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Abstract

In this paper the authors define a multifunction F : X 7→ Y to be
upper (respectively, lower) β-continuous if F+(V ) (resp. F−(V )) is β-
open in X for every open set V of Y . They obtain some characterizations
and several properties concerning upper (resp. lower) β-continuous mul-
tifunctions. The relationships between these multifunctions and quasi
continuous multifunctions are investigated.

1 Introduction

Abd El-Monsef et al. [1] defined β-continuous functions as a generalization
of semi-continuity [15] and precontinuity [17]. Recently, Borśık and Doboš [7]
have introduced the notion of almost quasi- continuity which is weaker than
that of quasi-continuity [16] and obtained a decomposition theorem of quasi-
continuity. The authors [26] of the present paper obtained several characteri-
zations of β-continuity and showed that almost quasi-continuity is equivalent
to β-continuity. The equivalence of almost quasi-continuity and β-continuity is
also shown by Borśık [6] and Ewert [11]. The purpose of the present paper is to
define upper (lower) β-continuous multifunctions and to obtain several charac-
terizations of upper (lower) β-continuous multifunctions and several properties
of such multifunctions.
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2 Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the
interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is
said to be α-open [19] (resp. semi-open [15], preopen [17], β-open [1] or semi-
preopen [3]) if A ⊂ Int(Cl(IntA))) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)),
A ⊂ Cl(Int(Cl(A)))). The family of all semi-open (resp. β-open) sets of X
containing a point x ∈ X is denoted by SO(X,x) (resp. β(X,x)). The family
of all α-open (resp. semi-open, preopen, semi-preopen) sets in X is denoted
by α(X) (resp. SO(X), PO(X), β(X)). For these four families, it is shown
in [20] (see Lemma 3.1) that SO(X)∩ PO(X) = α(X), and it is obvious that
SO(X) ∪ PO(X) ⊂ β(X). The complement of an α-open (resp. semi-open,
preopen, β-open) set is said to be α-closed (resp. semi-closed [9], preclosed
[10], β-closed [1]). The intersection of all β-closed sets of X containing A is
called the β-closure [2] of A, and it is denoted by βCl(A). Similarly, αCl(A),
sCl(A) and pCl(A) are defined. The union of all β-open sets of X contained
in A is called the β-interior of A and is denoted by βInt(A). Abd El-Monsef
et al. [1] defined a function to be β-continuous if the inverse image of every
open set is β-open.

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y )
always mean topological spaces, and F : X 7→ Y (resp. f : X 7→ Y ) represents
a multivalued (resp. single valued) function. For a multifunction F : X 7→ Y ,
we shall denote the upper and lower inverse of a set G of Y by F+(G) and
F−(G), respectively, that is F+(G) = {x ∈ X : F (x) ⊂ G} and F−(G) =
{x ∈ X : F (x) ∩G 6= ∅}.

3 Characterizations

Definition 3.1 A multifunction F : X 7→ Y is said to be

(a) upper β-continuous [27] (briefly u.β.c.) at a point x ∈ X if for each open
set V containing F (x), there exists U ∈ β(X,x) such that F (U) ⊂ V ;

(b) lower β-continuous [27] (briefly l.β.c.) at a point x ∈ X if for each open set
V such that F (x)∩V 6= ∅, there exists U ∈ β(X,x) such that U ⊂ F−(V );

(c) upper (lower) β-continuous if F has this property at every point of X.

Remark 3.1 According to the referee, the definition of the upper and lower
β-continuity at a point can be found in [12], where for the definition it is taken
the condition (e) from Theorem 3.1 (resp. Theorem 3.2).

Theorem 3.1 The following are equivalent for a multifunction F : X 7→ Y :
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(a) F is u.β.c. at a point x ∈ X;

(b) for each open neighborhood U of x and each open set V of Y with x ∈
F+(V ), F+(V ) ∩ U is not nowhere dense;

(c) for each open neighborhood U of x and each open set V of Y with x ∈
F+(V ), there exists an open set G of X such that ∅ 6= G ⊂ U and G ⊂
Cl(F+(V ));

(d) for each open set V of Y with x ∈ F+(V ), there exists U ∈ SO(X,x) such
that U ⊂ Cl(F+(V ));

(e) x ∈ Cl(Int(Cl(F+(V )))) for every open set V of Y with x ∈ F+(V ).

Proof. (a)⇒ (b) and (b)⇒ (c): The proofs are obvious and are thus omitted.
(c)⇒ (d): Let V be an open set of Y containing F (x). By U(x) we denote

the family of all open neighborhoods of x. For each U ∈ U(x), there exists
an open set GU of X such that ∅ 6= GU ⊂ U and GU ⊂ Cl(F+(V )). Put
W = ∪{GU : U ∈ U(x)}. Then W is an open set of X, x ∈ Cl(W ) and
W ⊂ Cl(F+(V )). Moreover, we put Uo = W ∪ {x}. Then W ⊂ Uo ⊂ Cl(W )
and Uo ∈ SO(X,x) and also Uo ⊂ Cl(F+(V )).

