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IMPROVABLE DISCONTINUOUS
FUNCTIONS

Abstract

In this paper the class of improvable functions is defined and the pasic
properties of such functions is examined. Moreover, a necessary and
sufficient condition under which a set A is the set of points of continuity
of some α-improvable discontinuous function is gives. and it is shown
that the classes Aα and Aβ are different is α 6= β.

1 Introduction

If at some point x limt→x f(t) exists and limt→x f(t) 6= f(x), then we can
say that f has an improvable discontinuity at the point x. If at each such
point we change the value f(x) to limt→x f(t), then we obtain a new function
f(1) with the “improved” improvable points of discontinuity of the function f .
Repeating this process for the function f(1) and so on, we can create a sequence

(even the transfinite sequence)
(
f(α)

)
in such a way that f(α+1) is obtained

from f(α) by “improving” f(α).

2 Preliminaries

The word “function” will mean a bounded real function of a real variable. Let
D ⊂ R.

Definition 1 For each function f : D → R, let

C(f) =
{
x ∈ D; lim

t→x
f(t) = f(x)

}
,

U(f) =
{
x ∈ D; lim

t→x
f(t) 6= f(x)

}
,

L(f) =
{
x ∈ D; lim

t→x
f(t) exists

}
.
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Definition 2 A point x0 ∈ U(f) is called an improvable point of discontinuity
of the function f .

The following remark can be easily seen.

Remark 1 Let f : D → R. Then U(f) ∩ C(f) = ∅ and L(f) = U(f) ∪ C(f).

The following proposition is well known. (Compare to [2].)

Proposition 1 The set U(f) is countable.

We define the functions f(α) on the class of ordinal numbers.

Definition 3 Let f : D → R and let f(0)(x) = f(x) for each x ∈ D. For
every ordinal number α, let

f(α)(x) =

 f(x) if
{
γ < α; x ∈ U

(
f(γ)

)}
= ∅,

limt→x f(γ0)(t) if x ∈ U
(
f(γ0)

)
,

where γ0 = min
{
γ < α; x ∈ U

(
f(γ)

)}
.

This theorem will be very useful in the paper.

Theorem 1 Let f : D → R and let α > 0 be an ordinal number. Then

(1,α) for each x ∈ D,
{
γ < α; x ∈ U

(
f(γ)

)}
is the empty set or has only one

element,

(2,α) for each ordinal number γ (γ < α),{
x ∈ D; f(γ)(x) 6= f(α)(x)

}
=

⋃
γ≤β<α

U
(
f(β)

)
,

(3,α) for each ordinal number γ (γ < α), if x ∈ L
(
f(γ)

)
, then

lim
t→x

f(γ)(t) = f(α)(x),

(4,α)
⋃

0≤β<α L
(
f(β)

)
⊂ C

(
f(α)

)
.

Proof. It can be easily shown that (1,1), (2,1) and (3,1) hold. Let x0 ∈
L
(
f(0)
)
. Then, by (3,1), limt→x0

f(0)(t) = f(1)(x0). Let ε > 0. Then there
exists δ > 0 such that, for each t ∈ (x0 − δ, x0 + δ) ∩ D, if t 6= x0 then
|f(0)(t)− f(1)(x0)| < ε

2 . We shall show that, for each t ∈ (x0 − δ, x0 + δ) ∩D,
|f(1)(t) − f(1)(x0)| < ε. Let t ∈ (x0 − δ, x0 + δ) ∩D. It may be assumed that

t 6= x0 and f(0)(t) 6= f(1)(t). Then, by (2,1), t ∈ U
(
f(0)
)
⊂ L

(
f(0)
)

and,
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by (3,1), limz→t f(0)(z) = f(1)(t). Since t ∈ (x0 − δ, x0 + δ) ∩D, there exists
z ∈ (x0 − δ, x0 + δ) ∩D such that z 6= x0 and |f(0)(z)− f(1)(t)| < ε

2 . Thus

|f(1)(t)− f(1)(x0)| ≤ |f(1)(t)− f(0)(z)|+ |f(0)(z)− f(1)(x0)| < ε.

Therefore x0 ∈ C
(
f(1)
)

and (4,1) is proved.
Let α0 > 1 be an ordinal number. Assume for each α with 1 ≤ α < α0, we

have (1, α), (2, α), (3, α), (4, α). Let x ∈ D and
{
γ < α0; x ∈ U

(
f(γ)

)}
6= ∅.

Put γ0 = min
{
γ < α0; x ∈ U

(
f(γ)

)}
. If α0 = γ0 + 1, then{

γ < α0; x ∈ U
(
f(γ)

)}
= {γ0} .

If γ0 + 1 < α0 and γ0 < γ1 < α0, then

x ∈ U
(
f(γ0)

)
⊂ L

(
f(γ0)

)
⊂

⋃
0≤β<γ1

L
(
f(β)

)
.

Since γ1 < α0, by (4,γ1), x ∈
⋃

0≤β<γ1 L
(
f(β)

)
⊂ C

(
f(γ1)

)
and x 6∈ U

(
f(γ1)

)
.

Thus γ1 6∈
{
γ < α0; x ∈ U

(
f(γ)

)}
. Hence

{
γ < α0; x ∈ U

(
f(γ)

)}
= {γ0} and

we have (1,α0).
Let γ < α0. First, assume that x 6∈

⋃
γ≤β<α0

U
(
f(β)

)
. If

{
β < α0;

x ∈ U(f(β))
}
6= ∅, then, by (1,α0), there exists β0 < γ such that

{
β < α0;

x ∈ U
(
f(β)

)}
= {β0}. Thus, by the definitions of the functions f(α0) and f(γ),

we have f(α0)(x) = limt→x f(β0)(t) = f(γ)(x). If
{
β < α0; x ∈ U

(
f(β)

)}
= ∅,

then f(α0)(x) = f(x) = f(γ)(x).

