Aleksandra Katafiasz, Instytut Matematyki WSP, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

PROPERTIES OF THE CLASS OF IMPROVABLE FUNCTIONS

Abstract

In this paper the classes \mathcal{A}_{α} and the class \mathcal{A} are characterized and compared to the classes \mathcal{B}_1 , \mathcal{B}_1^* and the class of all Darboux functions.

1 Preliminaries

The word "function" will mean a bounded real function of a real variable and D will denot a subset of \mathbb{R} .

Definition 1 For each function $f: D \longrightarrow \mathbb{R}$, let

.

$$C(f) = \left\{ x \in D; \lim_{t \to x} f(t) = f(x) \right\};$$
$$U(f) = \left\{ x \in D; \lim_{t \to x} f(t) \neq f(x) \right\};$$
$$L(f) = \left\{ x \in D; \lim_{t \to x} f(t) \text{ exists} \right\}.$$

`

Definition 2 A point $x_0 \in U(f)$ is called an improvable point of discontinuity of the function f.

The following remark is easy to see.

Remark 1 Let $f: D \to \mathbb{R}$. Then $U(f) \cap C(f) = \emptyset$ and $L(f) = U(f) \cup C(f)$.

The following proposition is well known. (Compare to [2].)

Proposition 1 Let $f: D \longrightarrow \mathbb{R}$. Then the set U(f) is countable.

Mathematical Reviews subject classification: Primary: 26A15 Received by the editors July 27, 1994

⁴³⁰

We define the functions $f_{(\alpha)}$ on the class of ordinal numbers.

Definition 3 Let $f : D \to \mathbb{R}$ and let $f_{(0)}(x) = f(x)$ for each $x \in D$. For every ordinal number α , let

$$f_{(\alpha)}(x) = \begin{cases} f(x), & \text{if } \{\gamma < \alpha; \ x \in U\left(f_{(\gamma)}\right)\} = \emptyset, \\ \lim_{t \to x} f_{(\gamma_0)}(t), & \text{if } x \in U\left(f_{(\gamma_0)}\right), \\ & \text{where } \gamma_0 = \min\left\{\gamma < \alpha; \ x \in U\left(f_{(\gamma)}\right)\right\}. \end{cases}$$

The following theorems are established in [1] where the reader should turn for pertainent definitions

Theorem 1 Let $f: D \to \mathbb{R}$ and let $\alpha > 0$ be an ordinal number. Then

(1, α) for each $x \in D$, $\{\gamma < \alpha; x \in U(f_{(\gamma)})\}$ is the empty set or has only one element,

(2, α) for each ordinal number γ with $\gamma < \alpha$,

$$\left\{x \in D; \ f_{(\gamma)}(x) \neq f_{(\alpha)}(x)\right\} = \bigcup_{\gamma \leq \beta < \alpha} U\left(f_{(\beta)}\right),$$

(3, α) for each ordinal number γ with $\gamma < \alpha$, if $x \in L(f_{(\gamma)})$, then

$$\lim_{t \to x} f_{(\gamma)}(t) = f_{(\alpha)}(x),$$

(4, α) $\bigcup_{0 \leq \beta < \alpha} L(f_{(\beta)}) \subset C(f_{(\alpha)}).$

Definition 4 For each ordinal number α , let

$$\mathcal{A}_{\alpha} = \left\{ f: D \to \mathbb{R}; \ C\left(f_{(\alpha)}\right) = D \right\}.$$

If a function $f: D \to \mathbb{R}$ belongs to $\mathcal{A}_{\alpha} \setminus \left(\bigcup_{0 \leq \beta < \alpha} \mathcal{A}_{\beta}\right)$, then it will be called an α -improvable discontinuous function.

Put $\mathcal{A} = \bigcup_{0 \leq \alpha < \omega_1} \mathcal{A}_{\alpha}$. If a function $f \in \mathcal{A}$, then it will be called an improvable function.

Definition 5 Let $K \subset D$. Put $K^{(0)} = K$. Let

 $K^{(1)} = K^d = \{x \in D; x \text{ is an accumulation point of } K \text{ in } \mathbb{R}\}$

and $K^* = K \setminus K^d$.

Example 1 Let $W = \{1/n; n \in \mathbb{N}\}$ and let f be the characteristic function of the set W. Then U(f) = W, and 0 is not an improvable point of discontinuity of f. Note that $f_{(1)}(x) = 0$ for each $x \in \mathbb{R}$, so $f \in \mathcal{A}_1$. Observe that $f_{(1)}$ is also continuous at points, which do not belong to the set U(f).

