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SOME REMARKS ON ABSOLUTE
SUMMABILITY METHODS

Abstract

This note deals with certain recent results concerning summability
|N, pn|k.

1. Let
∑
an be a given infinite series with {sn} as the sequence of its n-th

partial sums. Let σαn and tαn denote the n-th (C,α) means of the sequences {sn}
and {nan} respectively. We denote by {pn} a sequence of positive constants
such that Pn = p0 + p1 + · · ·+ pn →∞ as n→∞. The series

∑
an is said to

be summable |C,α|k, α > −1, k ≥ 1 [8] if

∞∑
1

nk−1|∆σαn−1|k =

∞∑
1

|tαn|k

n
<∞ . (1.1)

It is said to be summable |N, pn|k, k ≥ 1 [1] if

∞∑
1

(
Pn
pn

)k−1
|∆Tn−1|k <∞ , (1.2)

where

Tn =
1

Pn

n∑
k=0

pksk .

The series
∑
an is said to be summable |R, pn|k, k ≥ 1 [11] if

∞∑
1

nk−1|∆Tn−1|k <∞ . (1.3)
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Obviously |N, pn|1 = |R, pn|1 = |N, pn|. Also if Pn = O(npn) then

|R, pn|k ⇒ |N, pn|k (1.4)

and if npn = O(Pn), then |N, pn|k ⇒ |R, pn|k . (1.5)

Thus if
npn^

_
Pn , (1.6)

then |N, pn|k ⇐⇒ |R, pn|k.
For pn = 1 we have |N, 1|k = |R, 1|k = |C, 1|k while for pn = 1/(n+ 1) we find
from (1.5) that |N, 1/(n + 1)|k ⇒ |R, 1/(n + 1)|k but its converse is not true
as can be seen by taking ∆Tn−1 = n−1[log(n+ 1)]−1.

It is well known [7] that |C, 1| ⇒ |R, log n, 1| but the converse need not be
true. Also it is known that

|R, log n, 1| ⇐⇒
∣∣∣∣N, 1

n+ 1

∣∣∣∣ =

∣∣∣∣R, 1

n+ 1

∣∣∣∣
1

. (1.7)

Concerning summability |C,α|, Kogbetliantz [9] had proved that |C,α| ⇒
|C, β|, β ≥ α, α > −1. The corresponding extension to summability |C,α|k
was proved by Flett [8] who has shown that |C,α|k ⇒ |C, β|k, k ≥ 1, β ≥ α,
α > −1. Consequently in view of (1.7) we should expect either

|C, 1|k ⇒
∣∣∣∣N, 1

n+ 1

∣∣∣∣
k

(1.8)

or

|C, 1|k ⇒
∣∣∣∣R, 1

n+ 1

∣∣∣∣
k

(1.9)

Concerning inclusion relations between summability |C, 1|k and summabil-
ity |N, pn|k the following results are known.

Under the condition (1.6)

|C, 1|k ⇒ |N, pn|k [2] (1.10)

and
|N, pn|k ⇒ |C, 1|k [3] (1.11)

Consequently under the condition (1.6)

|N, pn|k ⇔ |C, 1|k (1.12)

For the necessity part we have the following [11].

If |C, 1|k ⇒ |N, pn|k, then npn = O(Pn) , and (1.13)
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if |N, pn|k ⇒ |C, 1|k, then Pn = O(npn) . (1.14)

It can be easily shown that {(−1)n−1} is summable |R, 1/(n+ 1)|k but not
summable |N, 1/(n+ 1)|k or |C, 1|k. In view of the relation |N, 1/(n+ 1)|k ⇒
|R, 1/(n+ 1)|k we should expect (1.9) to hold true. Writing