Now, let x ∈
⋃
γ≤β<α0

U
(
f(β)

)
. Then, by (1,α0), there exists β0 (γ ≤ β0 <

α0) such that
{
β < α0; x ∈ U

(
f(β)

)}
= {β0}. Thus

f(α0)(x) = lim
t→x

f(β0)(t) 6= f(β0)(x).

If β0 = γ, then f(α0)(x) 6= f(γ)(x). If β0 > γ, then x 6∈
⋃
γ≤β<β0

U
(
f(β)

)
and, by (2,β0), f(γ)(x) = f(β0)(x). Therefore f(α0)(x) 6= f(γ)(x) and we have

(2,α0). Let γ < α0 and x ∈ L
(
f(γ)

)
. Then x ∈ C

(
f(γ)

)
∪ U

(
f(γ)

)
. First,

we assume that x ∈ U
(
f(γ)

)
. Then, by (1,α0),

{
β < α0; x ∈ U

(
f(β)

)}
= {γ}

and, by the definition of f(α0), we get f(α0)(x) = limt→x f(γ)(t). Now, let

x ∈ C
(
f(γ)

)
. Then limt→x f(γ)(t) = f(γ)(x) and x 6∈ U

(
f(γ)

)
. If η is an ordinal

number such that γ < η < α0, then x ∈ C
(
f(γ)

)
⊂ L

(
f(γ)

)
⊂
⋃

0≤β<η L
(
f(β)

)
and, by (4,η), x ∈ C

(
f(η)

)
and x 6∈ U

(
f(η)

)
. Thus x 6∈

⋃
γ≤η<α0

U
(
f(η)

)
.

Then, by (2,α0), f(γ)(x) = f(α0)(x). Therefore limt→x f(γ)(t) = f(α0)(x) and
we have (3,α0).

Let x0 ∈
⋃

0≤β<α0
L
(
f(β)

)
. Then there exists β0 < α0 such that x0 ∈

L
(
f(β0)

)
. Therefore, by (3,α0), limt→x0

f(β0)(t) = f(α0)(x0). If β0 = 0, then,
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by (4,1),

x0 ∈ L
(
f(0)
)
⊂

⋃
0≤η<1

L
(
f(η)

)
⊂ C

(
f(1)
)
⊂ L

(
f(1)
)
.

Thus it may be assumed that β0 ≥ 1. Let ε > 0. Then there exists δ > 0 such
that, for each t ∈ (x0−δ, x0 +δ)∩D, if t 6= x0, then |f(β0)(t)−f(α0)(x0)| < ε

2 .
We shall show that, for each t ∈ (x0− δ, x0 + δ)∩D, |f(α0)(t)− f(α0)(x0)| < ε.

Let t ∈ (x0 − δ, x0 + δ) ∩D. We may assume that t 6= x0 and f(α0)(t) 6=
f(β0)(t). Then, by (2,α0), t ∈

⋃
β0≤β<α0

U
(
f(β)

)
. Let β1 be an ordinal number

such that β0 ≤ β1 < α0 and t ∈ U
(
f(β1)

)
. Then, by (3,α0), limz→t f(β1)(z) =

f(α0)(t). Therefore there exists η > 0 such that (t− η, t+ η) ⊂ (x0− δ, x0 + δ),
x0 6∈ (t− η, t+ η) and, for each z ∈ (t− η, t+ η)∩D, if z 6= t, then |f(β1)(z)−
f(α0)(t)| < ε

2 . Since either (t−η, t)∩D 6= ∅ or (t, t+η)∩D 6= ∅, we may assume
that (t−η, t)∩D 6= ∅. If β1 = β0, we choose an arbitrary t0 ∈ (t−η, t)∩D. Now,
we assume that β0 < β1 < α0 and let J = (t− η, t)∩D. We suppose that J ⊂⋃
β0≤β<β1

U
(
f(β)

)
and let β2 = min

{
β0 ≤ β < β1; J ∩ U

(
f(β)

)
6= ∅
}

. Then,

by (1,β1), we have, for each z ∈ J ,
{
β < β2; z ∈ U

(
f(β)

)}
= ∅; so f(z) =

f(β2)(z). Let z0 ∈ U
(
f(β2)

)
∩ J . Then limz→z0 f(z) = limz→z0 f(β2)(z) 6=

f(β2)(z0) = f(z0). Thus z0 ∈ U(f) and, by (1,β1) and β2 > 0, z0 6∈ U
(
f(β2)

)
,

a contradiction. Therefore J \
⋃
β0≤β<β1

U
(
f(β)

)
6= ∅ and we choose t0 ∈

J \
⋃
β0≤β<β1

U
(
f(β)

)
. Then, by (2,β1), f(β1)(t0) = f(β0)(t0). Thus

|f(α0)(t)− f(α0)(x0)| ≤ |f(α0)(t)− f(β0)(t0)|+ |f(β0)(t0)− f(α0)(x0)| < ε.

Hence x0 ∈ C
(
f(α0)

)
.

Thus we have shown that, for each ordinal number α > 0, the conjunction
of these conditions holds, so the proof of the theorem is complete. �

The following remarks can be easily established.

Remark 2 Let f : D → R and let α be an ordinal number. Then

f(α+1)(x) =

{
f(α)(x), if x 6∈ U

(
f(α)

)
,

lim
t→x

f(α)(t), if x ∈ U
(
f(α)

)
.

Remark 3 Let f : D → R and let α, β be ordinal numbers such that 0 ≤ α <
β. Then C

(
f(α)

)
⊂ C

(
f(β)

)
.

Definition 4 For each ordinal number α, we denote

Aα =
{
f : D → R; C

(
f(α)

)
= D

}
.
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We make the following remark.

