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IMPROVABLE DISCONTINUOUS
FUNCTIONS

Abstract

In this paper the class of improvable functions is defined and the pasic
properties of such functions is examined. Moreover, a necessary and
sufficient condition under which a set A is the set of points of continuity
of some a-improvable discontinuous function is gives. and it is shown
that the classes Ao and Ag are different is o # .

1 Introduction

If at some point z lim;_,, f(t) exists and lim;—,, f(¢) # f(x), then we can
say that f has an improvable discontinuity at the point x. If at each such
point we change the value f(x) to lim;_,, f(t), then we obtain a new function
fq) with the “improved” improvable points of discontinuity of the function f.
Repeating this process for the function f(;) and so on, we can create a sequence
(even the transfinite sequence) ( f(a)) in such a way that f(,41) is obtained
from f(o) by “improving” f()-.

2 Preliminaries

The word “function” will mean a bounded real function of a real variable. Let
D CR.

Definition 1 For each function f: D — R, let
O(f) ={w € D im (1) = ()}
U() ={w € D: Jim f(t) # f(a)}

L(f) = {x € D; th_r)r; f(@) em'sts} .
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Definition 2 A point zg € U(f) is called an improvable point of discontinuity
of the function f.

The following remark can be easily seen.

Remark 1 Let f: D —R. Then U(f)NC(f) =0 and L(f) = U(f) UC(f).

The following proposition is well known. (Compare to [2].)

Proposition 1 The set U(f) is countable.

We define the functions f(,) on the class of ordinal numbers.

Definition 3 Let f : D — R and let f)(z) = f(x) for each x € D. For
every ordinal number o, let

f() if{y <o zeU(fy))} =0,
fay(@) = limy sy fo)(8)  if 2 €U (fr),
where 9 = min {’y <oa;xzelU (f(n,))}.

This theorem will be very useful in the paper.

Theorem 1 Let f: D — R and let o > 0 be an ordinal number. Then

(1,a) for eachx € D, {7 <a;xzeU (f(“/))} is the empty set or has only one
element,

(2,a) for each ordinal number v (v < ),

{zeD; fy(@) # fly@} = |J Uf),

y<p<a
(3,) for each ordinal number v (v < a), if x € L (f(v)), then

th_l;rglc f(V) (t) = f(a) (.73)7

(4,0) Up<pea L (f(5)) € C (fio)-

PROOF. It can be easily shown that (1,1), (2,1) and (3,1) hold. Let zo €
L (f(0))- Then, by (3,1), limy—4, f0)(t) = fa)(zo). Let € > 0. Then there
exists § > 0 such that, for each ¢ € (x9 — 0,20 + §) N D, if t # x then
| f0)(t) = f)(wo)| < 5. We shall show that, for each t € (zo — 6,29 + ) N D,
|fa)(t) — fay(xo)| < €. Let t € (x9 — 6,29+ 0) N D. It may be assumed that

t # Zo and f(O)(t) 7£ f(l)(t) Then, by (2,1), t e U(f(o)) Cc L (f(O)) and,
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by (3,1), lim. ¢ f0)(2) = f1)(t). Since t € (xo — d,z0 + ) N D, there exists
z € (2o — 0,70 + ) N D such that z # xg and |fo)(2) — f1)(t)| < §. Thus

Ify () = foy (o)l < | fy(t) — fooy(2)| + [fi0y(2) — fra)y(zo)| < e

Therefore xg € C (f(l)) and (4,1) is proved.

Let ag > 1 be an ordinal number. Assume for each o with 1 < a < ag, we
have (1, a), (2, @), (3, @), (4, a). Let z € D and {y < a; € U (f()) } # 0.
Put v9 = min{’y <ap,zelU (f(“/))} If g =9+ 1, then

{v<ao z€U(fi))} ={10}-

If v+ 1< ayand v < 71 < ap, then

€U (f) CL(fom) € U L(fw)-

0<B<m

Since v1 < ag, by (4,71), © € UOS,@<71 L (f(g)) ccC (f(%)) and z € U (f(%)).

Thus v, & {7 < ao; © € U (f()) }. Hence {y < ap; € U (f(,))} = {70} and
we have (1,aq).

