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UNIVERSALLY BAD DARBOUX
FUNCTIONS IN THE CLASS OF ADDITIVE
FUNCTIONS

Abstract

The main result: For every family G of additive functions with
cardG = 2% if the covering of the family of all level sets of functions
from G is equal to 2%, then there exists an additive Darboux function f
such that f + g is Darboux for no g € G.

Definitions. Let us establish some terminology to be used. For a subset A of
R x R we denote by dom (A) and rng (A) the z—projection and y—projection of
A. We say that f: R — R is a Darboux function whenever f(J) is connected
for every interval J C R. The family of all such functions we will denote by D.

We shall consider R as a linear space over Q, the set of rationals. Every
base of this space will be referred to as a Hamel basis. 1t is evident that the
cardinality of every Hamel basis is equal to 2.

If A C R is an arbitrary nonempty set, then by L(A) we mean the linear
subspace of R spanned over A, i.e., the set of all finite linear combinations
of elements of A (with coefficients from Q). Analogously, for an arbitrary
nonempty planar set A C R x R we put the set Ly(A). For any A C R and
r€Rwedefinex+A={r+a: ac A}.

Let L be a linear subspace of R over Q. A function f: L — R is called
additive iff it satisfies Cauchy’s equation f(z+y) = f(x)+ f(y) for all z,y € L
[2]. (See also [5, p. 120], for the history of this notion.) Recall that every
additive function f: R — R can be obtained as the unique additive extension
of a function defined on a Hamel basis. The class of all additive functions from
R to R will be denoted by Add.
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We do not distinguish between a function f: L — R where L C R and its
graph (i.e., a subset of R x R). By f + g we mean the function h: dom (f) N
dom (g) — R such that h(z) = f(z) + g(x) for each z € dom (f) N dom (g).

The cardinality of a set A is denote by card (A). Cardinals are identified
with initial ordinals. For an arbitrary cover B of the real line we define the
covering of B as the smallest cardinal x for which there exists a subfamily
By C B with card (Bp) = k and R = | Bo.

For a family F C RR we denote by M (F) the mazimal additive family
for F, ie.,

Ma(f):{geRRl f+g€F foreach fe F}.

Recall that M, (D) is equal to the family of all constant functions [6].

For an infinite cardinal k we say that a cardinal number A is the cofinality of
k (and write A = cf (k)) if A is the least cardinal number such that there exists
a family of sets (X;)icx with the property that (J;c, Xi = & and card (X;) < &
for every ¢ € A. For cardinals x we say that x is a regular cardinal if kK = cf (k).

Given a family F C RR consider the condition
¢(F): there is a f € D such that f + g & D for each g € F.

Such a function f is called a universally bad Darbouz function for F. De-
termining for which families F the condition ¢(F) is fulfilled is a problem
considered by several authors (see, e.g., [6], [8], [1], [3] and [4]). In particular,
if the additivity of the ideal of all first category subsets of R is equal to 2%
(e.g., if Martin’s Axiom or CH hold), then ¢(C*) holds for the family C* of
all nowhere constant, continuous functions [3]. On the other hand, there is a
model of set theory in which ¢(C*) fails to hold. ([7]) In this paper we study
analogous problems for the class of additive functions.

Lemma 1 Let f € Add be such that ker(f) # {0} and rng(f) = R. Then f
has the Darbouz property.

PROOF. Observe that f € Add, ker(f) is a linear subspace of R and, since
ker(f) # {0}, ker(f) is dense in R. Moreover, it is well-known that each two
level sets of an additive function are congruent under translations, so any level
set of f is dense in R. Hence f(I) = R for every interval I C R and f € D. O

Lemma 2 Let B be a cover of R such that card (B) = 2¥ and the covering of
B is equal to 2¥. There exists a Hamel basis H such that H \ |UB* # 0 for
every B* C B with card (B*) < cf (2¥).
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PROOF. Let B={B,: a < 2¥} and hg # 0. Fix a@ < 2* and assume that we
have chosen a linearly independent set {hg: 8 < a} such that hg & ., 5 By
for each f < a. Let E, = L({hg: 8 < a}). For each z € E, choose C; € B
with € C,. Since card (E,) < 2“, by our assumption we obtain that the
family B, = {Cy: z € Eu} U{Bg: f < a} does not cover R. Choose
ha € R\ |JBy. Then the set {hy: o < 2¢} is linearly independent. Let H be
a Hamel basis containing {hs: @ < 2¥}. For every B* C B with card (B*) <
cf (2¢) there is o < 2 such that B* C {Bg: 8 < a}, so hy € H \ B*. O

If we assume that 2“ is a regular cardinal, then for each cover B of R
such that the covering of B equals 2“ there exists a Hamel basis H such that
H\ |UB* # 0 for every B* C B with card (B*) < 2¥. We are unable to
determine whether this statement can be proved in ZFC.