Remark 4 The family (Aα)α≥0 has the following properties.
1. A0 is the family of all continuous functions on D.
2. For each ordinal number α > 0,

⋃
0≤β<αAβ ⊂ Aα.

Definition 5 If a function f : D → R belongs to Aα \
(⋃

0≤β<αAβ
)

, then it

will be called an α-improvable discontinuous function.

Theorem 2 Let f : D → R. Then, for every ordinal number α, C
(
f(α)

)
⊂

cl (L(f)).

Proof. Let H = D \ cl (L(f)). Then H is open in D. We suppose that{
β < α; H ∩ U

(
f(β)

)
6= ∅
}
6= ∅. Let β0 = min

{
β < α; H ∩ U

(
f(β)

)
6= ∅
}

.

Since U(f) ⊂ L(f), we have β0 > 0. Then H ∩
⋃

0≤γ<β0
U
(
f(γ)

)
= ∅ and,

by Theorem 1 (2,β0), H ⊂
{
x ∈ D; f(x) = f(β0)(x)

}
. Thus H ∩ U

(
f(β0)

)
=

H ∩U(f) = ∅, a contradiction. Therefore
{
β < α; H ∩ U

(
f(β)

)
6= ∅
}

= ∅ and

H∩
⋃

0≤β<α U
(
f(β)

)
= ∅. By Theorem 1 (2,α), H ⊂

{
x ∈ D; f(x) = f(α)(x)

}
.

Then

C
(
f(α)

)
∩H = C(f) ∩H ⊂ L(f) ∩H = ∅ and C

(
f(α)

)
⊂ cl (L(f)) .

Corollary 1 Let f : D → R and let α be an ordinal number such that C
(
f(α)

)
is a dense subset of D. Then L(f) is also a dense subset of D.

Definition 6 Let f : D → R. For each interval I = (a, b) ∩ D 6= ∅, the
quantity ω(f, I) = supx∈I f(x)− infx∈I f(x) is called the oscillation of f on I.
For each fixed x, the function ω (f, (x− δ, x+ δ) ∩D) decreases with δ > 0
and approaches a limit ω(f, x) = limδ→0 ω (f, (x− δ, x+ δ) ∩D) called the
oscillation of f at x.

We have shown that if C
(
f(α)

)
is a dense subset of D, then L(f) is also

a dense subset of D. We can ask whether C(f) is a dense subset of D. The
answer in general is negative.

Proposition 2 There exists a subset D of R and a function f : D → R, such
that C(f) = ∅ and C

(
f(1)
)

= D.

Proof. Let D = Q where Q is the set of all rational numbers. Let Q =
(xn)

∞
n=1 and f(xn) = 1

n , for each n ∈ N. We observe that, for each n ∈ N,
f(xn) > limt→xn f(t) = 0; so xn ∈ U(f). Hence C(f) = ∅ and f(1)(x) = 0 for
each x ∈ D. �
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Theorem 3 Let f : D → R and let α be an ordinal number. If C
(
f(α)

)
= D

and D is closed, then the set C(f) is a dense subset of D.

Proof. We suppose that the set C(f) is not dense in D. Then there exists
(a, b) such that (a, b) ∩D 6= ∅ and (a, b) ∩D ∩ C(f) = ∅. Thus

(a, b) ∩D ⊂
∞⋃
n=1

{
x ∈ D; ω(f, x) ≥ 1

n

}
.

Since (a, b)∩D is a set of the second category in D ∩ [a, b], there exist n0 ∈ N
and an open interval (c, d) ⊂ (a, b), such that

(c, d) ∩D 6= ∅ and (c, d) ∩D ⊂
{
x ∈ D; ω(f, x) ≥ 1

n0

}
.

Therefore (c, d)∩D∩L(f) = ∅ and, by C
(
f(α)

)
= D and Corollary 1, we have

a contradiction. �

Corollary 2 If f : R → R and f ∈ Aα, where α is an ordinal number, then
C(f) is a dense subset of R.

It is interesting whether, for each function f : D → R such that C(f) is a
dense subset of D, there exists an ordinal number α ≥ 0 such that f ∈ Aα.
The answer suggests the following proposition.

Proposition 3 There exists a closed D ⊂ R and a function f : D → R such
that C(f) is a dense subset of D and there exist no ordinal number α such
that f ∈ Aα.

Proof. Put D = [0, 1]. Let K be the Cantor set and let f : D → R be the
characteristic function of K. Note that, for each x ∈ K,

1 = f(x) = lim sup
t→x

f(t) 6= lim inf
t→x

f(t) = 0

and, for each x ∈ D\K, limt→x f(t) = f(x) = 0. Thus U(f) = ∅ and f(1)(x) =
f(x) for each x ∈ D. By Theorem 1 (2,α) and by transfinite induction, we
have that f(α)(x) = f(x), for each x ∈ D and for every ordinal number α.

Theorem 4 For each closed set D, for each function f : D → R and for
every ordinal number α, the set C

(
f(α)

)
\ C(f) is of the first category in D.

Proof. Put V = C
(
f(α)

)
\C(f). We suppose that the set V is of the second

category in D. Since V has the Baire property in D, there exists (a, b) ⊂ R
such that (a, b) ∩ D 6= ∅ and the set V is a residual subset of I = [a, b] ∩ D.
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Therefore I∩C(f) ⊂ I\V is a set of the first category in I. Since C
(
f(α)

)
⊃ V

is a dense subset of I, we have, by Theorem 2, that L(f) ∩ I is also a dense
subset of I. Therefore as in Theorem 3 we can prove that C(f) ∩ I is also a
dense subset of I. Thus C(f) ∩ I is a residual subset of I and I \ C(f) is a
set of the first category in I. Hence I = (I \ C(f))∪ (I ∩ C(f)) is a set of the
first category in I, a contradiction. �

Definition 7 Let K ⊂ D. Put K(0) = K. Let

K(1) = Kd = {x ∈ D; x is an accumulation point of K in D}

and K∗ = K \Kd. Let α ≥ 1 be an ordinal number. Then

• K(α+1) =
(
K(α)

)d
;

• if α is a limit ordinal number, then K(α) =
⋂

0≤β<αK
(β).