Let v < ag. First, assume that = ¢ Uv§ﬂ<a0U(f(ﬁ))' If {B < ap;
x € U(f(ﬁ))} # 0, then, by (1,ap), there exists Sy < 7 such that {ﬁ < Qo;
€U (fi)} ={Bo}- Thus, by the definitions of the functions f(a,) and f(),
we have f(ag) (@) = limyq f(5,)(t) = fi)(x). H {B<ao; z€U(fz)} =0,
then f(a,)(#) = f(z) = fi)(@).

Now, let z € U’YS5<C¥0 U (f(ﬁ)). Then, by (1,ap), there exists 8y (v < Bo <
ap) such that {6 <ap xelU (f(g))} = {Bo}. Thus

ooy (@) = lim fia,)(t) # fiao)(@)-

If By = ~, then f(ao)(x) #+ f(V)(x)' If By > ~, then z ¢ U’YSB<50U(f(ﬂ))
and, by (2,60), f(1)(z) = f(3,)(x). Therefore f(,)(x) # f()(x) and we have
(2,a0). Let v < ap and z € L (f(v))' Then z € C(f(w)) uuU (f(“/))' First,
we assume that v € U (f(v))' Then, by (1,ap), {,6’ <ayp xelU (f(ﬁ))} = {~}
and, by the definition of f,,), we get fia,)(7) = lims, fi,)(t). Now, let
z € C(f())- Thenlim_,, f()(t) = f(y)(z) and & € U (f(4)). If 5 is an ordinal
number such that v < 7 < ag, thenz € C (f(,y)) cL (f(,y)) C U0<B<n L (f(g))
and, by (4n), © € C (fy) and = & U (foy). Thus = & U <, o0, U (fi))-
Then, by (2,a0), fiy)(®) = frae)(x). Therefore limy_,, f(1)(t) = f(ay)(z) and
we have (3,ap).

Let 2y € U0§ﬂ<ao L (f(ﬁ)). Then there exists By < ag such that zg €

L (f(ﬁo))- Therefore, by (3,a0), lim¢ 2, f(5,)(t) = frao)(w0). If Bo = 0, then,
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by (4,1),

0 € L(fo) © J L(fw) < C(fu) € L(f))-

0<n<1

Thus it may be assumed that 8y > 1. Let € > 0. Then there exists § > 0 such
that, for each ¢t € (2o —0,20+0)ND, if t # g, then |fz,)(t) = flao)(®0)| < §.
We shall show that, for each ¢t € (2o —d,204+0) N D, |f(ag)(t) = flag)(To)| <€

Let t € (xg — 6,20+ 0) N D. We may assume that ¢ # x¢ and f,,)(t) #
f(go)(t)- Then, by (2,a0), t € Upg,<p<a, U (f())- Let B1 be an ordinal number
such that 5y < 81 < ag and t € U (f(ﬁ1))~ Then, by (3,a0), lim._; f(3,)(2) =
f(a)(t). Therefore there exists n > 0 such that (¢ —n,t+n) C (2o — 0, z0 +9),
xo & (t—n,t+n) and, for each z € (t —n,t+n) N D, if z # ¢, then |f(z,)(z) —
flao) ()] < §. Since either (t—n,t)ND # Qo (t,t+n)ND # (), we may assume
that (t—n,t)ND # (. If 81 = By, we choose an arbitrary tg € (t—n,t)ND. Now,
we assume that Sy < 51 < ap and let J = (¢ —n,t) N.D. We suppose that J C
UﬁoSﬁ<51 U (f(g)) and let 85 = min {ﬁo <B< By JNU (f(g)) #* (Z)}. Then,
by (1,51), we have, for each z € J, {B < fPo; z € U(f(g))} = 0; s0 f(z) =
f(lgz)(z) Let zp € U(f(ﬁz)) N J. Then limz—>zo f(z) = hmz—>zo f(ﬁz)(z) 75
f(82)(20) = f(20). Thus zo € U(f) and, by (1,81) and B2 > 0, 20 € U (f(3,))
a contradiction. Therefore J \ Ug <55, U (f(s)) # 0 and we choose ty €

J\UBOSB<51 U (f(/@))' Then, by (2,51), f(ﬁl)(to) = f(ﬂo)(to). Thus
| flao) () = Fao) (@) | < | fiao) (&) = fi0) (to)| + | f(50) (t0) = flao) (@0)] < €.

Hence zg € C (f(ao)).
Thus we have shown that, for each ordinal number a > 0, the conjunction
of these conditions holds, so the proof of the theorem is complete. (I

The following remarks can be easily established.

