Andrzej Nowik, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland, e-mail: matan@@paula.univ.gda.pl

REMARKS ABOUT A TRANSITIVE VERSION OF PERFECTLY MEAGER SETS

Abstract

We show that if X has the property that every continuous image into Baire space is bounded and 2^{ω} is not a continuous image of X, then X is always of first category in some additive sense. This gives an answer to an oral question of L. Bukovský, whether every wQN set has the latter property.

1 Notation and Definitions

$\mathcal{M G R}(P)$ denotes the family of first category subsets of P. If $s \in 2^{<\omega}$ then $\mathcal{N}_{s}=\left\{t \in 2^{\omega}: t \supseteq s\right\}$ is a basic clopen set in 2^{ω}. Every clopen subset of 2^{ω} is a finite union of \mathcal{N}_{s}. We denote by $\Delta_{1}^{0}\left(2^{\omega}\right)$ the class of clopen subsets of 2^{ω}.

Definition 1 [NSW] $X \subseteq 2^{\omega}$ is perfectly meager in the transitive sense iff for every perfect $P \subseteq 2^{\omega}$ one can find $\overline{F_{n}}=F_{n} \subseteq 2^{\omega}$ such that

$$
X \subseteq \bigcup_{n<\omega} F_{n}
$$

and

$$
\forall_{h \in 2^{\omega}}\left(\bigcup_{n<\omega} F_{n}\right) \cap(P+h) \in \operatorname{M\mathcal {G}R}(P+h)
$$

We use the abbreviation AFC' for this property.

[^0]Definition 2 [BRR] $X \subseteq 2^{\omega}$ is $w Q N$ iff for every sequence

$$
f_{n}: X \rightarrow \mathbf{R}_{+}
$$

of continuous functions converging to 0 we can find subsequence

$$
f_{n_{k}}: X \rightarrow \mathbf{R}_{+}
$$

such that one can find partition

$$
\left\{X_{n}\right\}_{n<\omega}
$$

of X such that for every $n<\omega\left\{f_{n_{k}}\right\}_{k<\omega}$ converges uniformly to 0 on X_{n}.
Definition 3 [BRR] $X \subseteq 2^{\omega}$ is Σ set iff for every sequence

$$
f_{n}: X \rightarrow \mathbf{R}_{+}
$$

of continuous functions converging to zero one can find subsequence

$$
f_{n_{k}}: X \rightarrow \mathbf{R}_{+}
$$

such that

$$
\forall_{x \in X} \sum_{k<\omega} f_{n_{k}}(x)<\infty .
$$

We use also abbreviation $(C B)$ to denote the property of X such that:

1. The image of the set X by every continuous function into ω^{ω} is bounded, and
2. The space 2^{ω} is not continuous image of X.

The property of X that every Borel image of X into ω^{ω} is bounded was considered in [BJ] and was there denoted by the property \mathcal{H}.

The property of X that every continuous image of X into ω^{ω} is bounded is known as a Hurewicz property.

2 Remarks

In [NSW] authors proved, answering a question in [S], that every algebraic sum of sets of strong measure zero and strong first category has the Marczewski property s_{0}. In fact, authors proved, that every algebraic sum of so called AFC' set and strong measure zero set has the property s_{0}. In [NSW] it is proved that every γ set has the property AFC'. It is obvious that every AFC' set is also perfectly meager. We know, that every $w Q N$ set is perfectly meager and every γ set is $w Q N$. So it is natural question about relation between the class of $w Q N$ sets and AFC' sets.

3 Main Theorem

Lemma 1 For every finite sequence of perfect subsets of $2^{\omega}: P_{1}, \ldots, P_{k} \subseteq 2^{\omega}$ there exists a partition of 2^{ω} into two disjoint clopen sets: U_{0}, U_{1} such that

$$
\forall_{h \in 2^{\omega}} \forall_{1 \leq i \leq k} \forall_{0 \leq j \leq 1}\left(h+P_{i}\right) \cap U_{j} \neq \emptyset .
$$

Proof. Moving each one of the sets $P_{i}(1 \leq i \leq k)$ we can assume, that each of them contains a null sequence: $\underline{0}=(0,0, \ldots)$.

