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CLASSES OF CONTINUOUS REAL
FUNCTIONS (II)

This survey will consist of four parts. The topological terminology used in
this paper is consistent with that found in Engelking ([1]).

Studies comparing the classes of the continuous functions by different
topologies were run in  Lódź since the early seventies. The subject matter
of these studies and the results achieved between 1973 − 1978 have been dis-
cussed in paper [8]. The present paper presents the results achieved in the
years 1978− 1995.

1 Topological Extensions Not Changing the Class of Con-
tinuous Functions

Most of the results of this section can be found in [2]. Let To and T be
topologies on a set X. Let C(X,To) and C(X,T ) denote the classes of the To
and T -continuous functions, respectively, defined on the set X, whose values
belong to some arbitrarily fixed metric space (Y, d).

In theorems in which the classes of the continuous functions in a given
topology are mentioned, we will most often not mention their set of values,
having in mind then some fixed metric space (Y, d) consisting of more than
one point.

Definition 1 A topology T will be called an extension of topology To in a set
X, if To ⊂ T.
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The interiors and the closures of a set A ⊂ X in a topology T will be
denoted by IntT A and ClT A respectively. If T is an extension of a topology
To in a set X, then naturally for any A ⊂ X we have that IntTo A ⊂ IntT A
and ClT A ⊂ ClTo A.

A neighborhood of a point p ∈ X will be denoted by Ap, Bp, Vp, etc.
Writing Ap(Ap ∈ T ) we signal that Ap is a T -neighborhood of p. The following
theorem was proved in [3].

Theorem 1 Let T be an extension of the natural topology To on an interval
[a, b] ⊂ R. If

(C) C([a, b], To) = C([a, b], T ),

then

(G) if x ∈ [a, b] and Ax is a T -neighborhood of x, then Ax is To-dense in
some To-neighborhood of x, and

(S1) every interval [c, d] ⊂ [a, b] is T -connected.

Later we find conditions sufficient for (C) in a general setting. Among
others, we use conditions similar to conditions (G) and (S1) from Theorem
1. The following lemma will make it possible to replace condition (G) with a
condition which is easier to check.

Lemma 1 Let T be an extension of a topology To in a set X. The following
conditions are equivalent:

(G) ∀x∈X∀Ax∈T [ Ax is a To-dense set in some To-neighborhood of a point
x ]

(H) ∀A∈T A ⊂ IntTo ClTo A.

Proof of (G) ⇒ (H).
Let A ∈ T. If A = ∅, then naturally A ⊂ IntTo ClTo A. However if A 6= ∅,

then A is a T - neighborhood of each of its points. Thus, by (G), for every
x ∈ A there exists a To-neighborhood Gx such that Gx ⊂ ClTo A. Hence we
have A ⊂

⋃
x∈AGx ⊂ ClTo A and so

A ⊂
⋃
x∈A

Gx ⊂ IntTo ClTo A.

Proof of (H)⇒ (G). LetA ∈ T. Because of (H) we haveA ⊂ IntTo ClTo A ⊂
ClTo A. Thus the set A is To-dense in a To-open set IntTo ClTo A. �
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Although Theorem 1 is formulated for closed intervals in R, its proof uses
only the connectedness of intervals and not their compactness. Hence, from
Lemma 1 we have the following assertion.

Theorem 2 Let T be an extension of a topology To in a To-connected subset
X ⊂ R. If

(C) C(X,To) = C(X,T ),

then

(H) ∀A∈T A ⊂ IntTo ClTo A, and

(S) T does not decrease the class of To-connected sets.

Definition 2 Let (X,T ) be a topological space and let W ⊂ X. The smallest
topology containing both T and W will be called the simple extension of T
generated by the set W and will be denoted by T (W ).

Obviously, T = T (W ) if and only if W ∈ T. It is easy to observe that

T (W ) = {A ∈ 2X : ∃U,V ∈T W = (U ∩W ) ∪ V }

Lemma 2 Let (X,T ) be a topological space and T (W ) a simple extension of
T. The following conditions are equivalent.

(H) ∀A∈T (W ) A ⊂ IntT ClT A.

(i) W ⊂ IntT ClT W.

Theorem 3 The simple extensions of the topology which satisfy condition
(H) do not change the class of the continuous functions in a given topological
space.

Proof. Let (X,T ) be a topological space and let W ⊂ X. Obviously,
C(X,T ) ⊂ C(X,T (W )). Assume that the opposite inclusion does not hold.
Then there exists a T (W )-continuous and T -discontinuous function f : X → Y.
Let p ∈ X be a point of T -discontinuity of f. Then

∃ε>0 ∀Up∈T ∃x∈Up d(f(x), f(p)) ≥ ε. (1)

Because of the T (W )-continuity of f at p, for ε/2 there exists a T (W )-
neighborhood, Ap = (U ∩W ) ∪ V ) of p, where U, V ∈ T and for which

∀x∈Ap d(f(x), f(p)) < ε/2 (2)
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Observe that p ∈ U ∩W, otherwise p ∈ V ∈ T and (2) contradicts (1). So
using condition (H) we have that p ∈ U ∩W ⊂ W ⊂ IntT ClT W. Using (1)
it now follows that Up = U ∩ IntT ClT W ∈ T so that