Remark 2 Let f: D — R and let a be an ordinal number. Then

f(a);7
fla)) -

fa) (@), ifxgU
fa+ny(2) = { tlir)rgljf(a)(t), ifreU

Remark 3 Let f: D — R and let a, B be ordinal numbers such that 0 < a <
B. Then C (fo) € C (fis))-

Definition 4 For each ordinal number o, we denote

Ao ={f:D —-R; C(fn)=D}.
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We make the following remark.

Remark 4 The family (Aa),~o has the following properties.
1. A is the family of all continuous functions on D.
2. For each ordinal number o > 0, U0§5<a Ag C Aa.

Definition 5 If a function f: D — R belongs to A, \ <U05B<a Ag), then it

will be called an a-improvable discontinuous function.

Theorem 2 Let f : D — R. Then, for every ordinal number o, C (f(a)) C
cl(L(f)).

ProOF. Let H = D\ cl(L(f)). Then H is open in D. We suppose that

{5 < o HﬂU(f(B)) #* @} # 0. Let By = min{,@ < HﬂU(f(f;)) # [Z)}

Since U(f) C L(f), we have By > 0. Then H N U<, 5, U (f¢)) = 0 and,

by Theorem 1 (2,60), H C {z € D; f(z) = fg,)(x)}. Thus HNU (f(3,)) =

HNU(f) =0, a contradiction. Therefore {8 < o; HNU (f(5)) # 0} =0 and

g}TUOSﬁ«lU (f(s)) = 0. By Theorem 1 (2,e), H C {z € D; f(z) = f)(2)}.
en

C (fl) NH=C(f)NH C L(f)NH =0 and C (f()) C L (L(f))-

Corollary 1 Let f : D — R and let a be an ordinal number such that C (f(a))
is a dense subset of D. Then L(f) is also a dense subset of D.

Definition 6 Let f : D — R. For each interval I = (a,b) N D # 0, the
quantity w(f,I) = sup,c; f(x) —infzer f(x) is called the oscillation of f on I.
For each fized x, the function w(f,(x —d,z+ )N D) decreases with § > 0
and approaches a limit w(f,z) = limsow (f,(x — 3,2+ )N D) called the
oscillation of f at x.

We have shown that if C (f(a)) is a dense subset of D, then L(f) is also
a dense subset of D. We can ask whether C(f) is a dense subset of D. The
answer in general is negative.

Proposition 2 There exists a subset D of R and a function f: D — R, such
that C(f) =0 and C (f1)) = D.

ProoOFr. Let D = Q where Q is the set of all rational numbers. Let Q =
(zn)pey and f(z,) = 1, for each n € N. We observe that, for each n € N,
f(xn) > limy,, f(t) = 0; s0 z,, € U(f). Hence C(f) =0 and f(1)(z) = 0 for
each x € D. O
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Theorem 3 Let f: D — R and let o be an ordinal number. If C (f(a)) =D
and D is closed, then the set C(f) is a dense subset of D.

ProoF. We suppose that the set C(f) is not dense in D. Then there exists
(a,b) such that (a,b) N D # @ and (a,b) N DN C(f) = 0. Thus

(a,b)ND C [_j {xeD; w(f,x) > 1}.

n

Since (a,b) N D is a set of the second category in D N Ja, b], there exist ng € N
and an open interval (¢,d) C (a,b), such that

(e,dyND # P and (¢,d)ND C {IED; w(f,z) > nl}
0

Therefore (¢,d)NDNL(f) = 0 and, by C (f(a)) = D and Corollary 1, we have
a contradiction. O

Corollary 2 If f : R — R and f € A, where o is an ordinal number, then
C(f) is a dense subset of R.

It is interesting whether, for each function f: D — R such that C(f) is a
dense subset of D, there exists an ordinal number o > 0 such that f € A,.
The answer suggests the following proposition.

Proposition 3 There exists a closed D C R and a function f: D — R such

that C(f) is a dense subset of D and there exist no ordinal number « such
that f € A,.

PrROOF. Put D = [0,1]. Let K be the Cantor set and let f : D — R be the
characteristic function of K. Note that, for each x € K,

1= f(z) =limsup f(¢) # liminf f(¢) =0
t—x t—x

and, for each € D\ K, lim_,, f(t) = f(z) = 0. Thus U(f) = 0 and fq)(x) =
f(z) for each € D. By Theorem 1 (2,a) and by transfinite induction, we
have that fi)(z) = f(z), for each z € D and for every ordinal number o.

