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UNIVERSALLY BAD DARBOUX
FUNCTIONS IN THE CLASS OF ADDITIVE

FUNCTIONS

Abstract

The main result: For every family G of additive functions with
cardG = 2ω if the covering of the family of all level sets of functions
from G is equal to 2ω, then there exists an additive Darboux function f
such that f + g is Darboux for no g ∈ G.

Definitions. Let us establish some terminology to be used. For a subset A of
R×R we denote by dom (A) and rng (A) the x–projection and y–projection of
A. We say that f : R→ R is a Darboux function whenever f(J) is connected
for every interval J ⊂ R. The family of all such functions we will denote by D.

We shall consider R as a linear space over Q, the set of rationals. Every
base of this space will be referred to as a Hamel basis. It is evident that the
cardinality of every Hamel basis is equal to 2ω.

If A ⊂ R is an arbitrary nonempty set, then by L(A) we mean the linear
subspace of R spanned over A, i.e., the set of all finite linear combinations
of elements of A (with coefficients from Q). Analogously, for an arbitrary
nonempty planar set A ⊂ R × R we put the set L2(A). For any A ⊂ R and
x ∈ R we define x+A = {x+ a : a ∈ A}.

Let L be a linear subspace of R over Q. A function f : L → R is called
additive iff it satisfies Cauchy’s equation f(x+y) = f(x)+f(y) for all x, y ∈ L
[2]. (See also [5, p. 120], for the history of this notion.) Recall that every
additive function f : R→ R can be obtained as the unique additive extension
of a function defined on a Hamel basis. The class of all additive functions from
R to R will be denoted by Add.
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We do not distinguish between a function f : L→ R where L ⊂ R and its
graph (i.e., a subset of R× R). By f + g we mean the function h : dom (f) ∩
dom (g)→ R such that h(x) = f(x) + g(x) for each x ∈ dom (f) ∩ dom (g).

The cardinality of a set A is denote by card (A). Cardinals are identified
with initial ordinals. For an arbitrary cover B of the real line we define the
covering of B as the smallest cardinal κ for which there exists a subfamily
B0 ⊂ B with card (B0) = κ and R =

⋃
B0.

For a family F ⊂ RR we denote by Ma(F) the maximal additive family
for F , i.e.,

Ma(F) = {g ∈ RR : f + g ∈ F for each f ∈ F}.

Recall that Ma(D) is equal to the family of all constant functions [6].

For an infinite cardinal κ we say that a cardinal number λ is the cofinality of
κ (and write λ = cf (κ)) if λ is the least cardinal number such that there exists
a family of sets (Xi)i∈λ with the property that

⋃
i∈λXi = κ and card (Xi) < κ

for every i ∈ λ. For cardinals κ we say that κ is a regular cardinal if κ = cf (κ).

Given a family F ⊂ RR consider the condition

c(F): there is a f ∈ D such that f + g 6∈ D for each g ∈ F .

Such a function f is called a universally bad Darboux function for F . De-
termining for which families F the condition c(F) is fulfilled is a problem
considered by several authors (see, e.g., [6], [8], [1], [3] and [4]). In particular,
if the additivity of the ideal of all first category subsets of R is equal to 2ω

(e.g., if Martin’s Axiom or CH hold), then c(C∗) holds for the family C∗ of
all nowhere constant, continuous functions [3]. On the other hand, there is a
model of set theory in which c(C∗) fails to hold. ([7]) In this paper we study
analogous problems for the class of additive functions.

Lemma 1 Let f ∈ Add be such that ker(f) 6= {0} and rng (f) = R. Then f
has the Darboux property.

Proof. Observe that f ∈ Add, ker(f) is a linear subspace of R and, since
ker(f) 6= {0}, ker(f) is dense in R. Moreover, it is well-known that each two
level sets of an additive function are congruent under translations, so any level
set of f is dense in R. Hence f(I) = R for every interval I ⊂ R and f ∈ D. �

Lemma 2 Let B be a cover of R such that card (B) = 2ω and the covering of
B is equal to 2ω. There exists a Hamel basis H such that H \

⋃
B∗ 6= ∅ for

every B∗ ⊂ B with card (B∗) < cf (2ω).
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Proof. Let B = {Bα : α < 2ω} and h0 6= 0. Fix α < 2ω and assume that we
have chosen a linearly independent set {hβ : β < α} such that hβ 6∈

⋃
γ<β Bγ

for each β < α. Let Eα = L({hβ : β < α}). For each x ∈ Eα choose Cx ∈ B
with x ∈ Cx. Since card (Eα) < 2ω, by our assumption we obtain that the
family Bα = {Cx : x ∈ Eα} ∪ {Bβ : β < α} does not cover R. Choose
hα ∈ R \