∃s∈U∩IntT ClT W d(f(s), f(p)) ≥ ε. (3)

From this and (2) it follows that s 6∈W. As f is T (W )-continuous at s we have

∃As=(U ′∩W )∪V ′∈T (W ) ∀x∈As d(f(x), f(s)) < ε/2, (4)

where U ′ and V ′ are T -open. Since s 6∈ W , this implies that s ∈ V ′. As U
is T -open, U ∩ ClT W ⊂ ClT (U ∩ W ). But s ∈ U ∩ IntT ClT W ⊂ ClT W
and s ∈ V ′ ∈ T . So using the above we have that (U ∩W ) ∩ V ′ 6= ∅. Let
k ∈ (U ∩W ) ∩ V ′. Then from (2), (3) and (4) we conclude that

ε ≤ d(f(s), f(p)) + d(f(k), f(p)) < ε,

which is a contradiction. Hence, C(X,T ) = C(X,T (W )) as required. �

Remark 1 By using Theorem 3 we can construct whole sequences of topolo-
gies larger than a given topology T, in which each successive one is a sim-
ple extension of the former one and which does not change the class of the
T -continuous functions. However, in order for the subsequent simple exten-
sion to be different from the preceding one at a given stage of construction, a
nonopen set W which satisfies condition (H) must be available.

Remark 2 If T is a maximal (in the sense of inclusion) topology which in-
cludes the topology To and satisfies the condition C(X,To) = C(X,T ), then

(M) A ∈ T ⇔ A ⊂ IntT ClT .

In particular, condition (M) is satisfied if the topology T cannot be extended
without changing the continuous functions.

Proof. As T -open sets satisfy condition (H), they do not satisfy condition
(M). This means that there exists a set W ∈ To such that W ⊂ IntT ClT W
and W 6∈ T. In light of Theorem 3, the topology T (W ) preserves the class of
T -continuous functions and is larger than T, whenever W ∈ T (W ). �

Remark 3 Theorem 3 cannot generally be reversed; i.e. condition (H) does
not follow from the condition C(X,To) = C(X,T ) even if T is a simple ex-
tension of To.
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Example 1 Let X = [0, 1). The family To = {[0, a)} is a topology in X.
Let T = T0({1/2}). Constant functions are the only To-continuous real func-
tions here, and consequently, C(X,To) = C(X,T ). It is easy to see that
ClTo {1/2} = [1/2, 1) and IntTo([1/2, 1)) = ∅. Thus, the set {1/2} does not
satisfy condition (H).

Remark 4 If T is a simple extension of the natural topology To on a To-
connected subset X ⊂ R, then by Theorems 1 and 3 conditions (H) and (C)
are equivalent. In particular we get the following.

Theorem 4 Let T be a simple extension of the natural topology To on the set
of real numbers R. Then the following conditions are equivalent.

(H) ∀a∈T A ⊂ IntTo ClTo A.

(C) C(X,To) = C(X,T ).

Theorem 5 Let T be an arbitrary extension of a topology To on the set X. If

(K) ∀A∈T A ⊂ IntTo ClT A,

then

(C) C(X,To) = C(X,T ).

Proof. Obviously, C(X,To) ⊂ C(X,T ). Let f ∈ C(X,T ) and p ∈ X. We
will show that f is To-continuous at p. Let ε > 0. As f is T -continuous at p,
∃Ap∈T ∀x∈Ap d(f(p), f(x)) < ε/2 where Ap is a T -neighborhood of p. From
assumption (K) we have p ∈ Ap ⊂ IntTo ClT Ap. We complete the proof by
showing

∀x∈IntTo ClT Ap d(f(x), f(p)) < ε. (5)

Let x ∈ IntTo ClT Ap. As f is T -continuous at x, there is a T -neighborhood
Ax of x such that ∀y∈Ax d(f(x), f(y)) < ε/2 As IntTo ClT Ap ⊂ ClT Ap,
x ∈ ClT Ap and in particular Ap ∩ Ax 6= ∅. Let z ∈ Ap ∩ Ax. From the
definitions of Ap and Ax we obtain

d(f(p), f(x)) ≤ d(f(p), f(z)) + d(f(z), f(p)) < ε,

which completes proof of (5). As f is To-continuous at an arbitrary point
x ∈ X, (C) holds. �

Remark 5 In the case, in which T is a simple extension of a topology To,
conditions (C) and (K) are equivalent.
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Remark 6 The converse to Theorem 5 is not true. This will be discussed
later in this survey.

Definition 3 Let T be an extension of the topology To on a set X. A non-
empty set A ∈ T is called:

• T -significant, if IntTo ClT A = ∅.

• T -strong, if each element of a set A has a T -significant neighborhood.

• T -weak, if it is not T -strong.

• A point p ∈ X is called T -local, if for every T -neighborhood Ap of p, there
exists a set C such that ∅ 6= IntT ClT C ⊂ ClT Ap and IntTo ClTo C ⊂ C
.

Lemma 3 Let T be an extension of the topology To on a set X such that

(H) ∀A∈T A ⊂ IntTo ClTo A.

Let U be an arbitrary To-open subset of a set X. If

(Po) in the set U there exists a T -local point,

then

(Ro) the set U is T -weak.