(d) ⇒ (e): Let V be an open set of Y containing F (x). There exists
U ∈ SO(X,x) such that U ⊂ Cl(F+(V )). Therefore, we have x ∈ U ⊂
Cl(Int(U)) ⊂ Cl(Int(Cl(F+(V )))).

(e) ⇒ (a): This is shown in [12]. 2

Theorem 3.2 The following are equivalent for a multifunction F : X 7→ Y :

(a) F is l.β.c. at a point x ∈ X;

(b) for any open neighborhood U of x and any open set V of Y with x ∈
F−(V ), F−(V ) ∩ U is not nowhere dense;

(c) for any open neighborhood U of x and any open set V of Y with x ∈
F−(V ), there exists an open set G of X such that ∅ 6= G ⊂ U and G ⊂
Cl(F−(V ));

(d) for any open set V of Y with x ∈ F−(V ), there exists U ∈ SO(X,x) such
that U ⊂ Cl(F−(V ));

(e) x ∈ Cl(Int(Cl(F−(V )))) for every open set V of Y with x ∈ F−(V ).

Proof. The proof is similar to that of Theorem 3.1. 2

Theorem 3.3 The following are equivalent for a multifunction F : X 7→ Y :
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(a) F is u.β.c.,;

(b) F+(V ) ∈ β(X) for every open set V of Y ;

(c) F−(K) is β-closed in X for every closed set K of Y ;

(d) βCl(F−(B)) ⊂ F−(Cl(B)) for every subset B of Y ;

(e) Int(Cl(Int(F−(B)))) ⊂ F−(Cl(B)) for every subset B of Y .

Proof. (a) ⇒ (b): Let V be any open set of Y and x ∈ F+(V ). There
exists U ∈ β(X,x) such that F (U) ⊂ V . Therefore, we obtain x ∈ U ⊂
Cl(Int(Cl(U))) ⊂ Cl(Int(Cl(F+(V )))). Then F+(V ) ⊂ Cl(Int(Cl(F+(V ))))
and hence F+(V ) ∈ β(X).

(b) ⇒ (c): This follows immediately from the fact that F+(Y \ B) =
X \ F−(B) for every subset B of Y .

(c) ⇒ (d): For any subset B of Y , Cl(B) is closed in Y and F−(Cl(B)) is
β-closed in X. Therefore, we obtain βCl(F−(B)) ⊂ F−(B).

(d)⇒ (e): Let B be any subset of Y . By [3] (see Theorem 2.15), we obtain
Int(Cl(Int(F−(B)))) ⊂ βCl(F−(B)) ⊂ F−(Cl(B)).

(e) ⇒ (b): Let V be any open set of Y . Then Y \ V is closed in Y and we
have X \ F+(V ) = F−(Y \ V ) ⊃ Int(Cl(Int(F−(Y \ V )))) = Int(Cl(Int(X \
F+(V )))) = X \ Cl(Int(F+(V )))). We obtain F+(V ) ⊂ Cl(Int(Cl(F+(V ))))
and hence F+(V ) ∈ β(V ).

(b)⇒ (a): Let x ∈ X and V be an open set of Y containing F (x). By (b),
we have x ∈ F+(V ) ∈ β(X). Put U = F+(V ). Then we obtain U ∈ β(X,x)
and F (U) ⊂ V . Therefore, F is upper β-continuous. 2

Theorem 3.4 The following are equivalent for a multifunction F : X 7→ Y :

(a) F is l.β.c.,;

(b) F−(V ) ∈ β(X) for every open set V of Y ;

(c) F+(K) is β-closed in X for every closed set K of Y ;

(d) βCl(F+(B)) ⊂ F+(Cl(B)) for every subset B of Y ;

(e) Int(Cl(Int(F+(B)))) ⊂ F+(Cl(B)) for every subset B of Y .

(f) F (Int(Cl(Int(A)))) ⊂ Cl(F (A)) for every subset A of X;

(g) F (βCl(A)) ⊂ Cl(F (A)) for every subset A of X.
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Proof. It is shown similarly to the proof of Theorem 3.3 that the statements
(a), (b), (c), (d) and (e) are equivalent. We shall prove only the following
implications.

(e) ⇒ (f): Let A be any subset of X. Then we have Int(Cl(Int(A))) ⊂
Int(Cl(Int(F+(F (A))))) ⊂ F+(Cl(F (A))). Therefore F (Int(Cl(Int(A)))) ⊂
Cl(F (A)) .

(f) ⇒ (g): Let A be any subset of X. By [3] (see Theorem 2.15), we have
F (βCl(A)) = F (A∪Int(Cl(Int(A)))) = F (A)∪F (Int(Cl(Int(A)))) ⊂ Cl(F (A)).