Definition 8 Let f : D → R. Set

r(f) = min
{
α; f(α)(x) = f(α+1)(x) for each x ∈ D

}
.

Now we show that, for each function f , r(f) is countable.

Theorem 5 If f : D → R, then r(f) < ω1.

Proof. Let α = r(f). Then f(α)(x) = f(α+1)(x) for each x ∈ D. Let β > α
and we assume that, for each γ with α < γ < β, f(γ)(x) = f(α)(x) for each x ∈
D. We suppose that there exists x0 ∈ D such that f(β)(x0) 6= f(α)(x0). Then,

by Theorem 1 (2,α), x0 ∈
⋃
α≤γ<β U

(
f(γ)

)
. Therefore there exists γ0 with

α ≤ γ0 < β such that x0 ∈ U
(
f(γ0)

)
and f(α)(x0) = f(γ0)(x0) 6= f(γ0+1)(x0).

If γ0 + 1 < β, we have a contradiction to our assumption. Thus γ0 + 1 = β.
Since f(γ0)(x) = f(α)(x) for each x ∈ D, we have U

(
f(γ0)

)
= U

(
f(α)

)
= ∅

and
{
x ∈ D; f(β)(x) 6= f(γ0)(x)

}
= U

(
f(γ0)

)
= ∅, a contradiction. Hence

f(β)(x) = f(α)(x) for each x ∈ D and, for each β > α, C
(
f(β)

)
= C

(
f(α)

)
.

Let D1 = C
(
f(α)

)
and, let for each β ≥ 0, Fβ =

(
D1 \ C

(
f(β)

))d
. Since,

for each γ with 0 ≤ γ < β, by Theorem 1 (4,β),

C
(
f(γ)

)
⊂ L

(
f(γ)

)
⊂

⋃
0<ξ<β

L
(
f(ξ)
)
⊂ C

(
f(β)

)
,

. Therefore we have Fβ ⊂ Fγ . Thus, by Theorem 32 (Cantor-Bendixon) [1],
there exists an ordinal number α0 < ω1 such that if γ > α0, then Fγ = Fα0

.

We assume that α > α0. Then ∅ =
(
D1 \ C

(
f(α)

))d
=
(
D1 \ C

(
f(α0)

))d
.

We shall show that α = α0 + 1. Let x0 ∈ D1 \ C
(
f(α0)

)
. Then there exists
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an open interval (a, b) such that D ∩ (a, b) ∩
(
D1 \ C

(
f(α0)

))
= {x0}. We

suppose that there exists a point x1 ∈ ((D ∩ (a, b)) \ {x0})∩
⋃
α0≤ξ<α U

(
f(ξ)
)
.

Then there exists an ordinal number ξ0 with α0 ≤ ξ0 < α such that x1 ∈
U
(
f(ξ0)

)
⊂ C

(
f(ξ0+1)

)
⊂ C

(
f(α)

)
= D1 and x1 6∈ C

(
f(α0)

)
⊂ C

(
f(ξ0)

)
.

Therefore ((D ∩ (a, b)) \ {x0})∩
(
D1 \ C

(
f(α0)

))
6= ∅, a contradiction. Hence,

by Theorem 1 (2,α),

(D ∩ (a, b)) \ {x0} ⊂
{
x ∈ D; f(α0)(x) = f(α)(x)

}
.

Since limt→x0
f(α)(t) = f(α)(x0), we have that limt→x0

f(α0)(t) = f(α)(x0) and

x0 ∈ U
(
f(α0)

)
.

We have shown that D1 \ C
(
f(α0)

)
⊂ U

(
f(α0)

)
⊂ C

(
f(α0+1)

)
. Hence

C
(
f(α)

)
=
(
D1 \ C

(
f(α0)

))
∪ C

(
f(α0)

)
⊂ C

(
f(α0+1)

)
⊂ C

(
f(α)

)
and α = α0 + 1. Hence α = α0 + 1 < ω1 and the proof is completed. �

Definition 9 Put A =
⋃

0≤α<ω1
Aα. If a function f ∈ A, then it will be

called an improvable function.

Definition 10 For A ⊂ D ⊂ R, let

M(A) = {f : D → R; f(A) = {0} and, for each x ∈ D, f(x) ≥ 0} .

The following theorem will be very useful in the paper.

Theorem 6 Let A be a dense subset of D and let f ∈ Aα be a function such
that C(f) = A. Then g = |f − f(α)| ∈ M(A) and for each 0 ≤ β ≤ α,

C
(
f(β)

)
= C

(
g(β)

)
, U

(
f(β)

)
= U

(
g(β)

)
and g(β) = |f(β) − f(α)|.

Proof. Assume that f ∈ Aα. Let g = |f − f(α)|. Of course, for each
x ∈D, g(x) ≥ 0. Let x ∈ A and g(x) = |f(x) − f(α)(x)|. Since C(f) = A,
by Theorem 1 (2,α), for each x ∈ A, f(α)(x) = f(x); so g(x) = 0. Thus
g ∈M(A).

Now, we show by the transfinite induction that, for each β with 0 ≤ β ≤ α,

C
(
f(β)

)
= C

(
g(β)

)
, U

(
f(β)

)
= U

(
g(β)

)
and g(β) = |f(β) − f(α)|.