Definition 6 For $A \subset D \subset \mathbb{R}$, let

 $\mathcal{M}(A) = \{ f : D \to \mathbb{R}; f(A) = \{ 0 \} and, for each x \in D, f(x) \ge 0 \}.$

The following theorem is proved in [1].

Theorem 2 Let A be a dense subset of D and let $f \in A_{\alpha}$ be a function such that C(f) = A. Then $g = |f - f_{(\alpha)}| \in \mathcal{M}(A)$, for each $0 \leq \beta \leq \alpha$, $C(f_{(\beta)}) = C(g_{(\beta)}), U(f_{(\beta)}) = U(g_{(\beta)}) \text{ and } g_{(\beta)} = |f_{(\beta)} - f_{(\alpha)}|.$

In Section 3 we use the following lemma.

Lemma 1 Let $f : \mathbb{R} \to \mathbb{R}$ and let $f \in \mathcal{A}_{\alpha}$ for some $\alpha < \omega_1$. Then $f \in \mathcal{B}_1$ if and only if $g = |f - f_{(\alpha)}| \in \mathcal{B}_1$.

PROOF. Let P be a perfect set. Assume that $f \in \mathcal{B}_1$. Then there exists a point $x_0 \in \mathbb{R}$ such that $x_0 \in C(f_{|P})$. Consider two possibilities:

- 1. If $x_0 \in C(f)$, then $x_0 \in C(g)$; so $x_0 \in C(g|_P)$.
- 2. If $x_0 \in C(f_{|P}) \setminus C(f)$, then $\lim_{t \to x_0} f_{|P}(t)$ exists and $\lim_{t \to x_0} f_{|P}(t)$ = $f_{|P}(x_0)$. If there existed an ordinal number $\beta_0 < \alpha$ and a sequence $(x_n)_{n=1}^{\infty} \subset (U(g_{(\beta_0)}) \cap P)$ such that $\lim_{n\to\infty} x_n = x_0$, then by Theorem 2 we would have $(x_n)_{n=1}^{\infty} \subset (U(f_{(\beta_0)}) \cap P)$, a contradiction. Thus $\lim_{t \to x_0} g_{|P}(t) \text{ exists and } \lim_{t \to x_0} f_{|P}(t) = g_{|P}(x_0).$

Thus $q \in \mathcal{B}_1$.

Now, assume that $g \in \mathcal{B}_1$. We can prove that $f \in \mathcal{B}_1$ similarly.

The Characterization of the Classes \mathcal{A}_{α} $\mathbf{2}$

As we have seen in Example 1 there functions $f \in \mathcal{A}_1$ with $\mathbb{R} \setminus C(f) \neq U(f)$. Thus we can ask whether we can study continuity of the function $f_{(\alpha)}$ by considering properties of $f_{|\mathbb{R}\setminus\bigcup_{\beta<\alpha}U(f_{(\beta)})}$. The answer is given in the following theorem.

Theorem 3 Let $f : \mathbb{R} \to \mathbb{R}$ and let α be an ordinal number. Then $f \in \mathcal{A}_{\alpha}$ if and only if $f_{|(\mathbb{R}\setminus\bigcup_{0<\beta<\alpha}U(f_{(\beta)}))|}$ is continuous.

PROOF. First, we assume that $f \in \mathcal{A}_{\alpha}$. Let $x \in C(f)$. Then, of course, $f_{|\mathbb{R}\setminus\bigcup_{0\leq\beta<\alpha}U(f_{(\beta)})}$ is continuous at x. Let $x \in \mathbb{R} \setminus \left(C(f) \cup \bigcup_{0\leq\beta<\alpha}U(f_{(\beta)})\right)$. By Theorem 1 (2, α), $\{x \in \mathbb{R}; f(x) \neq f_{(\alpha)}(x)\} = \bigcup_{0\leq\beta<\alpha}U(f_{(\beta)})$. Hence

$$f_{(\alpha)}(x) = \lim_{t \to x} f_{(\alpha)}(t) = \lim_{t \to x} f_{|(\mathbb{R} \setminus \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)}))(\alpha)}(t)$$
$$= \lim_{t \to x} f_{|(\mathbb{R} \setminus \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)}))}(t).$$

Thus $\lim_{t\to x} f_{|(\mathbb{R}\setminus\bigcup_{0\leq\beta<\alpha}U(f_{(\beta)}))}(t) = f(x)$; so $f_{|(\mathbb{R}\setminus\bigcup_{0\leq\beta<\alpha}U(f_{(\beta)}))}$ is continuous at x.