If To is the natural topology in the set of the real numbers, then (Ro) also
implies (Po).

Proof. Let p be a T -local point of a set U and Ap be a T -neighborhood
of p. Then there exists a set C such that ∅ 6= IntT ClT C ⊂ ClT Ap and
IntTo ClTo C ⊂ C.

From this and (H) we obtain:

∅ 6= IntT ClT C ⊂ IntT ClTo C ⊂ IntTo ClTo(IntT ClTo C) ⊂
⊂ IntTo ClTo(ClTo C) = IntTo ClTo C ⊂ C ⊂ ClT C.

Hence
∅ 6= IntTo ClTo C ⊂ ClT C

and as To ⊂ T ,
∅ 6= IntTo ClTo C ⊂ IntT ClT C.
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It now follows from the choice of C that ∅ 6= IntTo ClTo C ⊂ IntT ClT C ⊂
ClT Ap and hence, that IntTo ClT Ap 6= ∅. This means that no T -neighborhood
of p is T - significant. Hence, U is T -weak and the proof of the first part of the
lemma is complete.

Now assume that To is the natural topology on R, and let U ⊂ R be a
T -weak set. Then there exists a point p ∈ U and a T -neighborhood, Ap,
of p such that IntTo ClT Ap 6= ∅. As IntTo ClT Ap is open in R, it contains
an open interval B, (i.e. a To-open set). The set B is To-connected; so
∅ 6= IntTo ClT B ⊂ B. Because of this and assumption (H) we have

IntT ClT B ⊂ IntT ClTo B ⊂ IntTo ClTo IntT ClTo B ⊂ IntTo ClTo ClTo B ⊂
⊂ IntTo ClTo B ⊂ B ⊂ ClT B.

As To ⊂ T ,
IntT ClT B ⊂ IntTo ClTo B ⊂ IntT ClT B,

and as a result, IntT ClT B = IntTo ClTo B. Summarizing we obtain

∅ 6= IntT ClT B = IntTo ClTo B ⊂ B ⊂ IntTo ClT Ap ⊂ ClT Ap.

As Ap ∈ T is arbitrary, we find that p ∈ U is a T -local point, and hence, R
with the natural topology is (P0). �

Theorem 6 Let T be an extension of a topology To on a set X. If

(H) ∀A∈T A ⊂ IntTo ClTo A.

(R1) For an arbitrary To-closed set F the set IntTo F is T -weak,

then

(C) C(X,To) = C(X,T ).

Proof. Obviously it is enough to show that every T -continuous function is
To-continuous. Let f ∈ C(X,T ), p ∈ X and ε > 0. From T -continuity of f
at p we have ∃Ap∈T ∀x∈Ap d(f(x), f(p)) < ε/6, and due to assumption (H)
we have Ap ⊂ IntTo ClTo A. Hence, Ap is a T -neighborhood of p. We will show
that

∀x∈IntTo ClTo Ap∈To d(f(x), f(p)) < ε.

which will obviously mean that f is To-continuous at p. Let a ∈ IntTo ClTo Ap.
From T -continuity of f at a we have that

∃Aa∈T ∀x∈Aa d(f(x), f(a)) < ε/6.
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The set ClTo Ap∩ClTo Aa is obviously To-closed, while the set IntTo(ClTo Ap∩
ClTo Aa) is nonempty (it contains a), so by assumption (R1) there exists
a point y ∈ IntTo(ClTo Ap ∩ ClTo Aa), no T -neighborhood of which is T -
significant. From T -continuity of f at y we have ∃Ay∈T ∀x∈Ay d(f(x), f(y)) <
ε/6. Let By = Ay∩IntTo(ClTo Ap∩ClTo Aa). By is obviously a T -neighborhood
of a point y; so by (R1) it follows that IntTo ClT By 6= ∅. Observe that

IntTo ClT By = IntTo ClT [Ay ∩ IntTo(ClTo Ap ∩ ClTo Aa)] ⊂
⊂ ClT Ay ∩ ClT (ClTo Ap ∩ ClTo Aa) ⊂ ClT Ay ∩ ClTo Ap ∩ ClTo Aa.

That is,

∅ 6= IntTo ClT By ⊂ ClT Ay ∩ ClTo Ap ∩ ClTo Aa. (6)

Thus we find that Ap∩ IntTo ClT By 6= ∅ and Aa∩ IntTo ClT By 6= ∅. Let b, c be
elements of these respective intersections. Using T -continuity of f at points b
and c we obtain that

∃Ab∈T ∀x∈Ab d(f(x), f(b)) < ε/6,

∃Ac∈T ∀x∈Ac d(f(x), f(c)) < ε/6.

From (6) it follows that b ∈ ClT Ay and c ∈ ClT Ay. Hence Ab ∩ Ay 6= ∅ and
Ac∩Ay 6= ∅. Let b′ and c′ be elements of these respective intersections. It now
follows that

d(f(p), f(a)) ≤d(f(p), f(b)) + d(f(b), f(b′)) + d(f(b′), f(y))+

+ d(f(y), f(c′)) + d(f(c′), f(c)) + d(f(c), f(a)) < ε.