First, we show that L(f) = L(g). Since D = C
(
f(α)

)
, L(f) ⊂ L(g). Now,

we assume that x0 ∈ L(g). Since A is a dense subset of D and g(A) = {0},
limt→x0

g(t) = 0. Therefore, by x0 ∈ C
(
f(α)

)
= D, and

0 = lim
t→x0

g(t) = lim
t→x0

|f(t)− f(α)(t)|,
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we have limt→x0

(
f(t)− f(α)(t)

)
= 0 and

lim
t→x0

f(t) = lim
t→x0

(
f(t)− f(α)(t) + f(α)(t)

)
= f(α)(x0).

Thus there exists limt→x0
f(t) and x0 ∈ L(f). Hence L(f) = L(g). It is

easy to show that C(f) = C(g). Hence, of course, U(f) = U(g). Now, we
assume that, for each ordinal number ξ with 0 ≤ ξ < β, we have shown
that C

(
f(ξ)
)

= C
(
g(ξ)
)
, U

(
f(ξ)
)

= U
(
g(ξ)
)

and g(ξ) = |f(ξ) − f(α)| for each
x ∈ D. First, we show that g(β) = |f(β) − f(α)|. Let x ∈ D be a point

such that
{
ξ < β; x ∈ U

(
g(ξ)
)}

= ∅. Then
{
ξ < β; x ∈ U

(
f(ξ)
)}

= ∅; so
f(x) = f(β)(x). Thus g(x) = |f(x) − f(α)(x)| = |f(β)(x) − f(α)(x)|. If ξ0 =

min
{
ξ < β; x ∈ U

(
g(ξ)
)}

, then x ∈ U
(
g(ξ0)

)
and, of course, x ∈ U

(
f(ξ0)

)
.

Therefore ξ0 = min
{
ξ < β; x ∈ U

(
f(ξ)
)}

. Thus

lim
t→x

g(ξ0)(t) = lim
t→x
|f(ξ0)(t)− f(α)(t)| = |f(β)(x)− f(α)(x)|.

Since

g(β)(x) =

 g(x), if
{
ξ < β; x ∈ U

(
g(ξ)
)}

= ∅,
limt→x g(ξ0)(t), if x ∈ U

(
g(ξ0)

)
,

where ξ0 = min
{
ξ < β; x ∈ U

(
g(ξ)
)}

,

we have g(β)(x) = |f(β)(x)− f(α)(x)|. Since C
(
f(α)

)
= D and C(g) = C(f) =

A, we can show that L
(
f(α)

)
= L

(
g(α)

)
and C

(
f(α)

)
= C

(
g(α)

)
. Then

U
(
f(α)

)
= U

(
g(α)

)
. Thus the proof is complete. �

Corollary 3 Let A be a dense subset of D and let f ∈ Aα \
⋃

0≤β<αAβ be a
function such that C(f) = A. Then, for each β with 0 ≤ β ≤ α,

g(β) ∈M
(
C
(
f(β)

))
.

3 α-improvable Discontinuous Functions

First we give a necessary and sufficient condition under which a set A is the
set of all points of continuity of some α-improvable discontinuous function.

Theorem 7 Let A be a subset of D, where D ⊂ R is closed. Then the follow-
ing are equivalent.

(1) There exists a function f : D → R such that f ∈M(A)∩Aα \
⋃

0≤β<αAβ
and C(f) = A.
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(2) clA = D and there exist two ascending sequences of sets (Cβ)0≤β≤α and

(Fn)
∞
n=1 such that C0 = A, Cα = D and, for each ordinal number β with

0 ≤ β < α, Cβ 6= Cβ+1 and

D \

( ∞⋃
n=1

(Fn ∩ Cβ+1) ∪ Cβ

)
=

∞⋃
n=1

Fn ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

.

Proof. We assume that condition (1) is satisfied. By Theorem 3, clA = D.
For each ordinal number β with 0 ≤ β ≤ α, put C(β) = C

(
f(β)

)
and, for each

n ∈ N, Fn =
{
x ∈ D; f(x) ≥ 1

n

}
. Then C0 = A, Cα = D and, for each β

(0 ≤ β < α), Cβ 6= Cβ+1. It is obvious that (Fn)
∞
n=1 is an ascending sequence.

By Remark 3, we know that the sequence (Cβ)0≤β<α is ascending, also. Let

β(0 ≤ β < α) be an ordinal number. Since, for each x ∈ D, f(α)(x) = 0, by
Theorem 1 (2,α), we know that

{
x ∈ D; f(β)(x) > 0

}
=
{
x ∈ D; f(β)(x) 6= f(α)(x)

}
=

⋃
β≤ξ<α

U
(
f(ξ)
)
.

By Theorem 1 (2,β) and (4,β), we have that

{
x ∈ D; f(x) 6= f(β)(x)

}
=

⋃
0≤ξ<β

U
(
f(ξ)
)
⊂

⋃
0≤ξ<β

L
(
f(ξ)
)
⊂ C

(
f(β)

)
.

Therefore, for each x ∈ D \ Cβ , f(x) = f(β)(x).

We shall show that L
(
f(β)

)
= Cβ ∪

⋃∞
n=1 (Fn ∩ Cβ+1). Since Cβ ⊂

L
(
f(β)

)
, we suppose that there exists x0 ∈ D \ L

(
f(β)

)
such that x0 ∈⋃∞

n=1 (Fn ∩ (Cβ+1 \ Cβ)). Then f(β+1)(x0) = f(β)(x0) = f(x0) > 0 and

x0 6∈ C
(
f(β+1)

)
= Cβ+1, a contradiction.

Therefore Cβ ∪
⋃∞
n=1 (Fn ∩ Cβ+1) ⊂ L

(
f(β)

)
. If x0 ∈ L

(
f(β)

)
, then x0 ∈

Cβ or x0 ∈ Cβ+1\Cβ and there exists n ∈ N such that f(β)(x0) ≥ 1
n . Therefore

x0 ∈ Cβ or x0 ∈ Cβ+1\Cβ and f(x0) ≥ 1
n . Hence x0 ∈ Cβ∪

⋃∞
n=1 (Fn ∩ Cβ+1).