Now there exists $n<\omega$ and $f_{i} \in P_{i} \backslash\{\underline{0}\}$ such, that $\left\{f_{i} \mid n\right\}_{i=1, \ldots, k}$ is a sequence of linear independent vectors over the field $Z_{2}=\{0,1\}$. (We treat 2^{n} as a linear space over the field Z_{2}). So we complete $\left\{f_{i} \mid n\right\}_{i=1, \ldots, k}$ to a base of the space 2^{n} with vectors $e_{k+1}, \ldots, e_{n} \in 2^{n}$.

Moreover, we put $e_{i}=f_{i} \mid n(i=1, \ldots, k)$. So $\left(e_{1}, \ldots, e_{n}\right)$ is a base of 2^{n} over Z_{2}.

Now we consider

$$
V:=\left\{\sum_{i=1}^{n} \alpha_{i} e_{i}: \alpha_{i} \in Z_{2} \wedge\left|\left\{i: \alpha_{i}=1\right\}\right| \text { is even }\right\} .
$$

Obviously V is a linear subspace of 2^{n} over a field Z_{2}, moreover is has a codimension one. Also it is clear, that V does not contain $e_{i}=f_{i} \mid n(1 \leq i \leq k)$.

Now we see, that for every $s \in 2^{n}$

$$
s \in V \quad \text { iff } \quad s+f_{i} \mid n \notin V .
$$

It is easy to see now, that if we define:

$$
U_{0}:=\bigcup_{s \in V} \mathcal{N}_{s} \text { and } U_{1}:=\bigcup_{s \in 2^{n} \backslash V} \mathcal{N}_{s}
$$

then U_{0} and U_{1} will be disjoint clopen sets having the properties of Lemma 1.

Lemma 2^{\prime} Let P be a perfect set and let $\left\{B_{i}\right\}_{i<\omega}$ be an enumeration of the base of P with $B_{0}=P$. There is a system $\left\{U_{s}: s \in 2^{<\omega}\right\}$ of clopen subsets of $2^{\omega}, U_{\emptyset}=2^{\omega},\left\{U_{s \smile\langle 0\rangle}, U_{s \smile\langle 0\rangle}\right\}$ is a partition of U_{s} such that
(1) $\forall_{s \in 2<\omega} \forall_{h \in 2^{\omega}} \forall_{j=0,1} \forall_{i \leq|s|}\left(B_{i}+h\right) \cap U_{s} \neq \emptyset \rightarrow\left(B_{i}+h\right) \cap U_{s \sim\langle j\rangle} \neq \emptyset$.

Proof. By induction on length of $s \in 2^{<\omega}$ we define the sets U_{s}. We set $U_{\emptyset}=2^{\omega}$ and assuming that U_{s} are constructed for all $s \in 2^{k}$ we find an integer
n_{k} such that for every $s \in 2^{k}$ there is a set $S_{s} \subseteq 2^{n_{k}}$ such that $U_{s}=\bigcup_{t \in S_{s}} \mathcal{N}_{t}$. For $s \in 2^{k}$ we set

$$
\begin{aligned}
T_{k} & =\left\{h \in 2^{\omega}: \forall_{n \geq n_{k}} h(n)=0\right\} \\
R_{s} & =\left\{\left(B_{i}+h\right) \cap U_{s}:\left(B_{i}+h\right) \cap U_{s} \neq \emptyset, i \leq k, h \in T_{k}\right\}
\end{aligned}
$$

Let $\left\{U_{0}^{s}, U_{1}^{s}\right\}$ be a clopen partition of 2^{ω} with properties ensured by Lemma 1 for the finite system of perfect sets R_{s} and let us set

$$
U_{s \frown\langle j\rangle}=U_{s} \cap U_{j}^{s}, \quad j=0,1 .
$$

Now if $h \in 2^{\omega}$ is arbitrary, let $h_{(k)}, h^{(k)} \in 2^{\omega}$ be such that $h_{(k)}\left|n_{k}=h\right| n_{k}$, $h^{(k)}\left|\left[n_{k}, \infty\right)=h\right|\left[n_{k}, \infty\right)$, and $h_{(k)}+h^{(k)}=h$. Hence $h_{(k)} \in T_{k}$. If $\left(B_{i}+h\right) \cap$ $U_{s} \neq \emptyset$, then also $\left(B_{i}+h_{(k)}\right) \cap U_{s} \neq \emptyset$, because $U_{s}+h^{(k)}=U_{s}$. Therefore

$$
\left(B_{i}+h\right) \cap U_{s \sim\langle j\rangle}=\left[\left(\left(B_{i}+h_{(k)}\right) \cap U_{s}\right)+h^{(k)}\right] \cap U_{j}^{s} \neq \emptyset
$$