Hence, f is T0 continuous at p, and as p was arbitrary, the theorem follows. �

Remark 7 Suppose the assumptions of Theorem 6 hold and that a, p, Aa
and Ap are as in the proof. If d(f(x), f(p)) < ε ∀x ∈ Aa, and IntTo(ClTo Ap ∩
ClTo Aa) is T -weak, then d(f(a), f(p)) < 6ε.

Theorem 7 Let T be an extension of a topology To on a set X. If

(H) ∀A∈TA ⊂ IntTo ClTo A, and

(R2) ∀U∈To (the set IntTo ClTo U is T -weak),

then

(C) C(X,To) = C(X,T ).
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Proof. It is enough to substitute that portion of the proof of Theorem 6
given after (1) with the following:

The set IntTo(ClTo Ap ∩ ClTo Aa) is T -open and nonempty, so there is a
point

y ∈ IntTo ClTo(IntTo ClTo Ap ∩ ClTo Aa)

such that no neighborhood of y is T -significant. Then, taking By = Ay ∩
IntTo ClTo(IntTo ClTo Ap ∩ClTo Aa), it is enough to notice that it satisfies con-
dition (6) from the proof of Theorem 6. �

Theorem 8 Let T be an extension of topology To in a set X. If

(H) ∀A∈T A ⊂ IntTo ClTo A

(R) ∀A∈T the set IntTo ClTo A is T -weak,

then

(C) C(X,To) = C(X,T ).

Proof. The preceding theorem implies that condition (R) implies condition
(R2). �

Definition 4 A point x ∈ X with topology T is said to be a point of local T -
connectedness if for every T -neighborhood Ax of x, there exists a T -connected
set C such that x ∈ IntT C ⊂ C ⊂ Ax).

Corollary 1 Let T be an extension of the natural topology To in an interval
X ⊂ R. If

(H) ∀A∈T A ⊂ IntTo ClTo A

and

(P) every nonempty T -open set U ⊂ IntTo ClTo U contains a point of local
T -connectedness.

then

(C) C(X,To) = C(X,T ).

Proof. First we show that each point of local T -connectedness is a T -local
point. Let p ∈ X be a point of local T -connectedness and let Ap be an arbitrary
T -neighborhood of p. It follows from (P) that there exists a T -connected set
C such that p ∈ IntT C ⊂ C ⊂ Ap. As C is T -connected, it is To-connected,
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and for the connected subsets of the set of the real numbers with the natural
topology we have that IntTo ClTo C ⊂ C. From this and assumption (H) we
have

p ∈ IntT C ⊂ IntT ClT C ⊂ IntTo ClTo IntT ClT C ⊂
⊂ IntTo ClTo C ⊂ C ⊂ Ap ⊂ ClT Ap.

Hence, p is a T -local point, and assumption (P) can be interpreted in the
following way.

“Every nonempty To-open set U ∈ To ⊂ IntTo ClTo U contains a
T -local point.”

But, by Lemma 3 this condition is equivalent to (R1), and it now follows from
Theorem 7 and (H) that C(X,To) = C(X,T ). �

Corollary 2 Let T be an extension of the natural topology To in an interval
X ⊂ R. If

(H) ∀A∈T A ⊂ IntTo ClTo A,

(S) T does not diminish the class of To-connected sets, and

(P ′) for an arbitrary nonempty set U ∈ To, there exists a point of a local
To-connectedness in IntTo ClTo U ,

then

(C) C(X,To) = C(X,T ).

Proof. Using assumption (S) and the fact that IntTo C ⊂ IntT C this proof
follows the same lines as that of Corollary 1. �

The following theorem was proved in [7].

Theorem 9 Let T be an extension of the natural topology To on an interval
X ⊂ R. If

(W ′) ∀x∈X ∀Ax∈T ∃Ux∈To (Ux\Ax)′T = ∅ (where (Ux\Ax)′T denotes the set of
points of T -accumulation of the set Ux\Ax),

then

(C) C(X,To) = C(X,T ).
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Now we will give examples illustrating the lack of interdependence of Theo-
rems 5, 6, 7, 8 and 9. In the examples to follow, we adopt the following notation.
Let Q denote a set of rational numbers, and To the natural topology on R. If
a, b ∈ R, define aρb ⇔ a − b ∈ Q. It is easy to see that ρ is an equivalence
relation and for a ∈ R we let [a] denote the equivalence class of a.

Example 2 Let P = {U\
⋃
a∈S [a] : U ∈ To, S ⊂ R is finite or empty}.

It is easy to verify that P is a base of a topology, T on R. It is also easy to
see that T is an extension of To and it can be shown in an elementary way
that the topologies To and T satisfy conditions (H) and (K). By Theorem 5,
C(R, T ) = C(R, To). However, neither condition (P ′) nor (W ′) is satisfied; so
Theorems 8 and 9 do not apply.

Example 3 Let L = {U ∩ [a] : U ∈ To, a ∈ R}.

Again, it is easy to verify that the family To ∪ L is a base of a topology T
on R and that T is obviously an extension of the topology To. It is easy to
show that conditions (H), (S) and (P ′) are satisfied by both To and T . Thus,
from Corollary 2, T satisfies (C). However, neither condition (K) nor (W ′) is
satisfied; so (C) cannot be inferred from Theorems 5 and 9.

In paper [6] the following theorem is proved.