Theorem 4 For each closed set D, for each function f : D — R and for
every ordinal number «, the set C (f(a)) \ C(f) is of the first category in D.

PROOF. Put V = C (f(a)) \ C(f). We suppose that the set V is of the second
category in D. Since V has the Baire property in D, there exists (a,b) C R
such that (a,b) N D # 0 and the set V is a residual subset of I = [a,b] N D.
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Therefore INC(f) C I\V is a set of the first category in I. Since C (f(a)) DV
is a dense subset of I, we have, by Theorem 2, that L(f) NI is also a dense
subset of I. Therefore as in Theorem 3 we can prove that C(f) N1 is also a
dense subset of I. Thus C(f) N1 is a residual subset of I and I\ C(f) is a
set of the first category in I. Hence I = (I \ C(f))U (I NC(f)) is a set of the
first category in I, a contradiction. O

Definition 7 Let K C D. Put K = K. Let
KW = g4 = {z € D; x is an accumulation point of K in D}
and K* = K\ K. Let a > 1 be an ordinal number. Then
o Klatl) — (Km))d;
e if a is a limit ordinal number, then K(®) = ﬂ0§5<a K®),
Definition 8 Let f: D — R. Set

r(f) =min{e; fa) () = farn)(z) for eachz € D} .

Now we show that, for each function f, r(f) is countable.

Theorem 5 If f: D — R, then r(f) < w;.

PRrOOF. Let a = 7(f). Then f(o)(x) = fia+1)(x) for each x € D. Let 8 > «
and we assume that, for each v with o < v < 8, f(,)(%) = fa)(x) for each z €
D. We suppose that there exists xo € D such that fgy(w0) # f(a)(20). Then,
by Theorem 1 (2,a), 20 € Uy<ycsU (f(~))- Therefore there exists 7o with
a < 7y < B such that zg € U (f(%)) and f(a)(70) = f(v)(®0) # firo+1)(20)-
If v0 + 1 < B, we have a contradiction to our assumption. Thus vo + 1 = .
Since f(yy)(®) = fa)(@) for each z € D, we have U (f(y,)) = U (f(a)) = 0
and {z € D; f5)(2) # f(40) @)} = U (f(o)) = 0, a contradiction. Hence
f3)(®) = fa)(x) for each x € D and, for each 8 > a, C (f(ﬂ)) =C (f(a)).

Let D, =C (f(a)) and, let for each 8 > 0, Fg = (D1 \C (f(ﬁ)))d. Since,
for each v with 0 < < 8, by Theorem 1 (4,5),

C(fen) CL(f) © U Lfi) cCfs),

0<E<p

. Therefore we have Fg C F,. Thus, by Theorem 32 (Cantor-Bendixon) [1],

there exists an ordinal number o < w; such that if v > g, then F, = F,,.
We assume that o > ag. Then ) = (D; \ C (f(a)))d = (D1\C (f(ao)))d.

We shall show that a = ag + 1. Let 29 € D1\ C (f(ay)). Then there exists
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an open interval (a,b) such that D N (a,b) N (D1 \ C (fia))) = {zo}. We
suppose that there exists a point 21 € ((D N (a,b)) \ {zo}) U, <c<a U (fe))-
Then there exists an ordinal number &, with ag < & < «a such that z; €
U(fien) € Cfern) € C(fia) = D1 and 21 & C(fap) € C (fien))-
Therefore (D N (a,b)) \ {zo}) N (D1 \ C (fas))) # 0, a contradiction. Hence,
by Theorem 1 (2,a),

(DN (a,0)) \{zo} C {z € D; flap)(@) = fla)(@)} -

Since limy sz, f(a)(t) = fa)(w0), we have that lim; 4y f(a,)(t) = f(a)(z0) and
20 € U (flao))-
We have shown that D1\ C (f(ae)) € U (f(ao)) € C (f(ao+1))- Hence

C (fa)) = (D1\ C (f(an))) U C (flan)) € C (fraps1) € C (fray)

and a = ag + 1. Hence o = ap + 1 < wy and the proof is completed. O

Definition 9 Put A = U<y, Aa- If a function f € A, then it will be
called an improvable function.

Definition 10 For AC D C R, let
M(A)={f:D —=R; f(A) ={0} and, for eachx € D, f(x) > 0}.
The following theorem will be very useful in the paper.