and condition (1) is fulfilled.
Lemma 2^{\prime} has the following equivalent reformulation.
Corollary $\mathbf{2}^{\prime \prime}$ For every perfect set $P \subseteq 2^{\omega}$ there is a continuous mapping $\Phi: 2^{\omega} \rightarrow 2^{\omega}$ such that for each $h \in 2^{\omega}$ the restriction $\Phi \mid(P+h)$ is an open mapping from $P+h$ onto 2^{ω}.
Proof. Let $\left\{U_{s}: s \in 2^{<\omega}\right\}$ be a system of clopen subsets of 2^{ω} as is stated in Lemma 2^{\prime}. Let us define $\Phi: 2^{\omega} \rightarrow 2^{\omega}$ by $\Phi(x)=y$ iff $x \in \bigcap_{n<\omega} U_{y \mid n}$. Taking $i=0$ in condition (1) we obtain
(2) $\forall_{h \in 2^{\omega}} \forall_{s \in 2^{<\omega}}(P+h) \cap U_{s} \neq \emptyset$
which easily implies that the mapping $\Phi \mid(P+h)$ is onto 2^{ω}. Similarly, condition (1) implies that

$$
\Phi\left(B_{i}+h\right)=\bigcup\left\{\mathcal{N}_{s}: s \in 2^{i},\left(B_{i}+h\right) \cap U_{s} \neq \emptyset\right\}
$$

Corollary $2^{\prime \prime \prime}$ If $X \subseteq 2^{\omega}$ and 2^{ω} is not a continuous image of X, then for every perfect set $P \subseteq 2^{\omega}$ there is a sequence $\left\{U_{i}\right\}_{i<\omega}$ of disjoint clopen subsets of 2^{ω} such that
(1) $\forall_{h \in 2^{\omega}} \forall_{j<\omega}(P+h) \cap U_{j} \neq \emptyset$,
(2) $\forall_{h \in 2^{\omega}}(P+h) \backslash \bigcup_{j<\omega} U_{j} \in \operatorname{MGR}(P+h)$,
(3) $X \subseteq \bigcup_{i<\omega} U_{i}$.

Proof. Let $\Phi: 2^{\omega} \rightarrow 2^{\omega}$ be a continuous mapping such that $\Phi \mid(P+h)$ is open and onto 2^{ω} for every $h \in 2^{\omega}$. Take any $y \in 2^{\omega} \backslash \Phi(X)$. In particular, $\Phi^{-1}\left(2^{\omega} \backslash\{y\}\right) \cap(P+h)$ is open dense in $P+h$. Let $S \subseteq\left\{s \in 2^{<\omega}: y \notin \mathcal{N}_{s}\right\}$ be a maximal antichain in $2^{<\omega}$ and let $\left\{U_{i}\right\}_{i<\omega}$ be an enumeration of the set $\left\{\Phi^{-1}\left(\mathcal{N}_{s}\right): s \in S\right\}$.

Theorem 1 Let $X \subseteq 2^{\omega}$ be a set with the property $(C B)$. Then X has the property $A F C^{\prime}$.

Proof. Let $P \subseteq 2^{\omega}$ be a perfect set. Let

$$
\left\{B_{i}\right\}_{i<\omega}
$$

be a clopen base in P. For every $j<\omega$ we apply Corollary $2^{\prime \prime \prime}$ to the perfect set B_{j} and we obtain a sequence

$$
\left\{U_{i}^{(j)}\right\}_{i<\omega}
$$

of clopen subsets of 2^{ω}. Put

$$
N=\bigcap_{j<\omega} \bigcup_{i<\omega} U_{i}^{(j)} .
$$

We define now:

$$
\Psi: N \rightarrow \omega^{\omega}
$$

by the condition, that

$$
\Psi(x)=f \Longleftrightarrow x \in \bigcap_{j<\omega} U_{f(j)}^{(j)}
$$

for $x \in N$ and $f \in \omega^{\omega}$.
Now $\Psi(X)$ is bounded in ω^{ω}, so there exists a sequence $f_{n} \in \omega^{\omega}, n<\omega$, such that the closed sets

$$
F_{n}=\bigcap_{j<\omega} \bigcup_{i<f_{n}(j)} U_{i}^{(j)} \subseteq N
$$

cover X.
Take any $h \in 2^{\omega}, n<\omega$ and assume that $F_{n} \cap(P+h)$ is not meager in $P+h$, i.e. there exists $j<\omega$ such that $B_{j}+h \subseteq F_{n}$. By condition (1) of Corollary $2^{\prime \prime \prime}$ we can now choose $i>f_{n}(j)$ so that $\left(B_{j}+h\right) \cap U_{i}^{(j)} \neq \emptyset$ and
then $F_{n} \cap U_{i}^{(j)} \neq \emptyset$ which is a contradiction because F_{n} is disjoint with every set $U_{i}^{(j)}$ for $i \geq f_{n}(j)$.

