Andrzej Nowik, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland, e-mail: matan@@paula.univ.gda.pl

REMARKS ABOUT A TRANSITIVE VERSION OF PERFECTLY MEAGER SETS

Abstract

We show that if X has the property that every continuous image into Baire space is bounded and 2^{ω} is not a continuous image of X, then X is always of first category in some additive sense. This gives an answer to an oral question of L. Bukovský, whether every wQN set has the latter property.

1 Notation and Definitions

 $\mathcal{MGR}(P)$ denotes the family of first category subsets of P. If $s \in 2^{<\omega}$ then $\mathcal{N}_s = \{t \in 2^{\omega} : t \supseteq s\}$ is a basic clopen set in 2^{ω} . Every clopen subset of 2^{ω} is a finite union of \mathcal{N}_s . We denote by $\Delta_1^0(2^{\omega})$ the class of clopen subsets of 2^{ω} .

Definition 1 [NSW] $X \subseteq 2^{\omega}$ is perfectly meager in the transitive sense iff for every perfect $P \subseteq 2^{\omega}$ one can find $\overline{F_n} = F_n \subseteq 2^{\omega}$ such that

$$X \subseteq \bigcup_{n < \omega} F_n$$

and

$$\forall_{h \in 2^{\omega}} \left(\bigcup_{n < \omega} F_n \right) \cap (P + h) \in \mathcal{MGR}(P + h).$$

We use the abbreviation AFC' for this property.

Key Words: Hurewicz property, $S_1(\Gamma, \Gamma)$, AFC' set, wQN set, Σ set, \mathcal{H} property Mathematical Reviews subject classification: Primary: 03E05 04A20 54D20

Received by the editors March 6, 1996

^{*}This paper was supported by the KBN grant 2 P03A 047 09

Definition 2 [BRR] $X \subseteq 2^{\omega}$ is wQN iff for every sequence

$$f_n: X \to \mathbf{R}_+$$

of continuous functions converging to 0 we can find subsequence

$$f_{n_k}: X \to \mathbf{R}_+$$

such that one can find partition

$$\{X_n\}_{n<\omega}$$

of X such that for every $n < \omega \{f_{n_k}\}_{k < \omega}$ converges uniformly to 0 on X_n .

Definition 3 [BRR] $X \subseteq 2^{\omega}$ is Σ set iff for every sequence

$$f_n: X \to \mathbf{R}_+$$

of continuous functions converging to zero one can find subsequence

$$f_{n_k}: X \to \mathbf{R}_+$$

 $such\ that$

$$\forall_{x \in X} \sum_{k < \omega} f_{n_k}(x) < \infty.$$

We use also abbreviation (CB) to denote the property of X such that:

- 1. The image of the set X by every continuous function into ω^{ω} is bounded, and
- 2. The space 2^{ω} is not continuous image of X.

The property of X that every Borel image of X into ω^{ω} is bounded was considered in [BJ] and was there denoted by the property \mathcal{H} .

The property of X that every continuous image of X into ω^{ω} is bounded is known as a Hurewicz property.

2 Remarks

In [NSW] authors proved, answering a question in [S], that every algebraic sum of sets of strong measure zero and strong first category has the Marczewski property s_0 . In fact, authors proved, that every algebraic sum of so called AFC' set and strong measure zero set has the property s_0 . In [NSW] it is proved that every γ set has the property AFC'. It is obvious that every AFC' set is also perfectly meager. We know, that every wQN set is perfectly meager and every γ set is wQN. So it is natural question about relation between the class of wQN sets and AFC' sets.

3 Main Theorem

Lemma 1 For every finite sequence of perfect subsets of $2^{\omega} : P_1, \ldots, P_k \subseteq 2^{\omega}$ there exists a partition of 2^{ω} into two disjoint clopen sets: U_0, U_1 such that

$$\forall_{h \in 2^{\omega}} \forall_{1 < i < k} \forall_{0 < j < 1} (h + P_i) \cap U_j \neq \emptyset.$$

PROOF. Moving each one of the sets P_i $(1 \le i \le k)$ we can assume, that each of them contains a null sequence: $\underline{0} = (0, 0, ...)$.