⋃
Bα. Then the set {hα : α < 2ω} is linearly independent. Let H be

a Hamel basis containing {hα : α < 2ω}. For every B∗ ⊂ B with card (B∗) <
cf (2ω) there is α < 2ω such that B∗ ⊂ {Bβ : β < α}, so hα ∈ H \ B∗. �

If we assume that 2ω is a regular cardinal, then for each cover B of R
such that the covering of B equals 2ω there exists a Hamel basis H such that
H \

⋃
B∗ 6= ∅ for every B∗ ⊂ B with card (B∗) < 2ω. We are unable to

determine whether this statement can be proved in ZFC.

Theorem 1 Assume that 2ω is a regular cardinal and G = {gα : α < 2ω} ⊂
Add satisfies the condition

(?) the covering of the family B = {g−1(y) : g ∈ G & y ∈ R} is equal to 2ω.

Then there is f ∈ Add ∩ D such that f + gα 6∈ D for each α < 2ω.

Proof. Let H = {hα : α < 2ω} be the Hamel basis constructed in Lemma 2
for the cover B. For every α < 2ω we will construct an additive function fα
and choose uα ∈ H such that

(i) fβ ⊂ fα for β < α,

(ii) hα ∈ dom (fα) ∩ rng (fα) and ker(fα) 6= {0},

(iii) rng (fα + gα) 6= {0},

(iv) uβ 6∈ rng (fα + gβ) for each β ≤ α,

(v) card (dom (fα)) = max(ω, card (α)).

First assume that α = 0. Choose h ∈ H such that h 6= −g0(h2) and
set f0 = L2({(h0, 0), (h1, h0), (h2, h)}). Since card (rng (f0 + g0)) = ω, we can
choose u0 ∈ H\rng (f0+g0). It is easy to verify that f0 and u0 fulfill conditions
(i)–(v).

Now fix α < 2ω and assume that we have chosen for β < α functions

fβ and points uβ which satisfy conditions (i)–(v). Set f
(0)
α =

⋃
β<α fβ . We

consider two cases. If hα ∈ rng (f
(0)
α ), then define f

(1)
α = f

(0)
α . Otherwise we

will choose yα ∈ H such that yα 6∈ dom (f
(0)
α ) and

uβ 6∈ L
(

rng
(
f (0)α + gβ

)
∪ {gβ(yα) + hα}

)
for β < α. (1)
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To choose yα observe that the family

Bα =
⋃
β<α

{
g−1β (y) : y ∈ L

(
rng

(
f (0)α + gβ

)
∪ {uβ}

)
− hα

}
∪
{
g−1α (hα)

}
has cardinality less than 2ω. For each x ∈ dom (f

(0)
α ) choose Cx ∈ B with

x ∈ Cx. Since card (dom (f
(0)
α )) < 2ω, H \

(⋃
Bα ∪

⋃
x∈dom (f

(0)
α )

Cx

)
6= ∅.

Take an arbitrary

yα ∈ H \
(⋃
Bα ∪

⋃
x∈dom (f

(0)
α )

Cx

)
(2)

To prove (1) fix β < α and suppose that uβ = q1y + q2(gβ(yα) + hα), where

q1, q2 ∈ Q and y ∈ rng (f
(0)
α + gβ). By (2) we obtain q2 = 0. So uβ ∈

rng (fτ + gβ), where τ = min{γ : uβ ∈ rng (fγ + gβ)}. By (iv), τ < β < α.
But then uβ ∈ rng (fτ + gβ) ⊂ rng (fβ + gβ), contrary to (iv).

Now set
f (1)α = L2(f (0)α ∪ {(yα, hα)}).

If hα ∈ dom (f
(1)
α ), then put fα = f

(1)
α . Otherwise choose

vα ∈ H \
⋃
β<α

(
L
(

rng
(
f (1)α + gβ

)
∪ {uβ}

)
− gβ(hα)

)
and put

fα = L2(f (1)α ∪ {(hα, vα)}).

Finally, since card (dom (fα)) < 2ω, we can choose uα ∈ H \ rng (fα + gα). It
can be easily seen that fα fulfills conditions (i)–(v).

Define f by

f =
⋃
α<2ω

fα.