Theorem 10 Let (X,To) be a first countable T31/2-space. Then

(C) C(X,To) = C(X,T ) where To ⊂ T

if and only if

(K) ∀A∈T A ⊂ IntTo ClT A.

Corollary 3 Let To be the natural topology on Rand let T ⊃ To. Then

(C) C([a, b], To) = C([a, b], T )

if and only if

(K) ∀A∈T A ⊂ IntTo ClT A.

This corollary shows the structure of T -open sets satisfying the condition
C([a, b], To) = C([a, b], T ).
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2 Countably Pseudocompact Spaces

In 1948 E. Hewitt introduced the following notion of a pseudocompact space.

Definition 5 A T3 1
2
-space is called pseudocompact if every continuous real

valued function on X is bounded.

As has been mentioned before, the subject matter of this paper derives from
comparing the classes of the continuous functions with respect to different
topologies. The first significant result was the following theorem ([3]).

Theorem 11 Let (X,To) be a compact metrizable space and let To ⊂ T. Then
a necessary and sufficient condition for C(X,To) = C(X,T ) is that every T -
continuous function is bounded.

In light of Theorem 11, it was natural to begin an in depth study of the spaces
in which all continuous functions are bounded. To this end, the following
definition and theorem were given in [3].

Definition 6 A topological space is called a ?-compact space if for every pair
of families of sets {Fy} and {Gy} indexed by real numbers y ≥ yo, satisfying
the conditions.

1o Fy is closed, Gy is open for y ≥ yo,

2o yo ≤ y1 ≤ y2 ⇒ Fy1 ⊃ Gy1 ⊃ Fy2 ⊃ Gy2 , and

3o Fy 6= ∅ 6= Gy for y ≥ yo.

The following condition also holds.

4o
⋂
y≥yo

Fy =
⋂
y≥yo

Gy 6= ∅.

Theorem 12 A topological space X is ?-compact if and only if every real
continuous function on X is bounded.

Attempts at characterizing ?-compactness by means of notions connected
with covering with the open sets or centered families of closed sets have not
been successful. Some progress has been made, however, using the notion of
a totally (functionally) open set.

Definition 7 A subset G of a topological space X is called totally (or func-
tionally) open if it is of the form G = f−1(U), where f is a continuous real
valued function defined on X and U is an open subset of the real line. The
complement of a totally open subset of X is called totally closed.
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It is easy to see that if G is totally open, then there exists a continuous function
g : X → [0, 1] such that G = g−1((0,∞)).

In [5], two characterizations of ?-compactness were proved which are com-
pletely analogous to known characterizations of pseudocompactness. These
are below.

Theorem 13 The following conditions are equivalent for every topological
space X.

1. A space X is pseudocompact (respectively, ?-compact) space.

2. Every locally finite family of nonempty open (totally open) subsets of X
is finite.

3. Every locally finite, open (totally open) cover of the space X consisting
of nonempty sets is finite.

4. Every locally finite, open (totally open) cover of the space X has a finite
subcover.

Theorem 13′ The following conditions are equivalent for every topological
space X.

1. A space X is pseudocompact (respectively, ?-compact).

2. For every decreasing sequence G1 ⊃ G2 ⊃ G3... of nonempty open

(totally open) subsets of X,
∞⋂
n=1

ClGn 6= ∅.

3. For every countable centered family {Gn}∞n=1 of open (totally open) sub-

sets of X,
∞⋂
n=1

ClGn 6= ∅.

In [9] the following definitions were adopted.

Definition 8 A topological space X is called a pseudocompact (countably pseu-
docompact) space if every (countable) totally open cover of X has a finite sub-
cover.

It is clear that this definition of pseudocompact is equivalent to Hewitt’s
original (See Definition 5.) in the case that X is T3 1

2
. In [9], the following was

proved.

Theorem 14 A topological space, X, is countably pseudocompact if and only
if it is ?-compact.
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Proof. First, suppose X is countably pseudocompact and let f be an ar-
bitrary continuous real valued function on X. Then X = ∪∞k=1Gk, where
Gk = f−1((k, k + 2)). The cover {Gk}∞k=1 is countable and totally open;
so there exists a finite set {k1, k2, . . . , kN} such that X = ∪Ni=1Gki . Hence,
f(X) = ∪Ni=1(ki, ki + 2) and so, f is bounded on X, and as f is arbitrary, it
follows that X is ?-compact.

Now assume that X is not countably pseudocompact. Then there exists
a totally open covering {Un}∞n=1 of the space X which contains no finite sub-
cover. If Gn = ∪ni=1Ui, then {Gn}∞n=1 is an increasing sequence of totally open
sets whose union is X. Indeed, we may assume this sequence to be strictly
increasing so that for each n, Gn+1\Gn 6= ∅.

The sets Gn are totally open. Thus

∀n∈N ∃gn-continuous on X ∃an Gn = {x ∈ X : gn(x) < an}.

Let hn(x) = max[0, an − gn(x)]. Then

(i) for x ∈ Gn we have hn(x) > 0

(ii) for x ∈ X\Gn we have hn(x) = 0.

Now set fn(x) = min{2−n, h(x)} and let φ(x) =
∑∞
n=1 fn(x). Then φ is

continuous and positive at each x ∈ X and hence, f(x) = 1
φ(x) is also positive

and continuous at each x ∈ X
Since the Gn are distinct, it follows that

∀n∈N ∃xn∈Gn+1\Gn f1(xn) = . . . = fn(xn) = 0.