This gives us that

$$
\forall_{n<\omega} F_{n} \cap(P+h) \in \mathcal{M \mathcal { G }}(P+h)
$$

holds true and so X has the property AFC'.

4 Conclusions

Conclusion 1 Every Σ set is an $A F C^{\prime}$ set.
Proof. We know from [BRR], that every continuous image of an wQN set into ω^{ω} is bounded. Modifying the proof one can obtain, that continuous image of a Σ into ω^{ω} is also bounded. From $[B R R]$ we know that continuous image of a Σ set is also a Σ set. One can show, that 2^{ω} is not a Σ set, so we obtain, that every Σ set has the property ($C B$).

Conclusion 2 Every $w Q N$ subset of 2^{ω} is an AFC' set.
Proof. By [BRR] every $w Q N$ set is a Σ set.
Conclusion 3 Every \mathcal{H} set is AFC'.
Proof. Every \mathcal{H} set is a wQN set.

Conclusion 4

$$
\operatorname{non}\left(A F C^{\prime}\right) \geq \mathbf{b}
$$

Proof. Obvious, because every X with the cardinality less than \mathbf{b} has the property $(C B)$.

Conclusion 5 Every $S_{1}(\Gamma, \Gamma)$ set is AFC'. Recall that X is $S_{1}(\Gamma, \Gamma)$ iff for every sequence \mathcal{U}_{n} of open γ covers we can find $V_{n} \in \mathcal{U}_{n}$ such that $\left\{V_{n}\right\}_{n<\omega}$ is also $a \gamma$ cover. Under γ cover we mean every cover \mathcal{U} of X such that $|\mathcal{U}| \geq \omega$ and

$$
\forall_{x \in X}|\{U \in \mathcal{U}: x \notin U\}|<\omega .
$$

This notion was defined and considered in [JMSS].
Proof. In [JMSS] authors proved that every $S_{1}(\Gamma, \Gamma)$ set has the Hurewicz property and also that 2^{ω} has not the property $S_{1}(\Gamma, \Gamma)$ ([JMSS, Theorem 2]). Because every continuous image of set of the property $S_{1}(\Gamma, \Gamma)$ has also the property $S_{1}(\Gamma, \Gamma)$ ([JMSS, Theorem 3.1]), so we obtain the Conclusion 5.

Conclusion 6 There exists in ZFC an AFC' uncountable set.
Proof. In [JMSS, proof of Theorem 5.1] the existence of an uncountable set in $S_{1}(\Gamma, \Gamma)^{*}$ is proved and I. Recław [R] proved that every such set is a wQN set.

Acknowledgment: The author would like to express his gratitude to the referee for a very nice version of Lemma 2'.

References

[BJ] T. Bartoszyński and H. Judah, Borel images of sets of reals, Real Analysis Exchange, 20 (1994-95), 536-558.
[BRR] L. Bukovský, I. Recław and M. Repický, Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology and its Applications, 41 (1991), 25-40.
[JMSS] W. Just, A. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers (II), Topology and its Applications (to appear).
[NSW] A. Nowik, M. Scheepers and T. Weiss, The algebraic sum of sets of real numbers with strong measure zero sets, to appear in Journal of Symbolic Logic.
[R] I. Recław, A note on $Q N$-sets and wQN-sets, preprint, 1996.
$[\mathrm{S}] \quad$ M. Scheepers, Additive properties of sets of real numbers and an infinite game, Quaestiones Mathematicae, 16 (1993), 177-191.

[^0]: Key Words: Hurewicz property, $S_{1}(\Gamma, \Gamma)$, AFC' set, wQN set, Σ set, \mathcal{H} property Mathematical Reviews subject classification: Primary: 03E05 04A20 54D20
 Received by the editors March 6, 1996
 *This paper was supported by the KBN grant 2 P03A 04709