(g)⇒ (c): Let K be any closed set of Y . Then we have F (βCl(F+(K))) ⊂
Cl(F (F+(K))) ⊂ Cl(K) = K. Therefore, we have βCl(F+(K)) ⊂ F+(K),
and hence F+(K) is β-closed in X. 2

For a multifunction F : X 7→ Y , the graph multifunction GF : X 7→ X×Y
is defined as follows: GF (x) = {x} × F (x) for every x ∈ X.

Lemma 3.1 (Noiri and Popa, [22]) For a multifunction F : X 7→ Y , the
following hold:

(a) G+
F (A×B) = A ∩ F+(B) and (b) G−F (A×B) = A ∩ F−(B)

for any subsets A ⊂ X and B ⊂ Y .

Theorem 3.5 Let F : X 7→ Y be a multifunction such that F (x) is compact
for each x ∈ X. Then F is u.β.c. if and only if GF : X 7→ X × Y is u.β.c. .

Proof. Necessity. Suppose that F : X 7→ Y is u.β.c. . Let x ∈ X and W
be any open set of X × Y containing GF (X). For each y ∈ F (x), there exist
open sets U(y) ⊂ X and V (y) ⊂ Y such that (x, y) ∈ U(y)× V (y) ⊂W . The
family {V (y) : y ∈ F (x)} is an open cover of F (x), and F (x) is compact.
Therefore, there exist a finite number of points y1, y2, . . . , yn in F (x) such
that F (x) ⊂ ∪{V (yi) : 1 ≤ i ≤ n}. Set U = ∩{U(yi) : 1 ≤ i ≤ n} and
V = ∪{V (yi) : 1 ≤ i ≤ n}. Then U and V are open in X and Y , respectively,
and {x}×F (x) ⊂ U×V ⊂W . Since F is u.β.c., there exists Uo ∈ β(X,x) such
that F (Uo) ⊂ U . By Lemma 3.1, we have U∩Uo ⊂ U∩F+(V ) = G+

F (U×V ) ⊂
G+
F (W ). Therefore, we obtain U ∩ Uo = β(X,x) and GF (U ∩ Uo) ⊂ W . This

shows that GF is u.β.c. .
Strong sufficiency. Suppose that GF : X 7→ X × Y is u.β.c. . Let x ∈ X

and V be any open set of Y containing F (x). Since X × V is open in X × Y
and GF (x) ⊂ X ×V , there exists U ∈ β(X,x) such that GF (U) ⊂ X ×V . By
Lemma 3.1, we have U ⊂ G+

F (X × V ) = F+(V ) and F (U) ⊂ V . This shows
that F is u.β.c. . 2

Theorem 3.6 A multifunction F : X 7→ Y is l.β.c. if and only if GF : X 7→
X × Y is l.β.c. .
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Proof. Necessity. Suppose that F is l.β.c. . Let x ∈ X and W be any open
set of X × Y such that x ∈ G−F (W ). Since W ∩ ({x}×F (x)) 6= ∅, there exists
y ∈ F (x) such that (x, y) ∈W , and hence (x, y) ∈ U × V ⊂W for some open
sets U ⊂ X and V ⊂ Y . Since F (x) ∩ V 6= ∅, there exists G ∈ β(X,x) such
that G ⊂ F−(V ). By Lemma 3.1, we have U∩G ⊂ U∩F−(V ) = G−F (U×V ) ⊂
G−F (W ). Moreover, x ∈ U ∩G ⊂ β(X) and hence GF is l.β.c. .

Sufficiency. Suppose that GF is l.β.c. . Let x ∈ X and V be an open set of
Y such that x ∈ F−(V ). Then X×V is open in X×Y and GF (x)∩(X×V ) =
({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) 6= ∅. Since GF is l.β.c., there
exists U ∈ β(X,x) such that U ⊂ G−F (X × V ). By Lemma 3.1, we obtain
U ⊂ F−(V ). This shows that F is l.β.c. . 2

Definition 3.2 A subset A of a topological space X is said to be

(a) α-paracompact [28] if every cover of A by open sets of X is refined by a
cover of A which consists of open sets of X and is locally finite in X;

(b) α-regular [14] if for each a ∈ A and each open set U of X containing a
there exists an open set G of x such that a ∈ G ⊂ Cl(G) ⊂ U .

Lemma 3.2 (Kovacević [14]) If A is an α-regular α-paracompact set of a
topological space X and U is an open neighborhood of A, then there exists an
open set G of X such that A ⊂ G ⊂ Cl(G) ⊂ U .