But 0 < fn+k(xn) ≤ 2−n−k for k = 1, 2, . . . , so that

φ(xn) =

∞∑
n=1

fn+k(xn) ≤
∞∑
n=1

1/2n+k = 1/2n.

Hence, for each n, f(xn) ≥ 2n. The fact that f is continuous but not bounded
completes the proof that X is not ?-compact. �

Definition 8 is clearly the direct analogue of the definition of compact
(countably compact). In order to emphasize the analogy further, we will omit
axiom T2 from the usual definitions of the latter.

Definition 9 A topological space X is called a compact (countably compact)
space if every (countable) open cover of X has a finite subcover.
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These analogies are not confined to the definitions but carry over to the
basic properties as well. This is shown in the following two theorems.

Theorem 15 Theorem 15′

For every topological space For every topological space
the following conditions are the following conditions are

equivalent. equivalent.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1) (1)
X is compact (pseudocompact). X is countably compact.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(2) (2)

For every decreasing generalized For every decreasing sequence
sequence {Fσ}σ∈Σ of nonempty {Fn}n∈N of nonempty closed

closed (totally closed) subsets of X, (totally closed) subsets of X,⋂
σ∈S Fσ 6= ∅.

⋂
n∈N Fn 6= ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(3) (3)

For a countable centered family For a countable centered family
{Fs}s∈S of closed (totally closed) {Fn}n∈N of closed (totally closed)

subsets of X
⋂
s∈S Fs 6= ∅. subsets of X

⋂
s∈S Fs 6= ∅.

The dependencies among these four classes of topological spaces are pre-
sented in the following diagram.

Compact spaces −→ Countably compact spaces
↓ ↓

Pseudocompact spaces −→ Countably pseudocompact spaces

3 On Locally Uniformly Converging Sequences

In [4], three theorems are given which contain characterizations of compact-
ness, countable compactness and countable pseudocompactness. These char-
acterizations depend on the connections between the notions of locally uniform
convergence and uniform convergence defined below.

Definition 10 A sequence {fn} of real functions which converges to a func-
tion f is said to be locally (totally) uniformly convergent in a topological space
X, if for every point xo ∈ X there exists a neighborhood U(xo) (totally open)
of xo such that {fn} converges to f uniformly in U(xo).
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In [7], an analogous theorem is given which contains characterizations of
pseudocompactness. All four theorems are given below.

Theorem 16 Theorem 16′

A topological space X is A topological space X is
compact if and only if every countably compact if and only
locally uniformly convergent, if every locally uniformly convergent

generalized sequence of functions sequence of functions is uniformly
is uniformly convergent. convergent.

Theorem 17 Theorem 17’

A topological space X is pseudo- A topological space X is countably
compact if and only if every locally pseudocompact if and only if every

totally uniformly convergent, locally totally uniformly convergent
generalized sequence of functions sequence of functions is uniformly

is uniformly convergent. convergent.

Proof of Theorem 16. Suppose that X is not compact and let G be a family
of open subsets of X such that no finite subfamily covers X. Let Σ be the set
of finite sums

⋃k
i=1Gi, where Gi ∈ G. For σ =

⋃k
i=1Gi and σ′ =

⋃l
i=1G

′

i

belonging to Σ put σ ≤ σ′ if and only if
⋃k
i=1Gi ⊂

⋃l
i=1G

′

i. The set Σ
is thus directed by the relation “≤”. We have X =

⋃
σ∈Σ σ, but X 6= σ for

every σ ∈ Σ. Put

fσ(x) =

{
1 for x ∈ σ
0 for x 6∈ σ .

The sequence {fσ}σ∈Σ converges to f(x) ≡ 1 locally uniformly, but this con-
vergence is not uniform.

Conversely, suppose that X is pseudo-compact, and let {fσ}σ∈Σ be an
arbitrary generalized sequence converging locally uniformly to some function
f. We shall prove that {fσ}σ∈Σ converges to f uniformly. Let ε be an arbitrary
positive number. For every point xo ∈ X there exists a neighborhood U(xo)
of xo and σxo ∈ Σ such that for every x ∈ U(xo) and every σ ≥ σxowe
have | fσ(x) − f(x) |< ε. The family, U, of such neighborhoods U(x) for
x ∈ X is a cover of X, and by compactness, U contains a finite subcover
{U(x1), . . . , U(xk)}. Since Σ is directed, there exists σ′ ∈ Σ such that σ′ ≥
σx1

, . . . , σxk . Hence,

∀x∈X∀σ≥σ′ | fσ(x)− f(x) |< ε,
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and {fσ}σ∈Σ converges to f uniformly. �

The proof of Theorem 16′ is analogous.

Proof of Theorem 17. Suppose that X is not pseudocompact; i.e. that
there exists a family {Gs}s∈N of totally open subsets of X such that for every

finite system {s1, . . . , sk} ⊂ N, X 6=
⋃k
i=1Gsi . Using this, we give an example

of a sequence which converges locally uniformly but this convergence is not
uniform.