σn =
1

n+ 1

n∑
ν=0

sν , Tn =
1

Pn

n∑
ν=0

sν
ν + 1

and

Pn = 1 +
1

2
+ · · ·+ 1

n+ 1

we have

∆Tn =

(
1

Pn
− 1

Pn+1

) n∑
0

sν
ν + 1

− Sn+1

(n+ 2)Pn+1

=
pn+1

PnPn+1

n∑
ν=0

(Pν − 1)∆σν−1 +
∆σn
Pn+1

so that
∞∑
1

nk−1|∆Tn|k ≤

C

∞∑
n=1

nk−1(
n log2(n+ 1)

)k
(

n∑
ν=0

Pν |∆σν−1|

)k
+ C

∞∑
n=1

nk−1|∆σn|k

(log(n+ 1))k

= O(1)

∞∑
n=1

1

n log2k(n+ 1)

n∑
ν=0

Pν(ν + 1)k−1|∆σν−1|k
(

n∑
ν=0

Pν
ν + 1

)k−1

+O

( ∞∑
1

nk−1|∆σn|k
)

= O(1)

∞∑
n=1

1

n log2(n+ 1)

n∑
ν=1

νk−1 log(ν + 1)|∆σν−1|k

+O(1) = O(1)

∞∑
ν=1

νk−1 log(ν + 1)|∆σν−1|k
∞∑
n=ν

1

n log2(n+ 1)
+O(1)

= O(1)

∞∑
ν=1

νk−1|∆σν−1|k +O(1) = O(1) .

Thus |C, 1|k ⇒ |R, 1/(n+ 1)|k, k ≥ 1, whereas |C, 1|k ; |N, 1/(n+ 1)|k as it
is evident from the following special case of a result of Sarigol [12]:
|C, 1|k ⇒ |N, pn|k iff
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(i) npn = O(Pn)

(ii)
∑m

1 |(ν + 1)∆(Pν−1) + Pν |k
′

/ν + 1 = O(P k
′

m ).

Here (ii) does not hold if pn = 1/(n+ 1).
This shows that extension of the summability |N, pn| to index k in the sense
of (1.3) is more appropriate.

2. Bor and Thorpe in [5] gave a generalization of the result (1.12) in
following way. Suppose {pn} and {qn} are two sequences of positive constants
such that Pn = p0 + p1 + · · ·+ pn →∞ and Qn = qo + q1 + · · ·+ qn →∞ as
n→∞. If

pn
Pn

^
_

qn
Qn

(2.1)

then
|N, pn|k ⇒ |N, qn|k, k ≥ 1 (2.2)

and so
|N, qn|k ⇒ |N, pn|k, k ≥ 1 . (2.3)

Thus under (2.1)
|N, pn|k ⇔ |N, qn|k, k ≥ 1 . (2.4)

For the necessity part Bor and Thorpe [6] showed that if |N, pn|k ⇒ |N, qn|k,
then

qn
Qn

= O

(
pn
Pn

)
. (2.5)

Consequently if |N, qn|k ⇒ |N, pn|k, then

pn
Pn

= O

(
qn
Qn

)
. (2.6)

It is clear that if (2.6) holds then

n∑
1

pνQν
Pν

= O

(
n∑
1

qν

)
= O(Qn) . (2.7)

We find that it is possible to relax the condition (2.1). We will show that if
(2.5) and (2.7) hold then |N, pn|k ⇒ |N, qn|k, k ≥ 1. This generalizes a result
of Bor and Thorpe [5]. Writing

tn =
1

Pn

n∑
ν=0

pνsν and Tn =
1

Qn

n∑
ν=0

qνsν ,
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then as shown by Bor and Thorpe [5] (pp. 147-148),

∆Tn−1 =
qnPn∆tn−1
pnQn

− qn
QnQn−1

n−1∑
ν=1

Pν
pν
qν∆tν−1

+
qn

QnQn−1

n−1∑
ν=1

Qν∆tν−1

= Tn,1 + Tn,2 + Tn,3 , say .