For a multifunction F : X 7→ Y , by ClF : X 7→ Y (see [4]) we denote
a multifunction defined as follows: (ClF)(x) = Cl(F (x)) for each x ∈ X.
Similarly, we can define βClF : X 7→ Y , sClF : X 7→ Y , pClF : X 7→ Y and
αClF : X 7→ Y .

Lemma 3.3 If F : X 7→ Y is a multifunction such that F (x) is α-paracompact
α-regular for each x ∈ X, then for each open set V of Y , G+(V ) = F+(V ),
where G denotes βClF, sClF, pClF, αClF or ClF.

Proof. Let V be any open set of Y . Let x ∈ G+(V ). Then G(x) ⊂ V
and F (x) ⊂ G(x) ⊂ V . We have x ∈ F+(V ), and hence G+(V ) ⊂ F−(V ).
Conversely, let x ∈ F+(V ), then F (x) ⊂ V . By Lemma 3.2, there exists an
open set H of Y such that F (x) ⊂ H ⊂ Cl(H) ⊂ V ; hence G(x) ⊂ Cl(H) ⊂ V .
Therefore, we have x ∈ G+(V ) and F+(V ) ⊂ G+(V ). 2

Theorem 3.7 Let F : X 7→ Y be a multifunction such that F (x) is α-
paracompact and α-regular for each x ∈ X. Then the following are equivalent:
a) F is u.β.c. ; b) βClF is u.β.c. ; c) sClF is u.β.c. ; d) pClF is u.β.c. ; e) αClF
is u.β.c. ; f) ClF is u.β.c. .
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Proof. Similarly to Lemma 3.3, we put G = βClF, sClF, pClF, αClF or ClF.
Suppose that F is u.β.c. . Let x ∈ X and V be any open set of Y containing
G(x). By Lemma 3.3, x ∈ G+(V ) = F+(V ) and there exists U ∈ β(X,x) such
that F (U) ⊂ V . Since F (u) is α-paracompact and α-regular for each u ∈ U ,
by Lemma 3.2 there exists an open set H such that F (u) ⊂ H ⊂ Cl(H) ⊂ V ;
hence G(u) ⊂ Cl(H) ⊂ V for each u ∈ U . Therefore, we obtain G(U) ⊂ V .
This shows that G is u.β.c. .

Conversely, suppose thatG is u.β.c. . Let x ∈ X and V be any open set of Y
containing F (x). By Lemma 3.3, x ∈ F+(V ) = G+(V ) and hence G(x) ⊂ V .
There exists U ∈ β(X,x) such that G(U) ⊂ V . Thus U ⊂ G+(V ) = F+(V ),
and hence F (U) ⊂ V . This shows that F is u.β.c. . 2

Lemma 3.4 If F : X 7→ Y is a multifunction, then for each open set V of Y ,
G−(V ) = F−(V ), where G denotes βClF, sClF, pClF, αClF or ClF.

Proof. Let V be any open set of Y and x ∈ G−(V ). Then G(x) ∩ V 6= ∅,
and hence F (x) ∩ V 6= ∅ since V is open. Thus, we obtain x ∈ F−(V ) and
hence G−(V ) ⊂ F−(V ). Conversely, let x ∈ F−(V ). Then we have ∅ 6=
F (x)∩V ⊂ G(x)∩V and hence x ∈ G−(V ). Thus, we have F−(V ) ⊂ G−(V ).
Consequently, we obtain G−(V ) = F−(V ). 2

Theorem 3.8 For a multifunction F : X 7→ Y , the following are equivalent:
a) F is l.β.c. ; b) βClF is l.β.c. ; c) sClF is l.β.c. ; d) pClF is l.β.c. ; e) αClF
is l.β.c. ; f) ClF is l.β.c. .

Proof. By using Lemma 3.4, this is shown similarly as in Theorem 3.7. 2

Theorem 3.9 Let {Uα : α ∈ 5} be an α-open cover of a topological space
X. A multifunction F : X 7→ Y is u.β.c. if and only if the restriction F/Uα :
Uα 7→ Y is u.β.c. for each α ∈ 5.

Proof. Necessity. Let α ∈ 5 and x ∈ Uα. Let V be an open set of Y such
that (F/Uα)(x) ⊂ V . Since F is u.β.c. and F (x) = (F/Uα)(x) ⊂ V , there
exists G ∈ β(X,x) such that F (G) ⊂ V . Set U = G ∩ Uα, then we have
U ∈ β(Uα, x) (see [1], Lemma 2.5) and (F/Uα)(U) = F (U) ⊂ V . Therefore,
F/Uα is u.β.c. .