Now there exists $n < \omega$ and $f_i \in P_i \setminus \{\underline{0}\}$ such, that $\{f_i|n\}_{i=1,\ldots,k}$ is a sequence of linear independent vectors over the field $Z_2 = \{0,1\}$. (We treat 2^n as a linear space over the field Z_2). So we complete $\{f_i|n\}_{i=1,\ldots,k}$ to a base of the space 2^n with vectors $e_{k+1}, \ldots, e_n \in 2^n$.

Moreover, we put $e_i = f_i | n \ (i = 1, ..., k)$. So $(e_1, ..., e_n)$ is a base of 2^n over Z_2 .

Now we consider

$$V := \left\{ \sum_{i=1}^{n} \alpha_i e_i : \alpha_i \in Z_2 \land |\{i : \alpha_i = 1\}| \text{ is even } \right\}.$$

Obviously V is a linear subspace of 2^n over a field Z_2 , moreover is has a codimension one. Also it is clear, that V does not contain $e_i = f_i | n \ (1 \le i \le k)$.

Now we see, that for every $s \in 2^n$

$$s \in V$$
 iff $s + f_i | n \notin V$.

It is easy to see now, that if we define:

$$U_0 := \bigcup_{s \in V} \mathcal{N}_s \text{ and } U_1 := \bigcup_{s \in 2^n \setminus V} \mathcal{N}_s$$

then U_0 and U_1 will be disjoint clopen sets having the properties of Lemma 1.

Lemma 2' Let P be a perfect set and let $\{B_i\}_{i < \omega}$ be an enumeration of the base of P with $B_0 = P$. There is a system $\{U_s : s \in 2^{<\omega}\}$ of clopen subsets of 2^{ω} , $U_{\emptyset} = 2^{\omega}$, $\{U_{s \frown \langle 0 \rangle}, U_{s \frown \langle 0 \rangle}\}$ is a partition of U_s such that

(1)
$$\forall_{s \in 2^{<\omega}} \forall_{h \in 2^{\omega}} \forall_{j=0,1} \forall_{i \le |s|} (B_i + h) \cap U_s \ne \emptyset \rightarrow (B_i + h) \cap U_{s \frown \langle j \rangle} \ne \emptyset.$$

PROOF. By induction on length of $s \in 2^{<\omega}$ we define the sets U_s . We set $U_{\emptyset} = 2^{\omega}$ and assuming that U_s are constructed for all $s \in 2^k$ we find an integer

 n_k such that for every $s \in 2^k$ there is a set $S_s \subseteq 2^{n_k}$ such that $U_s = \bigcup_{t \in S_s} \mathcal{N}_t$. For $s \in 2^k$ we set

$$T_k = \{h \in 2^{\omega} : \forall_{n \ge n_k} h(n) = 0\},$$

$$R_s = \{(B_i + h) \cap U_s : (B_i + h) \cap U_s \neq \emptyset, \ i \le k, \ h \in T_k\}.$$

Let $\{U_0^s, U_1^s\}$ be a clopen partition of 2^{ω} with properties ensured by Lemma 1 for the finite system of perfect sets R_s and let us set

$$U_{s \frown \langle j \rangle} = U_s \cap U_j^s, \qquad j = 0, 1.$$

Now if $h \in 2^{\omega}$ is arbitrary, let $h_{(k)}, h^{(k)} \in 2^{\omega}$ be such that $h_{(k)}|n_k = h|n_k$, $h^{(k)}|[n_k, \infty) = h|[n_k, \infty)$, and $h_{(k)} + h^{(k)} = h$. Hence $h_{(k)} \in T_k$. If $(B_i + h) \cap U_s \neq \emptyset$, then also $(B_i + h_{(k)}) \cap U_s \neq \emptyset$, because $U_s + h^{(k)} = U_s$. Therefore

$$(B_i + h) \cap U_{s \cap \langle j \rangle} = [((B_i + h_{(k)}) \cap U_s) + h^{(k)}] \cap U_j^s \neq \emptyset$$

and condition (1) is fulfilled.