As the sets Gs are totally open, for every s ∈ N there exists a continuous
real valued function gs and a point as ∈ R such that Gs = {x ∈ X : gs(x) <
as}. Let Σ denote the set of all finite subsets of N, directed by “⊂”. For each
σ ∈ Σ. let Hσ = ∪nj=1Gsj , and hσ(x) = max{0, asj − gsj (x)}. Then, {Hσ}σ∈Σ

is an increasing generalized sequence of totally open sets.
Now consider T = Σ × N. If τ ′ = (σ′, k′), τ ′′ = (σ′′, k′′) ∈ T, define τ ′ ≤

τ ′′ ⇔ σ′ ≤ σ′′ and k′ ≤ k′′. For τ ∈ T , let fτ (x) = min{1, k · hσ(x)} =
min{1,max1≤j≤n{0, asj − gsj (x)) · k}, and let let xo ∈ X. There exists a set
Gso such that xo ∈ Gso and aso − gso(x) > 0 Thus, there exists ko ∈ N such
that (aso −gso(x)) ·k > 1. Because the function (aso −gso(x)) ·k is continuous
at xo ∈ Gso , there exists a totally open neighborhood U(xo) ⊂ Gsosuch that
(aso − gso(x)) · k > 1 for all x ∈ U(xo). Then for τo = (σo, ko) and σo =
{so} we have fτo(x) = 1 for x ∈ U(xo). Because the sequence {fτ}τ∈T is
nondecreasing, we have fτ (x) = 1 whenever τ ≥ τo and x ∈ U(xo). Hence,
the sequence {fτ}τ∈T converges to f(x) = 1 locally totally uniformly. On the
other hand, let σ ∈ Σ and xσ ∈ X\Hσ. Because Hσ =

⋃n
j=1Gsj , it follows

that max{0, (asj − gsj (x)) · k} = 0, i.e. fτ (xσ) = 0.
Hence, for ε = 1/2 we have

∀(σo,ko) ∃(σ,k)>(σo,ko) ∃{xσ}σ∈Σ
| f(σ,k)(xσ)− f(xσ) |= 1 > ε

and this means that the convergence of the sequence {fτ}τ∈T is not uniform.

Conversely, suppose that X is pseudocompact and let {fσ}σ∈Σ be an arbi-
trary generalized sequence converging locally totally uniformly to some func-
tion f. We shall prove that {fσ}σ∈Σ converges to f uniformly. Let ε be an
arbitrary positive number. For every point xo ∈ X there exists a neighbor-
hood U(xo) of xo and σxo ∈ Σ such that for every x ∈ U(xo) and σ ≥ σxowe
have | f(xσ) − f(x) |< ε. Any family {U(x)}x∈X of such neighborhoods is a
totally open cover of X. Hence, there is a finite subcover {U(x1), . . . , U(xk)}
of X, and since Σ is directed, there exists σ′ ∈ Σ such that σ′ ≥ σx1

, . . . , σxk .
That is,

∀x∈X∀σ≥σ′ | fσ(x)− f(x) |< ε,

and hence, {fσ}σ∈Σ converges to f uniformly. �
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Remark 8 In this proof we have not used the continuity of functions fσ.

Proof of Theorem 17′ (without using the notion of a totally open set).
Suppose that X is not countably pseudocompact, and that φ : X → R is
continuous but unbounded. Put fn(x) = min{| φ(x) |, n} for n = 1, 2, . . . .
Then, fn is continuous on X for each n = 1, 2, . . . . For each xo ∈ X, there is
an N = N(x) ∈ N such that | φ(xo) |< N. Since φ is continuous, there is a
neighborhood U(xo) of xo such that for every x ∈ U(xo) we have | φ(x) |< N.
Hence,

∃U(xo) ∃N ∀x∈U(xo) ∀n≥N fn(x) =| φ(x) | .

That is, {fn} converges to | φ(x) | in X locally uniformly but this convergence
is not uniform.

Conversely, suppose that there exists a sequence {fn} of continuous func-
tions which converges locally uniformly to some function f , but for which
the convergence is not uniform. There exists εo > 0 and a sequence {xn}
such that | fn(xn) − f(xn) |> εo for n = 1, 2, . . .. Now, for each n, put
φn(x) = min{0, εo− | fn(x) − f(x) |}. Then, φn is continuous on X for all
n ∈ N. Let xo ∈ X. Since {fn} converges to f locally uniformly, there exists
a neighborhood U(xo) of xo and N > 0 such that for every x ∈ U(xo) and
n ≥ N we have | fn(x)−fn(x) |< εo. That is, φn(x) ≡ 0 for all x ∈ U(xo) and
all n > N . Thus, the function

φ(x) =

∞∑
k=1

| φk(x) |
| φk(xk) |

·k

is continuous on X. However, φ(xn) ≥ n and thus, φ is unbounded on X.
Hence X is not countably pseudocompact. �

Remark 9 In this proof we have not used local total uniform convergence but
only local uniform convergence.

4 Generalizations of Dini’s Theorem

In this section we investigate the following classical theorem of Dini.

Theorem 15 ([1]) If X is a compact space, then every monotone sequence
{fn} of continuous functions which converges to a continuous function f , con-
verges uniformly to f .