Sufficiency. Let x ∈ X and V be any open set of Y such that F (x) ⊂ V .
There exists α ∈ 5 such that x ∈ Uα. Since F/Uα is u.β.c. and (F/Uα)(x) =
F (x) ⊂ V , there exists U ∈ β(Uα, x) such that (F/Uα)(U) ⊂ V . Thus, we
have U ∈ β(X,x) (see [1], Lemma 2.7) and F (U) = (F/Ua)(U) ⊂ V . This
shows that F is u.β.c. . 2
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Theorem 3.10 Let {Uα : α ∈ 5} be an α-open cover of a topological space
X. A multifunction F : X 7→ Y is l.β.c. if and only if the restriction F/Uα :
Uα 7→ Y is l.β.c. for each α ∈ 5.

Proof. The proof is similar to that of Theorem 3.9. 2

4 Some properties

Definition 4.1 A multifunction F : X 7→ Y is said to be upper rarely contin-
uous [25] at a point x of X if for each open set G of Y containing F (x), there
exists a rare set RG with Cl(RG)∩G = ∅ and an open set U containing x such
that F (U) ⊂ G ∪RG. A multifunction is said to be upper rarely continuous if
it has the property at each point of X.

Theorem 4.1 If a multifunction F : X 7→ Y is upper rarely continuous at
each point x ∈ X and for each open set G containing F (x), F−(Cl(RG)) is a
β-closed set of X, where RG is the rare set of Definition 4.1, then F is u.β.c. .

Proof. Let x ∈ X and G be an open set such that F (x) ⊂ G. Since F
is upper rarely continuous, there exist an open set V of X containing x and
a rare set RG with Cl(RG) ∩ G = ∅ such that F (V ) ⊂ G ∪ RG. Let U =
V ∩ (X \ F−(Cl(RG))). Then we have U ∈ β(X) (see [3], Theorem 2.7)
and x ∈ U , since x ∈ V and x ∈ X \ F−(Cl(RG)). If we suppose that
x ∈ F−(Cl(RG)) then F (x)∩Cl(RG) 6= ∅, but F (x) ⊂ G and G∩Cl(RG) = ∅.
Let s ∈ U . Then F (s) ⊂ G ∪RG and F (s) ∩ Cl(RG) = ∅. Therefore, we have
F (s) ∩RG = ∅, and hence F (s) ⊂ G. Since U is a β-open set containing x, it
follows that F is u.β.c. . 2

Definition 4.2 A multifunction F : X 7→ Y is said to be upper α- continuous
[18] if for each x ∈ X and each open set V of Y containing F (x), there exists
an α-open set U containing x such that F (U) ⊂ V .

Theorem 4.2 If F,G : X 7→ Y are multifunctions and Y is a normal space
such that

a) F and G are punctually closed;

b) F is u.β.c. ;

c) G is upper α-continuous,

then the set {x ∈ X : F (x) ∩G(x) 6= ∅} is β-closed in X.
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Proof. Put A = {x ∈ X : F (x) ∩ G(x) 6= ∅} and let x ∈ X \ A. Then
F (x) ∩ G(x) = ∅. Since Y is normal, there exist disjoint open sets V and
W such that F (x) ⊂ V and G(x) ⊂ W . Since F is u.β.c., there exists U1 ∈
β(X,x) such that F (U1) ⊂ V . Since G is upper α-continuous, there exists an
α-open set U2 containing x such that G(U2) ⊂ W . Put U = U1 ∩ U2. Then
U ∈ β(X,x) (see [3], Corollary 2.14) and F (U) ∩ G(U) = ∅. Therefore, we
have U ∩A = ∅ and hence A is β-closed in X. 2

Definition 4.3 The β-frontier of a subset A of X, denoted by βFr(A), is
defined by βFr(A) = βCl(A) ∩ βCl(X \A) = βCl(A)− βInt(A).

Theorem 4.3 The set of all points x of X at which a multifunction F : X 7→
Y is not u.β.c. (l.β.c.) is identical with the union of the β-frontier of the upper
(lower) inverse images of open sets containing (meeting) F (x).

Proof. Let x be a point of X at which F is not u.β.c. . Then there exists an
open set V of Y containing F (x) such that U ∩ (X \ F+(V )) 6= ∅ for every
U ∈ β(X,x). Therefore, we have x ∈ βCl(X \F+(V )) = X \ βInt(F+(V )) and
x ∈ F+(V ). Thus we obtain x ∈ βFr(F+(V )). Conversely, suppose that V is
an open set containing F (x) and that x ∈ βFr(F+(V )). If F is u.β.c, at x, then
there exists U ∈ β(X,x) such that U ⊂ F+(V ); hence x ∈ βInt(F+(V )). This
is a contradiction, hence F is not u.β.c. at x. The case for l.β.c. is similarly
shown. 2

5 β-continuity and quasi-continuity

Definition 5.1 A multifunction F : X 7→ Y is said to be

(a) upper quasi continuous [23] if for each x ∈ X, each open set U containing
x and each open set V containing F (x), there exists a nonempty open set
G of X such that G ⊂ U and F (G) ⊂ V ;

(b) lower quasi continuous [23] if for each x ∈ X, each open set U containing
x and each open set V such that F (x) ∩ V 6= ∅, there exists a nonempty
open set G of X such that G ⊂ U and F (g) ∩ V 6= ∅ for every g ∈ G.