Theorem 1 Assume that 2¥ is a regular cardinal and G = {go: o < 2} C
Add satisfies the condition

(%) the covering of the family B = {g~'(y): g € G & y € R} is equal to 2“.
Then there is f € Add N'D such that f + go € D for each o < 2%.

PRrROOF. Let H = {hy: a < 2¥} be the Hamel basis constructed in Lemma 2
for the cover B. For every a < 2¥ we will construct an additive function f,
and choose u, € H such that

(i) fs C fa for B < a,
(i) ha € dom (fa) Nrng(fa) and ker(fa) # {0},
(i) g (fo +ga) # {0},
(iv) ug € g (fo + gp) for each 8 < a,
(v) card (dom (f,)) = max(w, card (@)).

First assume that o = 0. Choose h € H such that h # —gg(hs) and
set fo = La({(ho,0), (h1, ho), (ha,h)}). Since card (rng (fo + go)) = w, we can
choose ug € H\rng (fo+go). It is easy to verify that fo and ug fulfill conditions

i)—(v).

v 1(\I(zw fix a < 2“ and assume that we have chosen for 8 < «a functions
fs and points ug which satisfy conditions (i)-(v). Set 7O = Up<ao f5- We
consider two cases. If h, € rng( féo)), then define fél) = f(SP). Otherwise we
will choose y, € H such that y, ¢ dom ( féo)) and

ug € L (rng (féo) + gg) U{98(¥ya) + ha}) for 8 < a. (1)
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To choose ¥y, observe that the family

Bo = {ggl(y): yel (rng (féo) +95) U {U5}) - ha} U {ga"(ha)}

<o

has cardinality less than 2“. For each z € dom ( éo)) choose C; € B with
x € C,. Since card (dom ( éo))) < 2% H\ (UBQUUzedom(f(m)CgE) £ ().
Take an arbitrary

wet\ (Usu U G) 2)

r€dom (f,(yo))

To prove (1) fix 8 < a and suppose that ug = 1y + ¢2(93(Ya) + ha), where
q1,92 € Q and y € rng( (go) + gg). By (2) we obtain ¢o = 0. So ug €
rng (fr + gg), where 7 = min{y: ug € rmg(fy +gs)}. By (iv), 7 < 8 < a.
But then ug € rng (f; + gg) C rng (f3 + gg), contrary to (iv).

Now set

F = La(fO U {(yas ha)})-
If hy € dom ( él)), then put f, = f((xl). Otherwise choose

va € H\ |J (L (mg (£ +95) Ufus}) - gaha))
B<a

and put
fo = La(f5) U{(hasva)}).

Finally, since card (dom (f,)) < 2¥, we can choose uy € H \ rng (fo + o). It
can be easily seen that f, fulfills conditions (i)—(v).

Define f by
f=U fa

a<2v

Because H C dom (f), f € Add. Since ker(f) # {0} and H C rng(f), by
Lemma 1, f € D. Notice that f 4 g € D for each § < 2*. Indeed, fix an
arbitrary 8 < 2¢. Then by (iv) ug & rng (f + gg). But, by (iii), rng (f + gs)
is dense in R, which shows that f + gs ¢ D. O

Remark. Since all level sets of an additive function are congruent under
translations, the condition (x) is equivalent to the following:

(*x) the covering of the family B = {ker(g) + y: g € G & y € R} is equal
to 2¢.
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Corollary 1 Assume that 2“ is a regular cardinal, G C Add, card (G) = 2%
and there exists an ideal J D {ker(g): g € G} satisfies the following conditions:

(i) J is invariant under translations, i.e., A+ x € J for all A € J and
r eR;

(i1) the covering of J is equal to 2*.
Then there is f € Add N'D such that f + g & D for each g € G.

If Martin’s Axiom (MA) or the Continuum Hypothesis (CH) hold, then
the ideals K of all meager sets and A of all null sets fulfill the statements (i)
and (ii). Therefore we have the following corollary.

Corollary 2 (MA) Assume that G is a family of additive functions such that
card (G) = 2% and either ker(g) € N for each g € G or ker(g) € K for each
g €G. Then there is f € AddND such that f + g & D for each g € G.

Proposition 1 The covering of the family S(R) of all proper linear subspaces
of R over Q is equal to w.

PRrROOF. Let By C S(R) be such that | By = R. We will show that card (By) >
w. By way of contradiction suppose that By = {V3,...,V,} for some n € N.
We may assume that V; \ Uy, Vi # 0 for every i < n. Note that n > 2,
because all V; are proper. For i = 1,2 choose

vi € Vi\J Vi (3)

ki
and set vy = (k — 2)vg + v1 for k > 2 Then there exists ¢ < n for which the
set N; = {k: vy € V;} is infinite. Fix j, k € N; with 2 < j < k. Then we have

”ka’l)j:(kfj)UQEVvQﬂ‘/i.

Therefore vy € V; and, by (3), ¢ = 2. But then v, = v — (k — 2)vy € V3,
contrary to the choice of v;.