Because H ⊂ dom (f), f ∈ Add. Since ker(f) 6= {0} and H ⊂ rng (f), by
Lemma 1, f ∈ D. Notice that f + gβ 6∈ D for each β < 2ω. Indeed, fix an
arbitrary β < 2ω. Then by (iv) uβ 6∈ rng (f + gβ). But, by (iii), rng (f + gβ)
is dense in R, which shows that f + gβ 6∈ D. �

Remark. Since all level sets of an additive function are congruent under
translations, the condition (?) is equivalent to the following:

(??) the covering of the family B = {ker(g) + y : g ∈ G & y ∈ R} is equal
to 2ω.
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Corollary 1 Assume that 2ω is a regular cardinal, G ⊂ Add, card (G) = 2ω

and there exists an ideal J ⊃ {ker(g) : g ∈ G} satisfies the following conditions:

(i) J is invariant under translations, i.e., A + x ∈ J for all A ∈ J and
x ∈ R;

(ii) the covering of J is equal to 2ω.

Then there is f ∈ Add ∩ D such that f + g 6∈ D for each g ∈ G.

If Martin’s Axiom (MA) or the Continuum Hypothesis (CH) hold, then
the ideals K of all meager sets and N of all null sets fulfill the statements (i)
and (ii). Therefore we have the following corollary.

Corollary 2 (MA) Assume that G is a family of additive functions such that
card (G) = 2ω and either ker(g) ∈ N for each g ∈ G or ker(g) ∈ K for each
g ∈ G. Then there is f ∈ Add ∩ D such that f + g 6∈ D for each g ∈ G.

Proposition 1 The covering of the family S(R) of all proper linear subspaces
of R over Q is equal to ω.

Proof. Let B0 ⊂ S(R) be such that
⋃
B0 = R. We will show that card (B0) ≥

ω. By way of contradiction suppose that B0 = {V1, . . . , Vn} for some n ∈ N.
We may assume that Vi \

⋃
k 6=i Vk 6= ∅ for every i ≤ n. Note that n ≥ 2,

because all Vi are proper. For i = 1, 2 choose

vi ∈ Vi \
⋃
k 6=i

Vk (3)

and set vk = (k − 2)v2 + v1 for k > 2 Then there exists i ≤ n for which the
set Ni = {k : vk ∈ Vi} is infinite. Fix j, k ∈ Ni with 2 < j < k. Then we have

vk − vj = (k − j)v2 ∈ V2 ∩ Vi.

Therefore v2 ∈ Vi and, by (3), i = 2. But then v1 = vk − (k − 2)v2 ∈ V2,
contrary to the choice of v1.

Now we will construct a family B0 ⊂ S(R) such that card (B0) = ω and⋃
B0 = R. Let H ⊂ R be an arbitrary Hamel basis and let {Hn : n ∈ N} be a

partition of H into proper subsets. Put

B0 =
{
L

(⋃
n∈A

Hn

)
: A ⊂ N, card (A) < ω

}
It is obvious that card (B0) = ω and R 6∈ B0. Fix an arbitrary x ∈ R. Then

x =
∑k
n=1 qnhn for some k ∈ N, qn ∈ Q, and hn ∈ H n = 1, . . . k. Since

Ax = {j : ∃n≤k hn ∈ Hj} is finite, x ∈ L(
⋃
n∈Ax Hn) ∈ B0. Consequently,⋃

B0 = R. �
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Proposition 2 If a family G ⊂ Add satisfies the condition (?), then
card (rng (g)) = 2ω for each g ∈ G.

Proof. If card (rng (g)) < 2ω for some g ∈ G, then
⋃
y∈rng (g) g

−1(y) = R. So
the covering of G is less than 2ω. �

Lemma 3 Assume that n ∈ N and G = {gi : i ≤ n} is a family of additive
functions such that card (rng (gi)) = 2ω for i ≤ n. Then G satisfies condition
(?).

Proof. Let B0 be a subfamily of {g−1(y) : g ∈ G and y ∈ R} such that
card (B0) < 2ω. Define Yi = L({y ∈ R : g−1i (y) ∈ B0}) and Vi = g−1i (Yi). Note
that card (Yi) < 2ω for i = 1, . . . , n. Because card (rng (gi)) = 2ω, Vi 6= R for
every i = 1, . . . , n. So by Proposition 1, V =

⋃n
i=1 Vi 6= R. But

⋃
B0 ⊂ V .

Thus
⋃
B0 6= R, which completes the proof. �

Lemma 4 Assume that n ∈ N, G = {gi : i ≤ n} ⊂ Add and card (rng (g)) =
2ω for each g ∈ G. Then there exists a linearly independent set H1 ⊂ R such
that card (H1) = 2ω and gi|L(H1) is an injection for each i ≤ n.