Now assume that $f_{|(\mathbb{R}\setminus\bigcup_{0\leq\beta<\alpha}U(f_{(\beta)}))}$ is continuous. We shall show that $\mathbb{R} = C(f_{(\alpha)})$. Of course, $C(f_{(\alpha)}) \subset \mathbb{R}$. By Theorem 1 (4, α),

$$\bigcup_{0 \le \beta < \alpha} U\left(f_{(\beta)}\right) \subset C\left(f_{(\alpha)}\right).$$

Let $x \in \mathbb{R} \setminus \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)})$. Suppose that there exists a sequence $(x_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} f_{(\alpha)}(x_n) \neq f_{(\alpha)}(x)$. We can assume that $a = \lim_{n\to\infty} f_{(\alpha)}(x_n) < f_{(\alpha)}(x)$. By Theorem 1 $(2,\alpha), \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)}) = \{x \in \mathbb{R}; f_{(\alpha)}(x) \neq f(x)\}$ and

$$\lim_{t \to x} f_{|\left(\mathbb{R} \setminus \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)})\right)(\alpha)}(t) = \lim_{t \to x} f_{|\left(\mathbb{R} \setminus \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)})\right)}(t) = f(x) = f_{(\alpha)}(x).$$

Thus there exists $n_0 \in \mathbb{N}$ such that, for each $n > n_0$, $x_n \in \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)})$. Therefore, we may assume that, for each $n \in \mathbb{N}$, $x_n \in \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)})$ and $f_{(\alpha)}(x_n) < f_{(\alpha)}(x)$.

Let $\epsilon = \frac{f(x)-a}{2}$. By Theorem 1 $(4,\alpha)$, $\bigcup_{0 \leq \beta < \alpha} U(f_{(\beta)}) \subset C(f_{(\alpha)})$. Hence, for each $n \in \mathbb{N}$, there exists an interval (a_n, b_n) containing x_n such that, for each $z \in (a_n, b_n)$, $f_{(\alpha)}(z) < f_{(\alpha)}(x_n) + \epsilon$. Since $\bigcup_{0 \leq \beta < \alpha} U(f_{(\beta)})$ is a countable set, we can choose a sequence $(z_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} z_n = x$ and, for each $n \in \mathbb{N}$, $z_n \in (a_n, b_n) \cap (\mathbb{R} \setminus \bigcup_{0 \leq \beta < \alpha} U(f_{(\beta)}))$. Hence, for each $n \in \mathbb{N}$, $f_{(\alpha)}(z_n) = f(z_n)$ and $f(z_n) < f_{(\alpha)}(x_n) + \epsilon$. Then

$$\limsup_{n \to \infty} f(z_n) \le \lim_{n \to \infty} f_{(\alpha)}(x_n) + \epsilon = a + \epsilon = \frac{a + f(x)}{2} < f(x)$$

and $\lim_{t\to x} f_{|\mathbb{R}\setminus\bigcup_{0\leq\beta<\alpha} U(f_{(\alpha)})}(t) \neq f(x)$, a contradiction. Hence $x \in C(f_{(\alpha)})$. Thus $\mathbb{R} = C(f_{(\alpha)})$ and the proof is complete.

3 The Comparison of the Class of Improvable Functions to Other Classes of Functions

First we compare the class of improvable functions to the class of Baire 1 functions.

Theorem 4 If $f : \mathbb{R} \to \mathbb{R}$ is an improvable function, then f is a Baire 1 function.

PROOF. By Lemma 1, we can assume that $f \in \mathcal{M}(C(f))$. Since f is an improvable function, there exists an ordinal number $\alpha < \omega_1$ such that $f \in \mathcal{A}_{\alpha}$.

