and 1.2, we have(∫
D1

(∫
D2

|f(x, y)− fI0×J0 |q1w(x, y) dy

)q2/q1
dx

)1/q2

≤

(∑
I∈W1

∑
J∈W2

∫
I

[∫
J

|f − fI×J |q1w(x, y)dy

]q2/q1
dx

)1/q2

since q1 ≥ q2

≤C

(∑
I∈W1

∑
J∈W2

[
A1(I, J)||∇1f ||

Lp̂v(I×J)

]q2) 1
q2

+ C

(∑
I∈W1

∑
J∈W2

[
A2(I, J)||∇2f ||

Lr̂µ(I×J)

]q2) 1
q2

= I + II.

I ≤C

(∑
I∈W1

∑
J∈W2

A1(I, J)p1
∫
J

(∫
I

|∇1f(x, y)|p2v(x, y) dx

)p1/p2
dy

)1/p1

since q2 ≥ p1

≤CA1(I0, J0)

(∑
I∈W1

∑
J∈W2

∫
J

(∫
I

|∇1f(x, y)|p2v(x, y) dx

)p1/p2
dy

)1/p1

by (3.7) and the chain condition (b)

≤CA1(I0, J0)

 ∑
J∈W2

∫
J

(∑
I∈W1

∫
I

|∇1f(x, y)|p2v(x, y) dx

)p1/p2
dy

1/p1

since p1 ≥ p2

≤CA1(I0, J0)

(∫
D2

(∫
D1

|∇1f(x, y)|p2v(x, y) dx

)p1/p2
dy

)1/p1

by the chain condition (a). Similarly, we obtain

II ≤ CA2(I0, J0)

(∫
D2

(∫
D1

|∇2f(x, y)|r2µ(x, y) dx

)r1/r2
dy

)1/r1

.
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This complete the proof of Theorem 3.9. �

Remarks

(a) In particular, if 1 < p < q, v ∈ Ap(Rn × Rm), we are able to obtain the
same conclusion for the case α + β = 1 that is not covered by Theorem 1.1,
i.e., [17, Theorem 1] under slightly stronger assumption.

Theorem 3.10 Let 1 < p < q <∞. Suppose that v ∈ Ap(Rn×Rm) and w is
a reverse doubling weight on Rn×Rm. Suppose further that there exist 0 < α,
β < 1 with α+ β ≤ 1 such that(

w(Ĩ , J ′)

w(Ĩ , J)

)1/q (
|J ′|
|J |

) β
m

≤ C
(
v(I, J ′)

v(I, J)

)1/p

(vii)

(
w(I ′, J)

w(I, J)

)1/q ( |I ′|
|I|

)α
n

≤ C

(
v(I ′, J̃)

v(I, J̃)

)1/p

(viii)

for all cubes I ′, Ĩ, I in Rn, I ′ ⊂ I, and cubes J ′, J̃ , J in Rm, J ′ ⊂ J . Then

||f − fI×J ||Lqw(I×J)
≤ Cw(I, J)1/qv(I, J)−1/p

×
[
|I| 1n ||∇1f ||Lpv(I×J)

+ |J | 1m ||∇2f ||Lpv(I×J)

]
(3.9)

for all parallelepipeds I × J in Rn × Rm.

Proof. By the Ap condition and Hölder’s inequality, (vii) and (viii) imply
(iii) and (iv). Hence (3.9) follows from Theorem 1.2. �

(b) The following corollary now follows from Theorems 1.1, 3.8 and 3.10.

Corollary 3.11 Let σ, N ≥ 1 and D1,D2 ∈ F(σ,N), and let f be a weakly
differentiable function on D = D1×D2 ⊂ Rn×Rm. Let W1 (W2) be a collection
of cubes in D1 (D2) that satisfies the chain condition. Let 1 < p ≤ q < ∞.
Suppose that v ∈ Ap(Rn × Rm) and w is a doubling weight on Rn × Rm.
Suppose further that there exist 0 < α, β < 1 with α+β < 1 such that (i) and
(ii) in Theorem 1.1 hold for all cubes I ′ ⊂ Ĩ in Rn, and cubes J ′ ⊂ J̃ in Rm.
If (

w(I ′, J ′)

w(I, J)

)1/q
[(
|I ′|
|I|

) 1
n

+

(
|J ′|
|J |

) 1
m

]
≤ C

(
v(I ′, J ′)

v(I, J)

)1/p

for all cubes I, I ′ ∈W1, I ′ ⊂ I and all cubes J, J ′ ∈W2, J ′ ⊂ J , then

||f − fI0×J0 ||Lpv(D)

≤ Cw(I, J)1/qv(I, J)−1/p
[
|I| 1n ||∇1f ||Lpv(D)

+ |J | 1m ||∇2f ||Lpv(D)

]
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where I0 and J0 are the ‘central cubes’ in W1 and W2 respectively. Moreover,
if in addition that 1 < p < q < ∞ and (vii) and (viii) hold for some 0 < α,
β < 1 such that α+ β ≤ 1, then the above inequality also holds.

Finally, let us conclude this paper by showing the following corollary of
Theorem 1.1 and Theorem 3.8 when w = v ∈ Ap(Rn × Rm).

Corollary 3.12 Let σ, N ≥ 1 and D1,D2 ∈ F(σ,N), and let f be a weakly
differentiable functions on D = D1×D2 ⊂ Rn×Rm. Let W1 (W2) be a collec-
tion of cubes in D1 (D2) that satisfies the chain condition. If w ∈ Ap(Rn×Rm),
1 < p <∞, then

||f − fI0×J0 ||Lpw(D)
≤ C|I0|1/n||∇1f ||Lpw(D)

+ C|J0|1/n||∇2f ||Lpw(D)

where I0 and J0 are the ‘central cubes’ in W1 and W2 respectively.

Proof. First note that it follows from Theorem 1.1 that for each paral-
lelepiped R = I × J in Rn × Rm, we have

||f − fI×J ||Lpw(I×J)
≤ C|I|1/n||∇1f ||Lpw(I×J)

+ C|J |1/n||∇2f ||Lpw(I×J)
.

Thus by similar argument as in the proof of Theorem 3.9, the result follows.�
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