In view of Minkowski’s inequality, to prove that

∞∑
1

(
Qn
qn

)k−1
|∆Tn−1|k <∞ ,

it is enough to prove that

∞∑
1

(
Qn
qn

)k−1
|∆Tn,r|k <∞ , r = 1, 2, 3 . (2.8)

The proof of (2.8) for r = 1, 2 is the same as in [5], since these involve the
condition (2.5) only. To prove (2.8) for r = 3 we have in view of (2.7)

∞∑
1

(
Qn
qn

)k−1
|Tn,3|k =

∞∑
1

(
Qn
qn

)k−1(
qn

QnQn−1

)k ∣∣∣∣∣
n−1∑
ν=1

Qν∆tν−1

∣∣∣∣∣
k

≤
∞∑
1

qn
QnQkn−1

(
n−1∑
ν=1

(
Pν
pν

) 1

k
′
(
pν
Pν

) 1

k
′

Q
1

k
′
ν ·Q

1
k
ν |∆tν−1|

)k

≤
∞∑
1

qn
QnQkn−1

(
n−1∑
ν=1

(
Pν
pν

)k−1
Qν |∆tν−1|k

)(
n−1∑
ν=1

pν
Pν
Qν

)k−1

= O(1)

∞∑
1

qn
QnQkn−1

Qk−1n−1 ·
n−1∑
ν=1

(
Pν
pν

)k−1
Qν |∆tν−1|k

= O(1)

∞∑
ν=1

(
Pν
pν

)k−1
Qν |∆tν−1|k

∞∑
n=ν+1

qn
QnQn−1

= O(1)

∞∑
ν=1

(
Pν
pν

)k−1
|∆tν−1|k <∞ .
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This completes the proof of our result.
Interchanging pn, Pn with qn, Qn respectively we conclude that if

pn
Pn

= O

(
qn
Qn

)
and

n∑
1

qνPν
Qν

= O(Pn) (2.9)

then |N, qn|k ⇒ |N, pn|k, k ≥ 1. Taking pn = 1 we get generalizations of
(1.10) and (1.11).

Remark. It may be observed that (2.5) is a necessary condition while (2.7)
is only sufficient. A special case of Sarigol’s result [12] states:

Necessary and sufficient conditions for |N, pn|k ⇒ |N, qn|k, are

(I)
qn
Qn

= O

(
pn
Pn

)

(II)

m∑
1

∣∣∣∣Pνpν (∆Qν−1) +Qν

∣∣∣∣k
′

pν
Pν

= O(Qk
′

m) , (2.10)

where 1/k + 1/k
′

= 1.
Here (I) is the same as (2.5). Using (2.5) and (2.7) we have

m∑
1

∣∣∣∣Pνpν (−qν) +Qν

∣∣∣∣k
′

pν
Pν

= O(1)

m∑
1

Qk
′

ν

pν
Pν

= O(Qk
′
−1

m )

m∑
1

Qνpν
Pν

= O(Qk
′

m) .

Hence (2.5) and (2.7) ⇒ (2.10).
Thus our result can be deduced from Sarigol’s result. However we include

the proof of our result as the condition (2.7) is simpler than (2.10) and our
proof is not based on functional analysis method as is the case with that of
Sarigol.

3. With a view to generalize the result (1.11), Bor [4] recently proved that
if npn^

_
Pn and

∞∑
1

(
Pn
pn

)(2−α)k−1

|∆Tn−1|k <∞ 0 < α ≤ 1 , k ≥ 1 , (3.1)
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where Tn denotes the (N, pn) mean of a series
∑
an, then the series

∑
an is

summable |C,α|k .

It is clear that if npn^
_
Pn then (3.1) is equivalent to the condition

∞∑
1

n(2−α)k−1|∆Tn−1|k <∞ . (3.2)

Thus Bor’s result can be stated as: If npn^
_
Pn and (3.2) holds then

∑
an

is summable |C,α|k, 0 < α ≤ 1, k ≥ 1. Analyzing the proof of Bor we
observe that the following result holds: If Pn = O(npn) and (3.2) holds, then∑
an is summable |C,α|k, 0 < α ≤ 1, k ≥ 1. This shows that the condition

npn = O(Pn) in Bor’s result is superfluous.
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