Thus

L
(
f(β)

)
= Cβ ∪

∞⋃
n=1

(Fn ∩ Cβ+1) .
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We fix n ∈ N. Let H =
⋃
β≤ξ<α (Cξ+1 \ Cξ). Then{

x ∈ D; f(x) ≥ 1

n

}
∩H ⊂

{
x ∈ D; f(β)(x) ≥ 1

n

}
⊂
{
x ∈ D; f(β)(x) ≥ 1

n

}
∩

⋃
β≤ξ<α

U
(
f(ξ)
)

⊂
{
x ∈ D; f(β)(x) ≥ 1

n

}
∩H

⊂
{
x ∈ D; f(x) ≥ 1

n

}
∩H.

Therefore
({
x ∈ D; f(β)(x) ≥ 1

n

})d
=
(
Fn ∩

⋃
β≤ξ<α (Cξ+1 \ Cξ)

)d
and

D \

(
Cβ ∪

∞⋃
n=1

(Fn ∩ Cβ+1)

)
=D \ L

(
f(β)

)
=

{
x ∈ D; lim sup

t→x
f(β)(t) > 0

}
=

∞⋃
n=1

({
x ∈ D; f(β)(x) ≥ 1

n

})d

=

∞⋃
n=1

Fn ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

.

Hence we have proved condition (2).
Now, we assume that condition (2) holds. Let

f(x) =


0, if

{
m ∈ N; x ∈ Fm ∩

⋃
0≤ξ<α (Cξ+1 \ Cξ)

}
= ∅,

otherwise,
1
n , where n = min

{
m ∈ N; x ∈ Fm ∩

⋃
0≤ξ<α (Cξ+1 \ Cξ)

}
.

We observe that, for each β with 0 ≤ β < α,

{
x ∈ D; lim sup

t→x
f|D\Cβ (t) > 0

}
=

∞⋃
n=1

Fn ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

.

Since f(A) = f(C0) = {0} and since clA = D, we have that{
x ∈ D; lim inf

t→x
f(t) = 0

}
= D.
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We know that{
x ∈ D; lim sup

t→x
f(t) > 0

}
=

{
x ∈ D; lim sup

t→x
f|D\C0

(t) > 0

}

=

∞⋃
n=1

Fn ∩ ⋃
0≤ξ<α

(Cξ+1 \ Cξ)

d

.

Therefore, by our assumption,

L(f) =
{
x ∈ D; lim

t→x
f(t) = 0

}
= C0 ∪

∞⋃
n=1

(Fn ∩ C1)

=C0 ∪
∞⋃
n=1

(Fn ∩ (C1 \ C0))

and C(f) = C0, U(f) =
⋃∞
n=1 (Fn ∩ (C1 \ C0)). Let 0 ≤ β ≤ α. We assume

that, for each γ with 0 ≤ γ < β,

C
(
f(γ)

)
= Cγ , U

(
f(γ)

)
=

∞⋃
n=1

(Fn ∩ (Cγ+1 \ Cγ))

and L
(
f(γ)

)
=
{
x ∈ D; limt→t f(γ)(t) = 0

}
. Let x ∈ Cβ .

• If
{
γ < β; x ∈ U

(
f(γ)

)}
6= ∅, then f(β)(x) = limt→x f(γ0)(t) = 0 where

γ0 = min
{
γ < β; x ∈ U

(
f(γ)

)}
.

• If
{
γ < β; x ∈ U

(
f(γ)

)}
= ∅, then, for each γ with 0 ≤ γ < β, x 6∈

U
(
f(γ)

)
=
⋃∞
n=1 (Fn ∩ (Cγ+1 \ Cγ)) and, by x ∈ Cβ , we have that x 6∈⋃∞

n=1

(
Fn ∩

⋃
β≤ξ<α (Cξ+1 \ Cξ)

)
.

Therefore x 6∈
⋃∞
n=1

(
Fn ∩

⋃
0≤ξ<α (Cξ+1 \ Cξ)

)
and x 6∈

⋃
0≤ξ<β U

(
f(ξ)
)
. So

f(β)(x) = f(x) = 0. Hence f(β)(Cβ) = {0}. Since A = C0 ⊂ Cβ and clA = D,

therefore
{
x ∈ D; lim inft→x f(β)(t) = 0

}
= D. We observe that{

x ∈ D; lim sup
t→x

f(β)(t) > 0

}
=

{
x ∈ D; lim sup

t→x
f|(D\Cβ) (β)(t) > 0

}
.

By Theorem 1 (2,β);{
x ∈ D; f(β)(x) 6= f(x)

}
=

⋃
0≤ξ<β

U
(
f(ξ)
)
⊂

⋃
0≤ξ<β

Cξ+1 ⊂ Cβ .
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Therefore{
x ∈ D; lim sup

t→x
f|(D\Cβ) (β)(t) > 0

}
=

{
x ∈ D; lim sup

t→x
f|D\Cβ (t) > 0

}

=

∞⋃
n=1

Fn ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

.

Then, by our assumption, we know that

L
(
f(β)

)
=
{
x ∈ D; lim

t→x
f(β)(t) = 0

}
= Cβ ∪

∞⋃
n=1

(Fn ∩ Cβ+1)

=Cβ ∪
∞⋃
n=1

(Fn ∩ (Cβ+1 \ Cβ)) .

Thus C
(
f(β)

)
= Cβ and U

(
f(β)

)
=
⋃∞
n=1 (Fn ∩ (Cβ+1 \ Cβ)) .