Lemma 5.1 (Noiri and Popa [21]) If A is an α-regular set of a topological
space X, then for every open set U which intersects A there exists an open set
UA such that A ∩ UA 6= ∅ and Cl(UA) ⊂ U .

The set of all points at which a multifunction F : X 7→ Y is u.β.c. and l.β.c.
(resp. upper quasi continuous and lower quasi continuous) will be denoted by
BF (resp. QF ).
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Theorem 5.1 If a multifunction F : X 7→ Y is punctually α-regular and
α-paracompact, then BF ∩ Int(Cl(QF )) ⊂ QF .

Proof. Let x ∈ BF ∩ Int(Cl(QF )). First, we show that F is upper quasi
continuous. Let U and V be open sets such that x ∈ U and F (x) ⊂ V . Since
F (x) is α-regular and α-paracompact, by Lemma 3.2 there exists an open set
W such that F (x) ⊂ W ⊂ Cl(W ) ⊂ V . The upper β-continuity of F at x
implies that there exists a nonempty open set G ⊂ U ∩ Int(Cl(QF )) such that
G ⊂ Cl(F+(W )). It follows from G ⊂ Int(Cl(QF )) that G ∩QF 6= ∅.

If s ∈ G ∩QF , then s ∈ F+(Cl(W )) . (1)

Suppose that (1) does not hold. Then there exists s ∈ G ∩ QF such that
s ∈ F−(Y \Cl(W )). The lower quasi continuity of F implies that there exists
a nonempty open set G1 ⊂ G such that G1 ⊂ F−(Y \ Cl(W )) ⊂ F−(Y \W )
(see [24], Theorem 2.2). This contradicts that G ⊂ Cl(F+(W )). It follows
from (1) that if s ∈ G ∩ QF then F (s) ⊂ Cl(W ) ⊂ V . The upper quasi
continuity of F at s implies that there exists a nonempty open set H ⊂ U
such that F (H) ⊂ V . Thus F is upper quasi continuous at x. Next, we show
that F is lower quasi continuous. Let U and V be open sets such that x ∈ U
and F (x)∩V 6= ∅. Since F (x) is α-regular, by Lemma 5.1 there exists an open
set W such that F (x) ∩W 6= ∅ and Cl(W ) ⊂ V . The lower β-continuity of F
at x implies that there exists a nonempty open set G ⊂ U ∩ Int(Cl(QF )) such
that G ⊂ Cl(F−(W )). It follows from G ⊂ Int(Cl(QF )) that G ∩QF 6= ∅.

If s ∈ G ∩QF then s ∈ F−(Cl(W )) . (2)

Suppose that (2) does not hold. Then, there exists s ∈ G ∩QF such that s ∈
F+(Y \Cl(W )). The upper quasi continuity of F at s implies that there exists
a nonempty open set G2 ⊂ G such that G2 ⊂ F+(Y \Cl(W )) ⊂ F+(Y \W ) (see
[24], Theorem 2.1). This is in contradiction with G ⊂ Cl(F−(W )). It follows
from (2) that if s ∈ G ∩QF , then F (s) ∩Cl(W ) 6= ∅ and hence F (s) ∩ V 6= ∅.
The lower quasi continuity of F are s implies that there exists a nonempty
open set H ⊂ U such that F (H) ∩ V 6= ∅ for each h ∈ H. Thus F is lower
quasi continuous at x. Consequently we obtain x ∈ QF . 2

Corollary 5.1 (Borsiḱ and Doboš [7]) Let Y be a regular space and f :
X 7→ Y be a function. Then Bf ∩ Int(Cl(Qf ) ⊂ Qf .

Corollary 5.2 If a multifunction F : X 7→ Y is u.β.c. and l.β.c., and F (x)
is α-regular α-paracompact for each x ∈ X, then QF is semi-closed in X.

Corollary 5.3 Let Y be a regular space and F : X 7→ Y an u.β.c. and l.β.c.
multifunction. If F (x) is compact for each x ∈ X, then QF is semi-closed in
X.
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Corollary 5.4 (Borsiḱ and Doboš [7]) If Y is a regular space and f :
X 7→ Y a β- continuous function, then Qf is semi-closed in X.

Theorem 5.2 Let F : X 7→ Y be a multifunction such that F (x) is α-regular
α-paracompact for each x ∈ X. Then F is upper and lower quasi continuous
if and only if F is u.β.c. and l.β.c. and QF is a dense set in X.

Corollary 5.5 (Borsiḱ and Doboš [7]) Let Y be a regular space. Then f :
X 7→ Y is quasi continuous if and only if it is β-continuous and Qf is dense
in X.