Lemma 2' has the following equivalent reformulation.

Corollary 2" For every perfect set $P \subseteq 2^{\omega}$ there is a continuous mapping $\Phi: 2^{\omega} \to 2^{\omega}$ such that for each $h \in 2^{\omega}$ the restriction $\Phi|(P+h)$ is an open mapping from P + h onto 2^{ω} .

PROOF. Let $\{U_s : s \in 2^{<\omega}\}$ be a system of clopen subsets of 2^{ω} as is stated in Lemma 2'. Let us define $\Phi : 2^{\omega} \to 2^{\omega}$ by $\Phi(x) = y$ iff $x \in \bigcap_{n < \omega} U_{y|n}$. Taking i = 0 in condition (1) we obtain

(2)
$$\forall_{h \in 2^{\omega}} \forall_{s \in 2^{<\omega}} (P+h) \cap U_s \neq \emptyset$$

which easily implies that the mapping $\Phi|(P+h)$ is onto 2^{ω} . Similarly, condition (1) implies that

$$\Phi(B_i+h) = \bigcup \{\mathcal{N}_s : s \in 2^i, \ (B_i+h) \cap U_s \neq \emptyset\}.$$

Corollary 2^{'''} If $X \subseteq 2^{\omega}$ and 2^{ω} is not a continuous image of X, then for every perfect set $P \subseteq 2^{\omega}$ there is a sequence $\{U_i\}_{i < \omega}$ of disjoint clopen subsets of 2^{ω} such that

- (1) $\forall_{h \in 2^{\omega}} \forall_{j < \omega} (P+h) \cap U_j \neq \emptyset$,
- (2) $\forall_{h \in 2^{\omega}} (P+h) \setminus \bigcup_{j < \omega} U_j \in \mathcal{MGR}(P+h),$

(3) $X \subseteq \bigcup_{i < \omega} U_i$.

PROOF. Let $\Phi : 2^{\omega} \to 2^{\omega}$ be a continuous mapping such that $\Phi|(P+h)$ is open and onto 2^{ω} for every $h \in 2^{\omega}$. Take any $y \in 2^{\omega} \setminus \Phi(X)$. In particular, $\Phi^{-1}(2^{\omega} \setminus \{y\}) \cap (P+h)$ is open dense in P+h. Let $S \subseteq \{s \in 2^{<\omega} : y \notin \mathcal{N}_s\}$ be a maximal antichain in $2^{<\omega}$ and let $\{U_i\}_{i<\omega}$ be an enumeration of the set $\{\Phi^{-1}(\mathcal{N}_s) : s \in S\}$.

Theorem 1 Let $X \subseteq 2^{\omega}$ be a set with the property (CB). Then X has the property AFC'.

PROOF. Let $P \subseteq 2^{\omega}$ be a perfect set. Let

$$\{B_i\}_{i<\omega}$$

be a clopen base in P. For every $j < \omega$ we apply Corollary 2''' to the perfect set B_j and we obtain a sequence

$$\{U_i^{(j)}\}_{i<\omega}$$

of clopen subsets of 2^{ω} . Put

$$N = \bigcap_{j < \omega} \bigcup_{i < \omega} U_i^{(j)}.$$

We define now:

$$\Psi: N \to \omega^{\omega}$$

by the condition, that

$$\Psi(x) = f \iff x \in \bigcap_{j < \omega} U_{f(j)}^{(j)}$$

for $x \in N$ and $f \in \omega^{\omega}$.

Now $\Psi(X)$ is bounded in ω^{ω} , so there exists a sequence $f_n \in \omega^{\omega}$, $n < \omega$, such that the closed sets

$$F_n = \bigcap_{j < \omega} \bigcup_{i < f_n(j)} U_i^{(j)} \subseteq N$$

cover X.