Let P be a perfect set. Put $D(f) = \mathbb{R} \setminus C(f)$. If $P \cap C(f) \neq \emptyset$, then $C(f_{|P}) \neq \emptyset$. Thus assume that $P \cap C(f) = \emptyset$. First suppose that $P \cap U(f) \neq \emptyset$. Let $x_0 \in P \cap U(f)$. Thus for each neighborhood $U(x_0)$ of the point x_0 the set $U(x_0) \cap P$ is uncountable. Fix $U(x_0)$. Since $P \subset D(f)$ and U(f) is dense in D(f), for each $x \in D(f) \setminus U(f)$ there exists a sequence $(x_n)_{n=1}^{\infty} \subset U(f)$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} f(x_n) > 0$. Hence $U(x_0) \cap \bigcup_{n=1}^{\infty} \{x \in \mathbb{R}; \limsup_{t\to x_0} f(t) \geq \frac{1}{n}\}$ is uncountable, contrary to $x_0 \in U(f)$. Thus $U(f) \cap U(x_0) = \emptyset$. Since $U(x_0) \subset \{x \in \mathbb{R}; f(x) = f_{(1)}(x)\};$ so $U(x_0) \cap U(f_{(1)}) = \emptyset$ and by transfinite induction we can show that, for each ordinal number $\beta < \alpha$, $U(x_0) \cap U(f_{(\beta)}) = \emptyset$, contraty to $f \in \mathcal{A}_{\alpha}$. Thus $P \cap \bigcup_{0 \leq \beta < \alpha} U(f_{(\beta)}) = \emptyset$. Hence $P \subset D(f) \setminus \bigcup_{0 \leq \beta < \alpha} U(f_{(\beta)})$ and by Theorem 3, $C(f_{|P}) \neq \emptyset$, which completes the proof.

The following proposition shows that there exists a Baire 1 function which is not an improvable discontinuous one.

Proposition 2 There exist a subset D of \mathbb{R} and a function $f : D \to \mathbb{R}$ such that C(f) is a dense subset of D and there exist no ordinal number α such that $f \in \mathcal{A}_{\alpha}$.

PROOF. Let $f : \mathbb{R} \to \mathbb{R}$ be the characteristic function of $[0, +\infty)$. Note that, for x = 0,

$$0=\lim_{t\to x^-}f(t)\neq \lim_{t\to x^+}f(t)=1.$$

Since $C(f) = \mathbb{R} \setminus \{0\}$; so $U(f) = \emptyset$ and, for each $x \in \mathbb{R}$, $f_{(1)}(x) = f(x)$. By Theorem 1 and by transfinite induction, we have that $f_{(\alpha)}(x) = f(x)$ for each $x \in \mathbb{R}$ and for every ordinal number α .

Denote by (\mathcal{B}_1, ρ) the metric space of all bounded real Baire 1 functions defined on \mathbb{R} , where, for each pair of functions $f, g \in \mathcal{B}_1$, $\rho(f, g) = \sup_{x \in \mathbb{R}} |f(x) - g(x)|$. Let $f: D \to \mathbb{R}$ and let $\delta > 0$. Put $K(f, \delta) = \{g \in \mathcal{B}_1; \rho(f, g) < \delta\}$.

Theorem 5 The set \mathcal{A} is nowhere dense in \mathcal{B}_1 .

PROOF. Let $f \in \mathcal{B}_1$ and let $\delta > 0$ be a real number. Put $K = K(f, \delta)$. We shall show that there exists a ball $K_1 \subset K$ such that $K_1 \cap \mathcal{A} = \emptyset$. If $\mathcal{A} \cap K = \emptyset$, then we put $K_1 = K$. Let $g \in K \cap \mathcal{A}$. Put $\delta_1 = \rho(f, g)$ and $\sigma = \delta - \delta_1$. Since $g \in \mathcal{A}$, so C(g) is residual in \mathbb{R} . Then there exists a perfect nowhere dense set $P \subset C(g)$. We define the function h by

$$h(x) = \begin{cases} g(x) + \frac{\sigma}{2}, & \text{if } x \in P, \\ g(x), & \text{otherwise} \end{cases}$$

Note that h is the sum of two functions: g and k, where

$$k(x) = \begin{cases} \frac{\sigma}{2}, & \text{if } x \in P, \\ 0, & \text{otherwise.} \end{cases}$$

Thus $h \in \mathcal{B}_1$. We shall show that, for each ordinal number α with $0 \leq \alpha < \omega_1$,

(i,
$$\alpha$$
) $h_{(\alpha)}(x) = \begin{cases} g_{(\alpha)}(x) + \frac{\sigma}{2}, & \text{if } x \in P, \\ g_{(\alpha)}(x), & \text{otherwise} \end{cases}$

(ii, α) for each $x \in P$,

$$\limsup_{t \to x} h_{(\alpha)}(t) = \limsup_{t \to x} h_{|C(g)(\alpha)}(t) = g_{(\alpha)}(x) + \frac{o}{2}$$

and

$$\liminf_{t \to x} h_{(\alpha)}(t) = \liminf_{t \to x} h_{|C(g)(\alpha)}(t) = g_{(\alpha)}(x),$$

(iii, α) $C(h_{(\alpha)}) = C(g_{(\alpha)}) \setminus P$ and $U(h_{(\alpha)}) = U(g_{(\alpha)})$.