Theorem 6 Let A be a dense subset of D and let f € A, be a function such
that C(f) = A. Then g = |f — fio)l € M(A) and for each 0 < < a,

C(fip) =Claw) U (fs) = U (9)) and ges) = |f(5) — fiol-

PROOF. Assume that f € A,. Let g = |f — fioy|- Of course, for each
r €D,g(xz) > 0. Let x € A and g(x) = |f(x) — fa)(x)]. Since C(f) = A,
by Theorem 1 (2,a), for each z € A, fo)(x) = f(z); so g(z) = 0. Thus
g € M(A).

Now, we show by the transfinite induction that, for each 5 with 0 < 8 < «,

C(fp) =Claw), U(fp) =U(9) and gs) = |f5) = fial-

First, we show that L(f) = L(g). Since D = C (f)), L(f) C L(g). Now,
we assume that o € L(g). Since A is a dense subset of D and g(A) = {0},
lim;_, », g(t) = 0. Therefore, by xg € C (f(a)) =D, and

0= Jim g(t) = Jim [£(t) = ) (1),
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we have limy 4, (f(t) — f(a)(t)) = 0 and

Jim f(8) = Jim (£(2) = fio) (6) + Sy (1) = fia (o)-

Thus there exists limy ., f(t) and 29 € L(f). Hence L(f) = L(g). It is
easy to show that C(f) = C(g). Hence, of course, U(f) = U(g). Now, we
assume that, for each ordinal number £ with 0 < £ < 3, we have shown
that C (fie)) = C (9(9)) » U (fie)) = U (9(e)) and ge) = |fie) = fia| for each
x € D. First, we show that gy = [fs) — fa)l- Let z € D be a point
such that {§ <B;ze U(g(g))} = (. Then {f <fB;xe U(f(g))} = 0; so
f(@) = fg)(@). Thus g(z) = |f(z) = fa)(@)] = |f5)(@) = fay(@)]. I & =
min {§ <pByaxelU (g(g))}, then z € U(g(go)) and, of course, x € U(f(go)).
Therefore £y = min {f <B,xelU (f(g))}. Thus

lim g(go) (1) = lim | fie) (1) = fioy (D) = |5y (2) = fay ().

Since
g(), if {{<B;2€U (9¢)} =0,
g (@) = ¢ limise gy (1), if 2 €U (g6e)),
where £, = min {f <B;xelU (g(g))},

we have gg)(z) = | f(5)(x) — f(a)(2)|. Since C (f(a)) = D and C(g) = C(f) =
A, we can show that L (f)) = L(9()) and C (f)) = C(9()). Then
U (f(a)) =U (g(a)). Thus the proof is complete. O

Corollary 3 Let A be a dense subset of D and let [ € Aq \ Up<penAp be a
function such that C(f) = A. Then, for each B with 0 < < «,

9 € M(C (fig))) -

3 a-improvable Discontinuous Functions

First we give a necessary and sufficient condition under which a set A is the
set of all points of continuity of some a-improvable discontinuous function.

Theorem 7 Let A be a subset of D, where D C R is closed. Then the follow-
ing are equivalent.

(1) There exists a function f: D — R such that f € M(A)NA\Up<p<n As
and C(f) = A. -
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(2) clA =D and there exist two ascending sequences of sets (Cg)y<5<, and

(Fn)o2, such that Co = A, Co = D and, for each ordinal number 3 with
0<B8<a,Csg#Csy1 and

D\<

PrROOF. We assume that condition (1) is satisfied. By Theorem 3, clA = D.
For each ordinal number 8 with 0 < 8 < «, put Cg)y = C (f(g)) and, for each
neNF—{xeDf 1} Then Cy = A, C, = D and, for each 3
(0 < B < a),Cg # Cayq. It is obvious that (F),),—, is an ascending sequence.
By Remark 3, we know that the sequence (Cg),.5.,, 15 ascending, also. Let
B(0 < B < a) be an ordinal number. Since, for each = € D, fla)(®) =0, by
Theorem 1 (2,«), we know that

iC%

(Fr,NCs41) UC’g) U F,N U (Cer1\ Ce)

BLE<a

{z € D; fig)(2) > 0} = {z € D; fp)(2) # f)(@)} = J U(S

BLE<a

By Theorem 1 (2,5) and (4,3), we have that

{reD; f(@)# fm@)} = |J Ulfo) © U L(fo) cC i)

0<E<pB 0<¢<p

Therefore, for each x € D\ Cpg, f(x) = fz)().