Definition 5.2 A multifunction F : X 7→ Y is said to be upper (resp. lower)
s-quasi continuous [13] at a point x ∈ X if for each open set V of Y containing
(resp. meeting) F (x) and having the connected complement, there exists U ∈
SO(X,x) such that F (U) ⊂ V (resp. U ⊂ F−(V )).

By Qs(F ) we shall denote the set of all points of X at which a multifunction
F : X 7→ Y is upper and lower s-quasi continuous.

Theorem 5.3 Let Y be a locally connected regular space. If F : X 7→ Y is a
multifunction such that F (x) is connected and compact for each x ∈ X, then
BF ∩ Int(Cl(Qs(F ))) ⊂ Qs(F ).

Proof. The proof is similar to that of Theorem 5.1 and is thus omitted. 2

Corollary 5.6 Let Y be a locally connected regular space. If a multifunction
F : X 7→ Y is u.β.c. and l.β.c. and F (x) is connected compact for each x ∈ X,
then Qs(F ) is semi-closed in X.

6 Nets for multifunctions

In what follows (D,>) is a directed set, (Fα) is a net of multifunctions Fα :
X 7→ Y , α ∈ D and F is a multifunction on X into Y .

Definition 6.1 (1) (Fα) converges upper pointwise to F on X [8] if for each
x ∈ X and each open set G ⊂ Y containing F (x), there exists β(x,G) ∈ D
such that Fα(x) ⊂ G for all α > β(x,G);

(2) (Fα) converges lower pointwise to F on X [8] if for each x ∈ X and each
open set G ⊂ Y which intersects F (x), there exists β(x,G) ∈ D such that
Fα(x) ∩G 6= ∅ for all α > β(x,G);

(3) (Fα) converges pointwise to F on X [8] if it converges upper pointwise
and lower pointwise to F .
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Definition 6.2 (1) (Fα) converges quasi upper r-uniformly (q.u.r.u.) to F
on X [8] if

(i) (Fα) converges pointwise to F on X,

(ii) for each open set G of Y with F+(G) 6= ∅ and each β ∈ D, there
exists α > β such that Fα(x) ⊂ G for all x ∈ F+(G);

(2) (Fα) converges quasi lower r-uniformly (q.l.r.u.) to F on X [8] if

(i) (Fα) converges pointwise to F on X,

(ii) for each open set G of Y with F−(G) 6= ∅ and each β ∈ D, there
exists α > β such that Fα(x) ∩G 6= ∅ for all x ∈ F−(G);

(3) (Fα) converges quasi r-uniformly (q.r.u.) to F on X if it converges q.u.r.u.
and q.l.r.u. .

Theorem 6.1 Let (Fα) be a net which converges q.l.r.u. to F : X 7→ Y and
F (x) be compact for each x ∈ X. If Y is regular and Fα is u.β.c. for each
α ∈ D, then F is u.β.c. .

Proof. We suppose that F is not u.β.c. at xo ∈ X but all Fα are u.β.c. at xo .
Then there exists an open set G of Y containing F (xo) such that for every
β-open set V of X containing xo, there exists xV ∈ V such that F (xV ) is not
contained in G. But F (xo)∩(Y \G) = ∅, F (xo) is compact, Y \G is closed and
Y is regular. Therefore, it follows that there exist two disjoint open sets G1

and G2 such that F (xo) ⊂ G1, Y \G ⊂ G2. From the pointwise convergence
of (Fα) to F it follows that there exists αo ∈ D such that Fα(xo) ⊂ G1 for
all α > αo. But F−(G2) 6= ∅ since xV ∈ F−(G2) and (Fα) converges q.l.r.u.
to F . Therefore, it follows that there exists γ > αo such that Fγ(x) ∩G2 6= ∅
for each x ∈ F−(G2); hence Fγ(xV ) ∩ G2 6= ∅. This implies that Fγ(xV ) is
not contained in G1. Therefore, Fγ is not u.β.c. in xo . This contradicts the
hypothesis. 2

Theorem 6.2 Let (Fα) be a net which converges q.u.r.u. to F : X 7→ Y . If
Y is regular and Fα is l.β.c. for each α ∈ D, then F is l.β.c. .