Let $\alpha = 0$. By the definition of the function h, condition (i,0) is true.

Let $x \in P$. Since $P \subset C(g)$, $P = P^d$, $P \subset (C(g))^d$ and cl $(\mathbb{R} \setminus P) = \mathbb{R}$, we know that

$$\begin{split} &\lim_{t \to x} h_{|P}(t) = g(x) + \frac{\sigma}{2}, \\ &\lim_{t \to x} h_{|(\mathbb{R} \setminus P)}(t) = g(x), \\ &\lim_{t \to x} \sup_{t \to x} h(t) = \limsup_{t \to x} h_{|C(g)}(t) = g(x) + \frac{\sigma}{2} \quad \text{and} \\ &\lim_{t \to x} \inf_{t \to x} h(t) = \liminf_{t \to x} h_{|C(g)}(t) = g(x). \end{split}$$

Consequently condition (ii,0) is satisfied.

Since $\mathbb{R} \setminus P$ is an open set and since $h_{|(\mathbb{R} \setminus P)} = g_{|(\mathbb{R} \setminus P)}$, we get $C(h) \setminus P = C(g) \setminus P$ and $U(h) \setminus P = U(g) \setminus P$. By condition (ii,0), $L(h) \subset \mathbb{R} \setminus P$. Therefore $C(h) = C(h) \setminus P = C(g) \setminus P$ and $U(h) = U(h) \setminus P = U(g) \setminus P$. Since $U(g) \subset \mathbb{R} \setminus C(g) \subset \mathbb{R} \setminus P$, we have that U(h) = U(g) and condition (iii,0) is true.

Now we assume that $\alpha > 0$ is an arbitrary ordinal number and, for each ordinal number $\beta(0 \leq \beta < \alpha)$, conditions (i, β), (ii, β) and (iii, β) are satisfied. Let $x \in P$. Since, for each ordinal number β with $0 \leq \beta < \alpha$, by (iii, β),

$$U(h_{(\beta)}) = U(g_{(\beta)}) \subset \mathbb{R} \setminus C(g_{(\beta)}) \subset \mathbb{R} \setminus C(g) \subset \mathbb{R} \setminus P,$$

we have $\left\{\beta < \alpha; x \in U\left(h_{(\beta)}\right)\right\} = \left\{\beta < \alpha; x \in U\left(g_{(\beta)}\right)\right\} = \emptyset$ and $h_{(\alpha)}(x) = h(x) = g(x) + \frac{\sigma}{2} = g_{(\alpha)}(x) + \frac{\sigma}{2}$. Let $x \in \mathbb{R} \setminus P$. Then

$$h_{(\alpha)}(x) = \begin{cases} h(x), & \text{if } \left\{ \beta < \alpha; \ x \in U\left(h_{(\beta)}\right) \right\} = \emptyset, \\ \lim_{t \to x} h_{(\beta_0)}(t), & \text{if } x \in U\left(h_{(\beta_0)}\right), \\ & \text{where } \beta_0 = \min\left\{ \beta < \alpha; \ x \in U\left(h_{(\beta)}\right) \right\} \end{cases}$$

and

$$g_{(\alpha)}(x) = \begin{cases} g(x), & \text{if } \left\{ \beta < \alpha; \ x \in U\left(g_{(\beta)}\right) \right\} = \emptyset, \\ \lim_{t \to x} g_{(\beta_1)}(t) & \text{if } x \in U\left(g_{(\beta_1)}\right), \\ & \text{where } \beta_1 = \min\left\{ \beta < \alpha; \ x \in U\left(g_{(\beta)}\right) \right\}. \end{cases}$$