We shall show that L (fz) = Cs UU,~; (F,NCst1). Since Cg C
L (f(g)), we suppose that there exists zg € D \ L(f(g)) such that xzy €
Unzi (Fn N (Cp1\ Cp)). Then figi1)(zo) = fig)(zo) = f(xo) > 0 and
x9 & C (f(,8+1)) = (U341, a contradiction.

Therefore Cﬁ U Uzozl (Fn n C@+1) CcL (f(B)) If xg € L (f(ﬁ)), then zg €
Cj or zg € Cp41\Cp and there exists n € N such that fg) (z¢) > L. Therefore
xo € Cgorzy € Cpp1\Cp and f(zg) > % Hence 2o € CgUU,—; (F,, N Caqr).
Thus

L(f) =CsU | J (FanCap1).

n=1



IMPROVABLE DISCONTINUOUS FUNCTIONS 417

We fix n € N. Let H =g, (Cetr1 \ C¢). Then

{xeD; f(m)zi}ﬁHc{xeD fa)(z) >

3 | = 3 | =

C ez eD; fig(x)>

nH

SRS

}
TR
|
N

C

{
C{Mfw 2
{

x € D; f(x)> 1} H.
d
Therefore ({z € D; f(g)(z) > %})d = (Fn NUp<eca (Cet \Cé)) and

D\ (C’gU U (Fnﬁcﬂ+1)> \ L (f(s))

—D
{ € D; hmsupf(g)( ) > 0}

0 (freo 1))

d
(an U (CE+1\CE)) :

B<E<a

[
(G

n=1

Hence we have proved condition (2).
Now, we assume that condition (2) holds. Let

0, if {m €N; € Fro N Upeeca (Cern \ Cg)} =0,
flx)= otherwise,
1. where n = min {m EN; 2 € Fin NUp<ecn (Cett \Cg)} .
We observe that, for each § with 0 < 8 < «,
(oo}
{x e D; lirtnsupfm\cﬁ(t) > O} = U F, N U (Cer1\ Cy)
—x

n=1 B<E<a

Since f(A) = f(Cp) = {0} and since cl A = D, we have that

{x € D; ligiglff(t) = 0} =D.
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We know that

{x € D; limsup f(¢t) > 0} = {Jc € D; limsup fip\¢, (t) > O}
t—ax
d

U (an U (Cg+1\05))

0<é<a

Therefore, by our assumption,
L(f) ={w € Ds lm f(t) =0} = Cy U U ey

=Cy U U (Fn N (C1\ Co))

n=1

and C(f) = Co, U(f) = U,—; (F, N (C1\ Cp)). Let 0 < 8 < a. We assume
that, for each v with 0 <~y < 3,

C(fe) = Cy, U (fi) L_J Cyt1\ C5))

and L (f(v)) {:r € D; limy¢ f)(t) = 0} Let z € Cp.
o If {'y <pByxelU (f(v))} # 0, then f(g)(x) = limy_, f(4,)(t) = 0 where
Yo = min{’y <B,xzelU (f(,y))}.
o If {7<ﬂ; relU (f(.y))} = (), then, for each v with 0 < v < 3, = &
U (ft) = Upey (FyN(Cys1\ Cy)) and, by x € Cg, we have that = ¢
Ut (Fu NUp<eca (Cern \ Co) ).

Therefore z & | Jo, (Fn NUp<e<a (Cet \C§)> and « ¢ Up<ecs U (fre))- So
fp)(x) = f(x) = 0. Hence fﬁ)(C’g) = {0}. Since A=Cy C Cg and clA =D,
therefore {x € D; liminf;,, f(5)(t) = 0} = D. We observe that

{.’IJ € D; limsup f()(t) > 0} = {x € D; limsup fi(p\cy) () (t) > O} .
t—zx

t—x

By Theorem 1 (2,5);

{zeD; fp@) #f@)} = |J Ufv) < |J CerrcCs

0<e<p 0<g<p
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Therefore

{x € D;lirtnsup fiiones) (3) (1) > O} = {x € D; hrtnSUPle\Cza (t) > O}
—T —x
d

I
(@

Fon | (Cepr\ Ce)

1 B<E<a

<

3

Then, by our assumption, we know that

L (f5)) ={ € Ds lim foy(1) =0} = Co U | (Fa 1 Cas)

n=1

=C5U | (Fa N (Coia \ C5)).