Proof. Choose an arbitrary h0 6= 0. Fix α < 2ω and assume that we have
chosen a linearly independent set {hβ : β < α} such that gi|L({hβ : β < α}) is
an injection for each i ≤ n. For each i we have card (L({gi(hβ) : β < α})) < 2ω

and card (rng (gi)) = 2ω. So g−1i (L({gi(hβ) : β < α})) is a proper linear
subspace of R. By Theorem 1, we obtain

R \
n⋃
i=1

g−1i (L({gi(hβ) : β < α})) 6= ∅.

Choose hα ∈ R \
⋃n
i=1 g

−1
i (L({gi(hβ) : β < α})). Then the set H1 = {hα : α <

2ω} is linearly independent and gi|L(H1) is an injection for i = 1, . . . , n. �

Assuming cf (2ω) = 2ω, the next theorem is a consequence of Theorem 1
and Lemma 3. We shall prove it in ZFC, without additional set-theoretical
assumptions.

Theorem 2 Assume that G = {gi : i = 1, . . . , n} ⊂ Add and card (rng (g)) =
2ω for each g ∈ G. Then there is f ∈ Add ∩D such that f + g 6∈ D for g ∈ G.

Proof. Let H1 ⊂ R be the set constructed in Lemma 4 for the family G and
let H = {hα : α < 2ω} ⊃ H1 be a Hamel basis. Choose

h ∈ H \ {gi(h2) : i = 1,≤ n} (4)
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and set f0 = L2({(h0, 0), (h1, h0), (h2, h)}). Clearly card (rng (f0 +gi)) = ω for
i = 1, . . . , n.

For i = 1, . . . , n choose ui ∈ H \ rng (f0 + gi). For every 0 < α < 2ω we
will construct an additive function fα such that

(i) f0 ⊂ fβ ⊂ fα for β < α,

(ii) hα ∈ dom (fα) ∩ rng (fα),

(iii) ui 6∈ rng (fα + gi) for each i = 1, 2, . . . , n,

(iv) card (dom (fα)) = max(ω, α).

Fix α < 2ω and assume that for β < α we have chosen the function fβ which
satisfies conditions (i)–(iv). Set

f (0)α =
⋃
β<α

fβ . (5)

We consider two cases. If hα ∈ rng (f
(0)
α ), then define f

(1)
α = f

(0)
α . Otherwise

we will choose yα ∈ H such that yα 6∈ dom (f
(0)
α ) and

ui 6∈ L
(

rng
(
f (0)α + gi

)
∪ {gi(yα) + hα}

)
for i ≤ n. (6)

To choose yα, observe that gi|H1 is an injection, and by (iv),

card
(
L
(

rng (f (0)α + gi){ui}
)
−hα

)
< 2ω.

So the cardinality of the set

Aα,i = (gi|H1)−1
(
L
(

rng (f (0)α + gi){ui}
)
−hα

)
is less than 2ω. Therefore, the cardinality of Aα = H1 \

⋃n
i=1Aα,i is equal to

2ω. Take an arbitrary yα ∈ Aα. Now the proof of (6) is analogous to the proof
of condition (1) in Theorem 1.

Next let f
(1)
α = L2(f

(0)
α ∪ {(yα, hα)}). If hα ∈ dom (f

(1)
α ), then put fα =

f
(1)
α . Otherwise choose

vα ∈ H \
n⋃
i=1

[
L
(

rng
(
f (1)α + gi

)
∪ {ui}

)
− gi(hα)

]
and let fα = L2(f

(1)
α ∪ {(hα, vα)}). It can be seen that fα fulfills conditions

(i)–(iv).
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Finally, let f =
⋃
α<2ω fα. Because H ⊂ dom (f), f ∈ Add. Since ker(f) 6=

{0} and H ⊂ rng (f), by Lemma 1, f ∈ D.
Notice that f + gi 6∈ D for each i = 1, . . . , n. Indeed, fix arbitrary i ≤ n.

Then by (iii) ui 6∈ rng (f+gi). But conditions (4) and (i) imply that rng (f+gi)
is dense in R. Thus f + gi 6∈ D. �

Corollary 3 Ma(Add ∩ D) = {0}.

Proof. The inclusion “⊃” is obvious. To prove the inclusion “⊂” assume
that f ∈ Ma(Add ∩ D) \ {0}. Note that f ∈ Add ∩ D, because the constant
function g ≡ 0 belongs to the class Add∩D. So, rng (f) = R. By Theorem 2,
f + h 6∈ Add ∩ D for some h ∈ Add ∩ D. Hence f 6∈ Ma(Add ∩ D), an
impossibility. �

The importance of the assumptions in Theorem 1 is not clear. In particular,
the following problem is open.

Problem 1 Assume CH and G = {gα : α < 2ω} is a family of additive func-
tions. Does there exists f ∈ Add ∩ D such that f + gα 6∈ D for each α?
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