Now we will discuss four generalizations of this theorem characterizing four
classes of topological spaces presented in Part 2.
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Theorem 19 [9] Theorem 19′ [10]

A topological space X is compact A topological space X is countably
if and only if every nondecreasing compact if and only if every

generalized sequence of lower nondecreasing sequence of lower
semicontinuous functions which semicontinuous functions which

converges to a continuous function, converges to a continuous function,
is uniformly convergent. is uniformly convergent.

Theorem 20 [9] Theorem 20′ [10]

A topological space X is A topological space X is
pseudocompact if and only countably pseudocompact if

if every monotone generalized and only if every monotone
sequence of continuous functions sequence of continuous functions
which converges to a continuous which converges to a continuous

function, is uniformly convergent. function, is uniformly convergent.

Proof of Theorem 19. First assume that X is a compact space and
{fσ}σ∈Σ is an arbitrary generalized nondecreasing sequence of the lower semi-
continuous functions, which converges to a continuous function, f. Let ε > 0
and put

Gσ = {x ∈ X : fσ(x) ≥ f(x)− ε}.

As {fσ}σ∈Σ is nondecreasing and convergent to f , the corresponding sequence
of sets {Gσ}σ∈Σ is increasing and X =

⋃
σ∈ΣGσ. Because the functions

fσ − f are lower semicontinuous, the sets Gσ are open. It now follows from
the compactness of X that there exists σo ∈ Σ such that X = Gσo and hence
that

fσo(x)− f(x) > −ε for every x ∈ X.

Thus, by the monotonicity of a sequence {fσ}σ∈Σ, we have that | fσ(x) −
f(x) |< ε for every x ∈ X and σ ≥ σo. That is, the sequence {fσ}σ∈Σ

converges uniformly to f and the proof is complete.

We now turn to the general case. There exists a generalized increasing
sequence {Gσ}σ∈Σ, of open sets such that ∪σ∈ΣGσ = X but for each σ ∈ Σ
and X 6= Gσ. Let σ ∈ Σ and define

fσ(x) =

{
1 for x ∈ Gσ
0 for x 6∈ Gσ

.
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Then fσ is lower semicontinuous and {fσ}σ∈Σ is a nondecreasing sequence
converging to f(x) ≡ 1. However, this convergence is not uniform. �

The proof of Theorem 19′ is analogous.

Proof of Theorem 20. First assume that X is pseudocompact, {fσ}σ∈Σ,
is an arbitrary generalized, monotone sequence of continuous functions, con-
verging to a continuous function f. Let ε > 0 and put

Gσ = {x ∈ X :| fσ(x)− f(x) |< ε}

Since the sequence is monotone and converges to f , the sequence of the sets
{Gσ}σ∈Σ, is increasing and X =

⋃
σ∈ΣGσ. Because the functions | fσ−f | are

continuous, the sets Gσ are functionally open, and since X is pseudocompact,
it follows that there exists σo ∈ Σ such that X = Gσ. Hence | fσo(x) −
f(x) |< ε for x ∈ X, and thus by the monotonicity of the sequence {fσ}σ∈Σ,
we have | fσo(x) − f(x) |< ε for x ∈ X and σ ≥ σo. Hence, {fσ}σ∈Σ, is
uniformly convergent to f. Now suppose X is not pseudocompact. Then there
exists a family of functionally open sets {Gs}s∈N, such that X =

⋃
s∈NGs,

but X 6=
⋃k
j=1Gsj for every finite system s1, s2, . . . , sk ∈ N. The sequence

{fτ}τ∈T described in the proof of Theorem 17 is nondecreasing and converges
to f(x) ≡ 1, but this convergence is not uniform.

Proof of Theorem 20′ (without using the notion of a totally open set).
Assume that X is not countably pseudocompact. Then there is a continuous
real valued function, φ, defined on X which is not bounded. Thus, if

fn(x) = min{n, | φ(x) |},

then {fn(x)} is a monotone sequence of continuous real valued functions on
X, which converges to

f(x) =| φ(x) | for every x ∈ X.

However, this convergence is not uniform.
Now suppose X is countably pseudocompact and {fn} is a monotone se-

quence of continuous real valued on X, which converges to a continuous func-
tion f. We will show that the sequence {fn} is uniformly convergent. Without
loss of generality, we can assume that {fn} is decreasing to the zero function.
This is because {| fn−f | +1/n} decreases to zero and is uniformly convergent
if and only if {fn} converges to f uniformly. Let ε > 0 for and n ≤ y ≤ n+ 1,
put

Fy = {x ∈ X : (y − n)fn+1(x) + (1− (y − n))fn(x) ≥ ε}
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and
Gy = {x ∈ X : (y − n)fn+1(x) + (1− (y − n))fn(x) > ε}

For yo = 1, the sets Fy, Gy satisfy, conditions 1o and 2o from Definition 6,
but do not satisfy condition 4o. So condition 3o from that Definition 6 cannot
be satisfied. Thus there exists a number y∗ such that Fy∗ = ∅. So we have
Fy = ∅ for y ≥ y∗. If no is the least integer exceeding y∗, we have that for
n ≥ no,

Fn = {x ∈ X : fn(x) ≥ ε} = ∅.
that is, for every x ∈ X, | fn(x) |< ε for n ≥ no and hence, the sequence
{fn} converges uniformly. �
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