By our assumptions, we know that $\beta_0 = \beta_1$. Since $\mathbb{R} \setminus P$ is an open set and $g_{|(\mathbb{R} \setminus P)(\beta_0)} = h_{|(\mathbb{R} \setminus P)(\beta_0)}$, we get $\lim_{t \to x} g_{(\beta_0)}(t) = \lim_{t \to x} h_{(\beta_0)}(t)$. Therefore $h_{(\alpha)}(x) = g_{(\alpha)}(x)$. So

$$h_{(\alpha)}(x) = \begin{cases} g_{(\alpha)}(x) + \frac{\sigma}{2}, & \text{if } x \in P, \\ g_{(\alpha)}(x), & \text{otherwise} \end{cases}$$

By (i, α), as in the proof of (ii,0), we can show that, for each $x \in P$,

$$\limsup_{t \to x} h_{(\alpha)}(t) = \limsup_{t \to x} f_{|C(g)|(\alpha)}(t) = g_{(\alpha)}(x) + \frac{\delta}{2}$$

and

$$\liminf_{t \to x} h_{(\alpha)}(t) = \liminf_{t \to x} h_{|C(g)|(\alpha)}(t) = g_{(\alpha)}(x)$$

Since $\mathbb{R} \setminus P$ is an open set and by (i, α), $h_{|(\mathbb{R} \setminus P)|(\alpha)} = g_{|(\mathbb{R} \setminus P)|(\alpha)}$. Hence $C(f_{(\alpha)}) \setminus P = C(g_{(\alpha)}) \setminus P$ and $U(h_{(\alpha)}) \setminus P = U(g_{(\alpha)}) \setminus P$. By condition (ii, α),

436

 $L(h_{(\alpha)}) \subset \mathbb{R} \setminus P$. Therefore $C(h_{(\alpha)}) = C(h_{(\alpha)}) \setminus P = C(g_{(\alpha)}) \setminus P$ and $U(h_{(\alpha)}) = U(h_{(\alpha)}) \setminus P = U(g_{(\alpha)}) \setminus P$. By $U(g_{(\alpha)}) \subset \mathbb{R} \setminus C(g_{(\alpha)}) \subset \mathbb{R} \setminus C(g) \subset \mathbb{R} \setminus P$, we know that $U(h_{(\alpha)}) = U(g_{(\alpha)})$ and condition (iii, α) is true. Thus, for each α with $0 \leq \alpha < \omega_1$, conditions (i, α), (ii, α) and (iii, α) are satisfied.

We suppose that there exists an ordinal number α_0 with $0 \leq \alpha_0 < \omega_1$ such that $h \in \mathcal{A}_{\alpha_0}$. Then $C(h_{(\alpha_0)}) = \mathbb{R}$. This is impossible, since, by (iii, α_0), $C(h_{(\alpha_0)}) = C(g_{(\alpha_0)}) \setminus P \subset \mathbb{R} \setminus P \neq \mathbb{R}$. Hence $h \notin \mathcal{A}$.

Put $K_1 = K(h, \frac{\sigma}{6})$. Let $h^* \in K_1$. Suppose that $h^* \in \mathcal{A}$. Then we may show that, for each ordinal number α with $0 \leq \alpha < \omega_1$,

(iv,
$$\alpha$$
) for each $x \in C(g)$, $\left| h^*_{(\alpha)}(x) - h_{(\alpha)}(x) \right| \le \frac{\sigma}{6}$,

(**v**,
$$\alpha$$
) $P \subset \mathbb{R} \setminus L\left(h_{(\alpha)}^*\right)$.

Let $\alpha = 0$. By $\rho(h, h^*) < \frac{\sigma}{6}$, condition (iv,0) is obvious. Let $x \in P$. By conditions (iv,0) and (ii,0), $\liminf_{t \to x} h^*(t) \leq \liminf_{t \to x} h(t) + \frac{\sigma}{6} = g(x) + \frac{\sigma}{6}$ and $\limsup_{t \to x} h^*(t) \geq \limsup_{t \to x} h(t) - \frac{\sigma}{6} = g(x) + \frac{\sigma}{6}$. Thus $\limsup_{t \to x} h^*(t) - \liminf_{t \to x} h^*(t) \geq \frac{\sigma}{6} > 0$ and $x \notin L(h^*)$.