Thus C (f(g)) = Cp and U (f(5)) = U=y (Fa N (Cy1 \ C)).-
We shall show that, for each x € D, f,)(x) = 0. If there exists fy with

0 < By < «a such that =z € U(f(ﬁu)), then fo)(z) = limy, fig,)(t) = 0
where fp = min{f < a; x €U (f(5)}. f {B<a; zeU(fp)} =0, then,
for each 8 with 0 < 8 < a, z & U,—; (F, N (Cgy1\ Cp)). Therefore z ¢
Uzt (Fa Uospen (Coin\Cs)) and foy(@) = f(x) = 0. Hence f € Aq\
U0S6<a Apg and the proof of the theorem is complete. O

Corollary 4 Let (Cﬁ)o<3<a be an ascending sequence of sets such that
cCy =R, Cy, = R. Let H be an arbitrary set such that, for each ordinal
number 5 with 0 < 8 < a,

d

D\((HNCs:1)UCs) = [HN |J (Cera\ o)

B<E<a

and Cg # Cg41. Then the characteristic function of the set H belongs to the
class Ao \ Up<pecn As-

ProOOF. For each n € N, let F,, = H. Then, as in the proof of Theorem 10, we
can prove that the characteristic function of the set H belongs to the class A,
and, for each ordinal number g with 0 < f < o, Cg =C (f(g)) and U (f(g)) =
H N (Cpg41\ Cp). Since, by our assumption, for each ordinal number 5 with

0<pB<a, O(f(g)) #+C (f(/@_,.n), we have that f ¢ U0<6<a Ag. Thus the
proof is complete. B O

The following theorem shows that we can construct an a-improvable dis-
continuous function for each a@ < w;. To prove this theorem we need the
following lemma.
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Lemma 1 Let A=J,_, A, U{0} where, for eachn € N, A, is a closed set,

A, C [n%_l, ﬂ, n%_l € A, and % is a left-side isolated point in the set A.

Then, for each ordinal number o, A\ {0} = [J>°, A,

PRrROOF. If @ = 0, then the lemma is true.
Let @ > 0 be an ordinal number and we assume that, for each ordinal
number 3 with 0 < 8 < a, A®\ {0} = U2, AP, Consider two possibilities.

1. Let « = v+ 1, where 7 is an ordinal number and let zo € A\ {0}.
Then there exists n € N such that zo > — and there ex1sts a sequence

+
(z1)re; € AO) such that limk_)oo Tr = To. Since ? is a left-side
isolated point of A and A(Y) C A, there exists kg € N such that, for each
d
k> ko, x> 5. Hence (z)32, € U LAY s 3 € (U?=1 A§7)) _

Uiz, A c U, Ad. Thus A\ {0} € Up, AR,

Since, for eachn € N, A,, C A; so AS{*) c A@ Hence UZO=1 A%a) c A
and since, for each n € N, 0 ¢ A,, for each n € N, 0 ¢ AS{”; )
0¢ U . Thus S22, AL c A\ {0}.

2. Let a be a limit ordinal number and let 2o € A(® \ {0}. Then there
exists n € N such that x¢ > n%rl Let v < a be an ordinal number. Then
zo € AU Thus there exists a sequence (z3)pe, C A®) such that
limy o0 xk = 2. As above we can show that zg € A(7+1) Hence zg €
N, <a An O ﬂﬂ{<a = A Thus a € U, A(a Similarly to
the first part, we can show that |J)—, Axn @ c A@ \ {0}.

Thus the proof is complete. Il

Theorem 8 For each ordinal number o < w1, there exists a function f €

Aa \ Uogﬁ<a AB-

PrOOF. For each set A C R and a,b € R, let aA + b = {ax + b;z € A}. By
transfinite induction, we define a sequence of sets (Wa)p<n<y, in the following

way: Wo =0, Wi = {0}, Wa = {1; n € N}U{0} and, for each ordinal number
a with 3 < a < wy,

1. if & = v+ 2, where ~ is an ordinal number, then put

G( e T il)u{o}’
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2. if « is a limit ordinal number, then

W, — g (n(nl—Fl)Wa" + nil) U {0}

where (ozn)ff:l is a sequence of ordinal numbers such that lim,, . o, =
« and, for each n € N, o, < o and «,, is not a limit ordinal number,

3. if a« = v+ 1, where § is a limit ordinal number, then put W, = W,.
We shall show that, for each ordinal number o with 0 < a < w1,

(i) W, is a closed nowhere dense set and W, C [0, 1],

(ii) if @ > 1, then, for each n € N, 1 € W, and there exists 5 > 0 such
that (% — 64, %) NWe =0,

(iii) if a > 0, then, for each f with 0 < 8 < a, 0 € VVO(F)7

(iv) if « is not a limit ordinal number, then W = 0 and if o is a limit

ordinal number, then W = {0}.