Proof. We suppose that F is not l.β.c. at xo ∈ X, but all Fα are l.β.c. at xo.
Then there exists an open set G of Y intersecting F (xo) such that for every β-
open set V of X containing xo, there exists xV ∈ V such that F (xV )∩G = ∅.
Let yo be an arbitrary point of F (xo) ∩ G. Then yo ∈ Y \ (Y \ G) and Y is
regular. Therefore, it follows that there exist two disjoint open sets G1 and
G2 such that yo ∈ G1, Y \ G ⊂ G2. Hence F (xo) ∩ G1 6= ∅. ¿From the
pointwise convergence of (Fα) to F it follows that there exists αo ∈ D such
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that Fα(xo)∩G1 6= ∅ for all α > αo. But F+(G2) 6= ∅ since xV ∈ F+(G2) and
(Fα) converges q.u.r.u. to F . Therefore, it follows that there exists γ > αo
such that Fγ(x) ⊂ G2 for each x ∈ F+(G2); hence Fγ(xV ) ⊂ G2. This implies
that Fγ(xv) ∩G1 = ∅. Therefore, Fγ is not l.β.c. in xo. This contradicts the
hypothesis. 2

Definition 6.3 Let (Fα)α∈D be a net of multifunctions on X into Y . A
multifunction F ∗ : X 7→ Y defined as follows: for each x ∈ X, F ∗(x) = {y ∈
Y : for each open neighborhood of y and each β ∈ D, there exists α ∈ D such
that α > β and V ∩ Fα(x) 6= ∅} is called the upper topological limit [5] of the
net (Fα).

Definition 6.4 A net (Fα)α∈D is said to be equally u.β.c. at xo ∈ X if for
every open set Vα containing Fα(xo) there exists a β-open set U containing xo
such that Fα(U) ⊂ Vα for all α ∈ D.

Theorem 6.3 Let (Fα)α∈D be a net of multifunctions from a topological space
(X, τ) into a compact topological space (Y, σ). If the following are satisfied:

(1) ∩{(Y \ Fβ(x)) : β > α} ∈ σ for each α ∈ D and each x ∈ X,

(2) (Fα) is equally u.β.c. on X ,

then F ∗ is u.β.c. on X.

Proof. It is known that F ∗(x) = ∩{Cl(∪{Fβ(x) : β > α}) : α ∈ D}.
From (1) we have F ?(x) = ∩{[∪{Fβ(x) : β > α}] : α ∈ D}. Since the net
(∪{Fβ(x) : β > α})α∈D is a family of closed sets having the finite intersection
property and Y is compact, it follows that F ∗(x) 6= ∅ for each x ∈ X. Now, let
xo ∈ X and let V ∈ σ such that V 6= Y and F ∗(xo) ⊂ V . Then F ∗(xo)∩ (Y \
V ) = ∅, F ∗(xo) 6= ∅ and Y \ V 6= ∅. It results that ∩{[∪{Fβ(xo) : β > α}] :
α ∈ D}∩(Y \V ) = ∅ and hence ∩{[∪{Fβ(xo)∩(Y \V ) : β > α}] : α ∈ D} = ∅.
Since Y is compact and the family {[∪{Fβ(xo)∩(Y \V ) : β > α}] : α ∈ D} is
a family of closed sets with the empty intersection, there exists α ∈ D such that
for each β ∈ D with β > α we have Fβ(xo) ∩ (Y \ V ) = ∅; hence Fβ(xo) ⊂ V .
Since the net (Fα)α∈D is equally u.β.c. on X, it results that there exists a
β-open set U containing xo such that Fβ(U) ⊂ V for each β > α; hence
Fβ(x) ∩ (Y \ V ) = ∅ for each x ∈ U . Then we have ∪{Fβ(x) ∩ (Y \ V ) :
β > α} = ∅; hence ∩{[∪{Fβ(x) : β > α}] : α ∈ D} ∩ (Y \ V ) = ∅. This
implies that F ∗(U) ⊂ V . If V = Y then it is clear that for each β- open set
U containing xo we have F ∗(U) ⊂ V . Hence F ∗ is u.β.c. at xo. Since xo is
arbitrary, the proof is complete. 2
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[7] J. Borśık and J. Doboş, On decompositions of quasicontinuity, Real Anal.
Exchange 16 (1990-1991), 292–305.

[8] N. Crivat and T. Banzaru, On the quasi continuity of the limit for nets
of multifunctions, Semin. Mat. Fiz. Inst. Politeh. “T. Vuia” Timişoara
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[14] I. Kovacević, Subsets and paracompactness, Univ. u Novom Sadu, Zb.
Rad. Prirod.-Mat. Fac. Ser. Mat. 14 (1984), 79–87.



376 Valeriu Popa and Takashi Noiri

[15] N. Levine, Semi-open sets and semi-continuity in topological spaces,
Amer. Math. Monthly 70 (1963), 36–41.

[16] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Col-
loq. Math. 8 (1961), 47–53.

[17] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precon-
tinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt
53 (1982), 47–53.

[18] T. Neubrunn, Strongly quasi-continuous multivalued mappings, General
Topology and its relation to Modern Analysis and Algebra (VI) (Prague
1986), Heldermann, Berlin, 1988, 351–359.

[19] O. Nj̊astad, On some classes of nearly open sets, Pacific J. Math. 15
(1965), 961–970.

[20] T. Noiri, On α-continuous functions, Časopis Pěst. Math. 109 (1984),
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