We assume that α with $0 < \alpha < \omega_1$ is an ordinal number and, for each ordinal number β with $0 \leq \beta < \alpha$, conditions (iv, β) and (v, β) are satisfied. Let $x \in C(g)$. Then, for each β with $0 \leq \beta < \alpha$, by condition (iii, β), $U(h_{(\beta)}) \subset \mathbb{R} \setminus C(g)$. Therefore $\bigcup_{0 \leq \beta < \alpha} U(h_{(\beta)}) \subset \mathbb{R} \setminus C(g)$ and, by Theorem 1 (2, α), $h_{(\alpha)}(x) = h(x)$. By our assumption, we know that

$$\bigcup_{0 \le \beta < \alpha} U\left(h^*_{(\beta)}\right) \subset \bigcup_{0 \le \beta < \alpha} L\left(h^*_{(\beta)}\right) \subset \mathbb{R} \setminus P.$$

Therefore if $x \in P$, then, by Theorem 1 $(2,\alpha)$, $h^*_{(\alpha)}(x) = h^*(x)$. Hence, for each $x \in P$, $\left|h^*_{(\alpha)}(x) - h_{(\alpha)}(x)\right| = |h^*(x) - h(x)| \le \frac{\sigma}{6}$. Let $x \in C(g) \setminus P$. If $\left\{\beta < \alpha; x \in U\left(h^*_{(\beta)}\right)\right\} = \emptyset$, then $h^*_{(\alpha)}(x) = h^*(x)$ and $\left|h^*_{(\alpha)}(x) - h_{(\alpha)}(x)\right| \le \frac{\sigma}{6}$.

We assume that $\beta_0 = \min\left\{\beta < \alpha; x \in U\left(h^*_{(\beta)}\right)\right\}$. Then $h^*_{(\alpha)}(x) = \lim_{t \to x} h^*_{(\beta_0)}(t)$. Let $\epsilon > 0$ be an arbitrary real number. Thus there exists a real number $\eta > 0$ such that, for each $t \in (x - \eta, x + \eta)$ and $t \neq x$, $\left|h^*_{(\beta_0)}(t) - h^*_{(\alpha)}(x)\right| < \frac{\epsilon}{2}$. Since $x \in C(g) \setminus P = C(h)$; so there exists a real number $\eta_1 > 0$ such that, for each $t \in (x - \eta_1, x + \eta_1)$, $|h(x) - h(t)| < \frac{\epsilon}{2}$. Let $\eta_0 = \min\{\eta, \eta_1\}$. Since $h^* \in \mathcal{A}$, the set $C(h^*)$ is a residual subset of \mathbb{R} and $\bigcup_{0 \leq \beta < \beta_0} U\left(h^*_{(\beta)}\right) \subset \mathbb{R} \setminus C(h^*)$ is a set of the first category. Therefore

 $(x - \eta_0, x) \cap \left(\mathbb{R} \setminus \bigcup_{0 \le \beta < \beta_0} U\left(h^*_{(\beta)}\right)\right) \ne \emptyset$. Then, by Theorem 1 (2, β_0), there exists a point $t_0 \in (x - \eta_0, x) \cap \left\{t; h^*_{(\beta_0)}(t) = h^*(t)\right\}$. Hence

$$\begin{aligned} \left| h_{(\alpha)}^{*}(x) - h_{(\alpha)}(x) \right| &= \left| h_{(\alpha)}^{*}(x) - h(x) \right| \\ &\leq \left| h_{(\alpha)}^{*}(x) - h_{(\beta_{0})}^{*}(t_{0}) \right| + \left| h_{(\beta_{0})}^{*}(t_{0}) - h^{*}(t_{0}) \right| \\ &+ \left| h^{*}(t_{0}) - h(t) \right| + \left| h(t) - h(x) \right| \\ &< \frac{\epsilon}{2} + 0 + \frac{\sigma}{6} + \frac{\epsilon}{2} = \frac{\sigma}{6} + \epsilon. \end{aligned}$$

Therefore $\left|h_{(\alpha)}^{*}(x) - h_{(\alpha)}(x)\right| \leq \frac{\sigma}{6}$ and condition (iv, α) is satisfied. Let $x \in P$. Then, by (iv, α) and (ii, α),

$$\liminf_{t \to x} h^*_{(\alpha)}(t) \le \liminf_{t \to x} h^*_{|C(g)(\alpha)}(t) \le \liminf_{t \to x} h_{|C(g)(\alpha)}(t) + \frac{\sigma}{6}$$
$$= g_{(\alpha)}(x) + \frac{\sigma}{6}$$

and

$$\limsup_{t \to x} h^*_{(\alpha)}(t) \ge \limsup_{t \to x} h^*_{|C(g)(\alpha)}(t) \ge \limsup_{t \to x} h_{|C(g)(\alpha)}(t) - \frac{\sigma}{6}$$
$$= g_{(\alpha)}(x) + \frac{\sigma}{2} - \frac{\sigma}{6}.$$