The above conditions are obvious for « = 0,1,2. Let o with 2 < a < w; be
an ordinal number. We assume that conditions (i), (ii), (iii), (iv) are satisfied
for each ordinal number 5 < a.

1. We assume that @« = v + 2, where v is an ordinal number. Since
W41 is a closed nowhere dense set and W, C [0,1], for each n € N,
ﬁwﬁwﬁ—%ﬂ is a closed nowhere dense set and ﬁWnﬁﬁ—%ﬂ C
[%ﬂ, ﬂ Therefore W, is a closed nowhere dense set and W, C [0, 1].
Let n € N. Since 1 € W41, we obtain

1 1 1 1

1
w. — C W,.
7+1+n+1 -

€
n n(n+1)+n—|—1 n(n+1)
By our assumption, there exists 5§’Y+1) > 0 such that (1 — 6§7+1)7 1) N

Wyt1 = 0. We put 57([1) = n(nlﬂ)dfy“). Then (% — (5,(10‘), %) NW, = 0.
Let 8 be an ordinal number such that 0 < § < «a. By the above, we

have that the assumptions of Lemma 1 are satisfied. Therefore

WO (0} = (1WM " 1) v

2 \n(n+1) n+1

N Loy, 1
= — W — .
U (n(nJrl) 7+1+n+1)

n=1
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Now,
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By our assumption, 0 € Wy(l)r Therefore, for each n € N, n%rl €

WA+ e < Wl Thus 0 € WY € WP We know that

Ww(fl_l) = (). Hence

h 1 (v+1) 1
w0 = U (i WH + i) =9

n=1

and W = 0.

Now we assume that « is a limit ordinal number. As to above we may
show that conditions (i) and (ii) are satisfied. Additionally, by Lemma 1
, we have that, for each ordinal number g with 0 < 38 < «,

WO 0= U (s + )

n=1

Let 0 < B < a. Then there exists ng € N such that, for each n € N,
n > ng, a, > B. By our assumption, for each n > ng, 0 € Wéfb) and
1 1 (8) 1 (8 (B+1) (8)

T_HEWWQH‘FmCWa.ThUSOEWQ CWQ and
0 € No<pea W = Wi, We know that, for each n € N, W% ¢
W) = . Therefore W.™ \ {0} = 0. Hence Wi = {0}.

Now we assume that o = v+ 1, where y is a limit ordinal number. It is
obvious that conditions (i), (ii), (iii) are satisfied. Additionally

Wi = Wi = (W) = ({op) =

we consider the following possibilities.

Let @« = 7 + 2, where v is an ordinal number. In Corollary 4, we put
H = W, and, for each ordinal number 8 with 0 < 8 < a, Cg = R\Wéﬁ).

Then
d

Hn ) (Cen\Co)| = (Wéﬂ)y

B<E<a

and R\ ((HNCsy1)UCj) = WY Therefore the characteristic func-
tion of the set H belongs to the class Aa \ Up<pcq As-

Let « be a limit ordinal number. Put H = W, \ {0} and, Cy = R\ W,
for each ordinal number 8 with 0 < 8 < o, Cg = R\ WS C,, = R. We
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show that all assumptions of Corollary 4 are satisfied. We observe that

U ©Cea\co= U (W(gs)\wém))_

B<E<a B<E<a
Since W™ = {0}, we have Us<t<a ( o9 \WO(FH)) = Wi\ {o}.
Thus
d

HnN U (Cer1 \Ce) | = ((Wa N Wa(zﬂ)) \ {0})d

B<E<a

_ (Wéﬁ))d _ Wéﬁ+1).

Since R\ ((H N Cp41) UCB) = {0} U WP — WP by Corollary 4,
we have that, the characteristic function of the set H belongs to the class

'Aa \ U0§B<a AB

3. Let @ = v+ 1, where 7 is a limit ordinal number. Put H = W,, and, for

each ordinal number 8 with 0 < f < «, Cg =R\ Wém. As in the first
part, we can show that the characteristic function of the set H belongs

to Aq \ U0S5<a .A/g.
Thus the proof is complete. ([
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