Take any $h \in 2^{\omega}$, $n < \omega$ and assume that $F_n \cap (P+h)$ is not meager in P+h, i.e. there exists $j < \omega$ such that $B_j + h \subseteq F_n$. By condition (1) of Corollary 2''' we can now choose $i > f_n(j)$ so that $(B_j + h) \cap U_i^{(j)} \neq \emptyset$ and

then $F_n \cap U_i^{(j)} \neq \emptyset$ which is a contradiction because F_n is disjoint with every set $U_i^{(j)}$ for $i \ge f_n(j)$.

This gives us that

$$\forall_{n < \omega} F_n \cap (P+h) \in \mathcal{MGR}(P+h)$$

holds true and so X has the property AFC'.

4 Conclusions

Conclusion 1 Every Σ set is an AFC' set.

PROOF. We know from [BRR], that every continuous image of an wQN set into ω^{ω} is bounded. Modifying the proof one can obtain, that continuous image of a Σ into ω^{ω} is also bounded. From [BRR] we know that continuous image of a Σ set is also a Σ set. One can show, that 2^{ω} is not a Σ set, so we obtain, that every Σ set has the property (*CB*).

Conclusion 2 Every wQN subset of 2^{ω} is an AFC' set.

PROOF. By [BRR] every wQN set is a Σ set.

Conclusion 3 Every \mathcal{H} set is AFC'.

PROOF. Every \mathcal{H} set is a wQN set.

Conclusion 4

$$non(AFC') \ge \mathbf{b}.$$

PROOF. Obvious, because every X with the cardinality less than **b** has the property (CB).

Conclusion 5 Every $S_1(\Gamma, \Gamma)$ set is AFC'. Recall that X is $S_1(\Gamma, \Gamma)$ iff for every sequence \mathcal{U}_n of open γ covers we can find $V_n \in \mathcal{U}_n$ such that $\{V_n\}_{n < \omega}$ is also a γ cover. Under γ cover we mean every cover \mathcal{U} of X such that $|\mathcal{U}| \ge \omega$ and

 $\forall_{x \in X} | \{ U \in \mathcal{U} : x \notin U \} | < \omega.$

This notion was defined and considered in [JMSS].

PROOF. In [JMSS] authors proved that every $S_1(\Gamma, \Gamma)$ set has the Hurewicz property and also that 2^{ω} has not the property $S_1(\Gamma, \Gamma)$ ([JMSS, Theorem 2]). Because every continuous image of set of the property $S_1(\Gamma, \Gamma)$ has also the property $S_1(\Gamma, \Gamma)$ ([JMSS, Theorem 3.1]), so we obtain the Conclusion 5.

Conclusion 6 There exists in ZFC an AFC' uncountable set.

PROOF. In [JMSS, proof of Theorem 5.1] the existence of an uncountable set in $S_1(\Gamma, \Gamma)^*$ is proved and I. Recław [R] proved that every such set is a wQN set.

Acknowledgment: The author would like to express his gratitude to the referee for a very nice version of Lemma 2'.

References

- [BJ] T. Bartoszyński and H. Judah, Borel images of sets of reals, Real Analysis Exchange, 20 (1994-95), 536–558.
- [BRR] L. Bukovský, I. Recław and M. Repický, Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology and its Applications, 41 (1991), 25–40.
- [JMSS] W. Just, A. Miller, M. Scheepers and P. J. Szeptycki, *The combina*torics of open covers (II), Topology and its Applications (to appear).
- [NSW] A. Nowik, M. Scheepers and T. Weiss, The algebraic sum of sets of real numbers with strong measure zero sets, to appear in Journal of Symbolic Logic.
- [R] I. Recław, A note on QN-sets and wQN-sets, preprint, 1996.
- [S] M. Scheepers, Additive properties of sets of real numbers and an infinite game, Quaestiones Mathematicae, 16 (1993), 177–191.