We shall show that, for each x ∈ D, f(α)(x) = 0. If there exists β0 with

0 ≤ β0 < α such that x ∈ U
(
f(β0)

)
, then f(α)(x) = limt→x f(β0)(t) = 0

where β0 = min
{
β < α; x ∈ U

(
f(β)

)}
. If

{
β < α; x ∈ U

(
f(β)

)}
= ∅, then,

for each β with 0 ≤ β < α, x 6∈
⋃∞
n=1 (Fn ∩ (Cβ+1 \ Cβ)) . Therefore x 6∈⋃∞

n=1

(
Fn ∩

⋃
0≤β<α (Cβ+1 \ Cβ)

)
and f(α)(x) = f(x) = 0. Hence f ∈ Aα \⋃

0≤β<αAβ and the proof of the theorem is complete. �

Corollary 4 Let (Cβ)0≤β≤α be an ascending sequence of sets such that
clC0 = R, Cα = R. Let H be an arbitrary set such that, for each ordinal
number β with 0 ≤ β < α,

D \ ((H ∩ Cβ+1) ∪ Cβ) =

H ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

and Cβ 6= Cβ+1. Then the characteristic function of the set H belongs to the
class Aα \

⋃
0≤β<αAβ.

Proof. For each n ∈ N, let Fn = H. Then, as in the proof of Theorem 10, we
can prove that the characteristic function of the set H belongs to the class Aα
and, for each ordinal number β with 0 ≤ β < α, Cβ = C

(
f(β)

)
and U

(
f(β)

)
=

H ∩ (Cβ+1 \ Cβ). Since, by our assumption, for each ordinal number β with
0 ≤ β < α, C

(
f(β)

)
6= C

(
f(β+1)

)
, we have that f 6∈

⋃
0≤β<αAβ . Thus the

proof is complete. �

The following theorem shows that we can construct an α-improvable dis-
continuous function for each α < ω1. To prove this theorem we need the
following lemma.
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Lemma 1 Let A =
⋃∞
n=1An ∪ {0} where, for each n ∈ N, An is a closed set,

An ⊂
[

1
n+1 ,

1
n

]
, 1
n+1 ∈ An and 1

n is a left-side isolated point in the set A.

Then, for each ordinal number α, A(α) \ {0} =
⋃∞
n=1A

(α)
n .

Proof. If α = 0, then the lemma is true.
Let α > 0 be an ordinal number and we assume that, for each ordinal

number β with 0 ≤ β < α, A(β) \{0} =
⋃∞
n=1A

(β)
n . Consider two possibilities.

1. Let α = γ + 1, where γ is an ordinal number and let x0 ∈ A(α) \ {0}.
Then there exists n ∈ N such that x0 ≥ 1

n+1 and there exists a sequence

(xk)
∞
k=1 ⊂ A(γ) such that limk→∞ xk = x0. Since 1

n+1 is a left-side

isolated point of A and A(γ) ⊂ A, there exists k0 ∈ N such that, for each

k > k0, xk ≥ 1
n+1 . Hence (xk)

∞
k=1 ⊂

⋃n
i=1A

(γ)
i ; so x0 ∈

(⋃n
i=1A

(γ)
i

)d
=⋃n

i=1A
d
i ⊂

⋃∞
n=1A

d
n. Thus A(α) \ {0} ⊂

⋃∞
n=1A

(α)
n .

Since, for each n ∈ N, An ⊂ A; so A
(α)
n ⊂ A(α). Hence

⋃∞
n=1A

(α)
n ⊂ A(α)

and since, for each n ∈ N, 0 6∈ An, for each n ∈ N, 0 6∈ A
(α)
n ; so

0 6∈
⋃∞
n=1A

(α)
n . Thus

⋃∞
n=1A

(α)
n ⊂ A(α) \ {0}.

2. Let α be a limit ordinal number and let x0 ∈ A(α) \ {0}. Then there
exists n ∈ N such that x0 ≥ 1

n+1 . Let γ < α be an ordinal number. Then

x0 ∈ A(γ+1). Thus there exists a sequence (xk)
∞
k=1 ⊂ A(γ) such that

limk→∞ xk = x0. As above we can show that x0 ∈ A(γ+1)
n . Hence x0 ∈⋂

γ<αA
(γ+1)
n ⊂

⋂
γ<αA

(γ)
n = A

(α)
n . Thus x0 ∈

⋃∞
n=1A

(α)
n . Similarly to

the first part, we can show that
⋃∞
n=1A

(α)
n ⊂ A(α) \ {0}.

Thus the proof is complete. �

Theorem 8 For each ordinal number α < ω1, there exists a function f ∈
Aα \

⋃
0≤β<αAβ.

Proof. For each set A ⊂ R and a, b ∈ R, let aA + b = {ax+ b;x ∈ A}. By
transfinite induction, we define a sequence of sets (Wα)0≤α<ω1

in the following

way: W0 = ∅, W1 = {0}, W2 =
{

1
n ; n ∈ N

}
∪{0} and, for each ordinal number

α with 3 ≤ α < ω1,

1. if α = γ + 2, where γ is an ordinal number, then put

[Wα =

∞⋃
n=1

(
1

n(n+ 1)
Wγ+1 +

1

n+ 1

)
∪ {0},
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2. if α is a limit ordinal number, then

Wα =

∞⋃
n=1

(
1

n(n+ 1)
Wαn +

1

n+ 1

)
∪ {0}

where (αn)
∞
n=1 is a sequence of ordinal numbers such that limn→∞ αn =

α and, for each n ∈ N, αn < α and αn is not a limit ordinal number,

3. if α = γ + 1, where β is a limit ordinal number, then put Wα = Wγ .