Therefore $\limsup_{t\to x} h^*_{(\alpha)}(t) - \liminf_{t\to x} h^*_{(\alpha)}(t) \geq \frac{\sigma}{6} > 0$ and $x \notin L\left(h^*_{(\alpha)}\right)$; so, for each ordinal number $\alpha(0 \leq \alpha < \omega_1)$, conditions (iv,α) and (v,α) are satisfied. By our assumptions, there exists an ordinal number α_0 with $0 \leq \alpha < \omega_1$ such that $h^* \in \mathcal{A}_{\alpha_0}$. Then $\mathbb{R} = C\left(h^*_{(\alpha_0)}\right) \subset L\left(h^*_{(\alpha_0)}\right)$. By (v,α_0) , $P \subset \mathbb{R} \setminus L\left(h^*_{(\alpha_0)}\right) = \emptyset$, a contradiction. Thus $h^* \notin \mathcal{A}$ and $K_1 \cap \mathcal{A} = \emptyset$.

Now we show that $K_1 \subset K$. Let $h^* \in K_1$. Assume that $x \in P$. Then

$$\begin{aligned} |h^*(x) - f(x)| &\leq |h^*(x) - h(x)| + |h(x) - f(x)| \\ &= |h^*(x) - h(x)| + |g(x) + \frac{\sigma}{2} - f(x)| \\ &\leq |h^*(x) - h(x)| + |g(x) - f(x)| + \frac{\sigma}{2} < \frac{2\sigma}{3} + \delta_1. \end{aligned}$$

Let $x \in \mathbb{R} \setminus P$. Then

$$\begin{aligned} |h^*(x) - f(x)| &\leq |h^*(x) - h(x)| + |h(x) - f(x)| \\ &= |h^*(x) - h(x)| + |g(x) - f(x)| \\ &\leq |h^*(x) - h(x)| + |g(x) - f(x)| < \frac{\sigma}{6} + \delta_1. \end{aligned}$$

Therefore $\rho(f, h^*) \leq \frac{2\sigma}{3} + \delta_1 < \delta$ and $h^* \in K$ and the proof is complete. \Box

We will say that $f : \mathbb{R} \to \mathbb{R}$ belongs to \mathcal{B}_1^* if for every perfect set P there exists an open interval (a, b) such that $f_{|(a,b)\cap P}$ is a continuous function.

Proposition 3 The class A_1 is not contained in \mathcal{B}_1^* .

PROOF. Let $P \subset [0,1]$ be the Cantor set. We define the function $f: \mathbb{R} \to \mathbb{R}$ as follows. If x is the end of some contiguous interval of P, then f(x) is equal to the length of this interval, otherwise f(x) = 0. Note that $f \in \mathcal{A}_1 \setminus \mathcal{A}_0$. Let (a,b) be a non-empty interval such that $(a,b) \cap P \neq \emptyset$. Then there exists a point $x_0 \in (a,b)$ such that x_0 is the end of some contiguous interval of P; so $f(x_0) > 0$ and there exists a real number $\eta > 0$ such that either $(x_0 - \eta, x_0) \subset \{x \in (a,b); f(x) = 0\}$ or $(x_0, x_0 + \eta) \subset \{x \in (a,b); f(x) = 0\}$. Thus either $\lim_{t\to x_0^-} f(t) = 0$ or $\lim_{t\to x_0^+} f(t) = 0$. Hence for every open interval (a,b) such that $(a,b) \cap P \neq \emptyset$, the function $f_{|(a,b)\cap P}$ is not continuous on the set P. Thus $f \notin \mathcal{B}_1^*$, so $\mathcal{A}_1 \not\subset \mathcal{B}_1^*$ and the proof is complete. \Box

It is easy to see that L(f) = C(f) for every Darboux function. We have thus the following theorem.

Theorem 6 There is no Darboux discontinuous function, which is improvable.

References

- [1] A. Katafiasz, *Improvable functions*, Real Analysis Exch., **21** (1995–96).
- W. H. Young, La sym etrie de structure des fonctions des variables r eelles, Bulletin des Sciences Mathematiques, 52 (2) (1928), 265–280.