We shall show that, for each ordinal number α with 0 ≤ α < ω1,

(i) Wα is a closed nowhere dense set and Wα ⊂ [0, 1],

(ii) if α > 1, then, for each n ∈ N, 1
n ∈ Wα and there exists δ

(α)
n > 0 such

that
(

1
n − δ

(α)
n , 1

n

)
∩Wα = ∅,

(iii) if α > 0, then, for each β with 0 ≤ β < α, 0 ∈W (β)
α ,

(iv) if α is not a limit ordinal number, then W
(α)
α = ∅ and if α is a limit

ordinal number, then W
(α)
α = {0}.

The above conditions are obvious for α = 0, 1, 2. Let α with 2 < α < ω1 be
an ordinal number. We assume that conditions (i), (ii), (iii), (iv) are satisfied
for each ordinal number β < α.

1. We assume that α = γ + 2, where γ is an ordinal number. Since
Wγ+1 is a closed nowhere dense set and Wγ+1 ⊂ [0, 1], for each n ∈ N,

1
n(n+1)Wγ+1+ 1

n+1 is a closed nowhere dense set and 1
n(n+1)Wγ+1+ 1

n+1 ⊂[
1

n+1 ,
1
n

]
. Therefore Wα is a closed nowhere dense set and Wα ⊂ [0, 1].

Let n ∈ N. Since 1 ∈Wγ+1, we obtain

1

n
=

1

n(n+ 1)
+

1

n+ 1
∈ 1

n(n+ 1)
Wγ+1 +

1

n+ 1
⊂Wα.

By our assumption, there exists δ
(γ+1)
1 > 0 such that

(
1− δ(γ+1)

1 , 1
)
∩

Wγ+1 = ∅. We put δ
(α)
n = 1

n(n+1)δ
(γ+1)
1 . Then

(
1
n − δ

(α)
n , 1

n

)
∩Wα = ∅.

Let β be an ordinal number such that 0 ≤ β < α. By the above, we
have that the assumptions of Lemma 1 are satisfied. Therefore

W (β)
α \ {0} =

∞⋃
n=1

(
1

n(n+ 1)
Wγ+1 +

1

n+ 1

)(β)

=

∞⋃
n=1

(
1

n(n+ 1)
W

(β)
γ+1 +

1

n+ 1

)
.
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By our assumption, 0 ∈ W
(γ)
γ+1. Therefore, for each n ∈ N, 1

n+1 ∈
1

n(n+1)W
(γ)
γ+1 + 1

n+1 ⊂ W
(γ)
α . Thus 0 ∈ W (γ+1)

α ⊂ W
(β)
α . We know that

W
(γ+1)
γ+1 = ∅. Hence

W (γ+1)
α \ {0} =

∞⋃
n=1

(
1

n(n+ 1)
W

(γ+1)
γ+1 +

1

n+ 1

)
= ∅

and W
(α)
α = ∅.

2. Now we assume that α is a limit ordinal number. As to above we may
show that conditions (i) and (ii) are satisfied. Additionally, by Lemma 1
, we have that, for each ordinal number β with 0 ≤ β ≤ α,

W (β)
α \ {0} =

∞⋃
n=1

(
1

n(n+ 1)
W (β)
αn +

1

n+ 1

)
.

Let 0 ≤ β < α. Then there exists n0 ∈ N such that, for each n ∈ N,

n ≥ n0, αn > β. By our assumption, for each n ≥ n0, 0 ∈ W (β)
αn and

1
n+1 ∈

1
n(n+1)W

(β)
αn + 1

n+1 ⊂ W
(β)
α . Thus 0 ∈ W

(β+1)
α ⊂ W

(β)
α and

0 ∈
⋂

0≤β<αW
(β)
α = W

(α)
α . We know that, for each n ∈ N, W

(α)
αn ⊂

W
(αn)
αn = ∅. Therefore W

(α)
α \ {0} = ∅. Hence W

(α)
α = {0}.

3. Now we assume that α = γ + 1, where γ is a limit ordinal number. It is
obvious that conditions (i), (ii), (iii) are satisfied. Additionally

W (α)
α = W (α)

γ =
(
W (γ)
γ

)d
= ({0})d = ∅.

Now, we consider the following possibilities.

1. Let α = γ + 2, where γ is an ordinal number. In Corollary 4, we put

H = Wα and, for each ordinal number β with 0 ≤ β ≤ α, Cβ = R\W (β)
α .

Then H ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

=
(
W (β)
α

)d
and R\ ((H ∩ Cβ+1) ∪ Cβ) = W

(β+1)
α . Therefore the characteristic func-

tion of the set H belongs to the class Aα \
⋃

0≤β<αAβ .

2. Let α be a limit ordinal number. Put H = Wα \ {0} and, C0 = R \Wα,

for each ordinal number β with 0 ≤ β < α, Cβ = R \W (β)
α , Cα = R. We
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show that all assumptions of Corollary 4 are satisfied. We observe that⋃
β≤ξ<α

(Cξ+1 \ Cξ) =
⋃

β≤ξ<α

(
W (ξ)
α \W (ξ+1)

α

)
.

Since W
(α)
α = {0}, we have

⋃
β≤ξ<α

(
W

(ξ)
α \W (ξ+1)

α

)
= W

(β)
α \ {0}.

Thus H ∩ ⋃
β≤ξ<α

(Cξ+1 \ Cξ)

d

=
((
Wα ∩W (β)

α

)
\ {0}

)d
=
(
W (β)
α

)d
= W (β+1)

α .

Since R \ ((H ∩ Cβ+1) ∪ Cβ) = {0} ∪W (β+1)
α = W

(β+1)
α , by Corollary 4,

we have that, the characteristic function of the set H belongs to the class
Aα \

⋃
0≤β<αAβ .

3. Let α = γ + 1, where γ is a limit ordinal number. Put H = Wα and, for

each ordinal number β with 0 ≤ β ≤ α, Cβ = R \W (β)
α . As in the first

part, we can show that the characteristic function of the set H belongs
to Aα \

⋃
0≤β<αAβ .

Thus the proof is complete. �
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