Now we will construct a family By C S(R) such that card (Bp) = w and
(UBo =R. Let H C R be an arbitrary Hamel basis and let {H,,: n € N} be a
partition of H into proper subsets. Put

By = {L(U Hn> : ACN, card (A) <w}
neA

It is obvious that card (By) = w and R ¢ By. Fix an arbitrary € R. Then

T = Zfl:lqnhn for some k € N, ¢, € Q, and h, € Hn = 1,...k. Since

Ay = {j: 3n<k hn € H;} is finite, z € L(UnGAz H,) € By. Consequently,

UBy =R. O
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Proposition 2 If a family G C Add satisfies the condition (%), then
card (rng (g)) = 2 for each g € G.

Proor. If card (rg (g)) < 2 for some g € G, then |, ¢, () g t(y) =R. So
the covering of G is less than 2¢. ‘ O

Lemma 3 Assume that n € N and G = {g;: i < n} is a family of additive
functions such that card (rng (g;)) = 2“ for i < n. Then G satisfies condition

(%).

PROOF. Let By be a subfamily of {g7(y): ¢ € G andy € R} such that
card (By) < 2¥. Define Y; = L({y € R: g; *(y) € Bo}) and V; = g; '(¥;). Note
that card (Y;) < 2¥ for ¢ = 1,...,n. Because card (rng(g;)) = 2%, V; # R for
every i = 1,...,n. So by Proposition 1, V.=, Vi # R. But By C V.
Thus | By # R, which completes the proof. O

Lemma 4 Assume that n € N, G = {g;: i < n} C Add and card (rng (g)) =
2% for each g € G. Then there exists a linearly independent set Hy C R such
that card (Hy1) = 2% and g;|L(H,) is an injection for each i < n.

PrOOF. Choose an arbitrary hg # 0. Fix a < 2“ and assume that we have
chosen a linearly independent set {hg: § < a} such that ¢;|L({hg: 8 < a}) is
an injection for each ¢ < n. For each i we have card (L({g;(hg): 8 < a})) < 2¢
and card (g (g;)) = 2¢. So g; "(L({gi(hg): B < a})) is a proper linear
subspace of R. By Theorem 1, we obtain

R\ U g ' (L({gi(hs): B < a})) # 0.

Choose ho € R\ Ui, 97 '(L({gi(hg): B < a})). Then the set Hy = {hq: a <
2«1 is linearly independent and ¢;|L(H;) is an injection for ¢ = 1,...,n. O

Assuming cf (2) = 2%, the next theorem is a consequence of Theorem 1
and Lemma 3. We shall prove it in ZFC, without additional set-theoretical
assumptions.

Theorem 2 Assume that G = {g;: i =1,...,n} C Add and card (rng(g)) =
2% for each g € G. Then there is f € AddND such that f +g9 €D forgeg.

PRrROOF. Let H; C R be the set constructed in Lemma 4 for the family G and
let H={hy: o <2“} D H; be a Hamel basis. Choose

he H\{gi(h2):i=1,<n} (4)
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and set fo = La({(ho,0), (h1, ho), (ha, h)}). Clearly card (rng (fo+¢;)) = w for
1=1,...,n.

For ¢ = 1,...,n choose u; € H \ rng (fo + ¢;). For every 0 < o < 2% we
will construct an additive function f,, such that

(1) fo C fs C fo for B < a,

(ii) hq € dom (fo) Nrng (fa),

(iil) w; € g (fo + g;) foreach i =1,2,...,n,

(iv)

Fix o < 2% and assume that for 5 < a we have chosen the function fz which
satisfies conditions (i)—(iv). Set

=11 fs (5)

B<a

card (dom (f,)) = max(w, a).

We consider two cases. If h, € rng( éo)), then define f,gl) = f&o). Otherwise
we will choose y, € H such that y, ¢ dom ( C(P)) and

wi ¢ L (g (£ +0:) U{gilya) + ha}) fori <n. (6)
To choose y,, observe that g;|H; is an injection, and by (iv),
card (L (rng (fO + gi){ui}>—ha) < 2%,
So the cardinality of the set
A = (gl )" (L (g (£ + gi){ui}) —he)

is less than 2¢. Therefore, the cardinality of A, = Hy \ U;—; Aa,i is equal to
2¢. Take an arbitrary y, € A,. Now the proof of (6) is analogous to the proof
of condition (1) in Theorem 1.

Next let f{ = Lo Oy {(Ya,ha)}). If hy € dom ( C(yl)), then put f, =
f él). Otherwise choose

e 1\ U [£ (s (76 +05) U ) = )]

and let f, = Lg(f,gl) U {(ha,va)}). It can be seen that f, fulfills conditions
(i)—(iv).
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Finally, let f = J, 90 fo. Because H C dom (f), f € Add. Since ker(f) #
{0} and H C rng(f), by Lemma 1, f € D.

Notice that f 4 g; € D for each i = 1,...,n. Indeed, fix arbitrary ¢ < n.
Then by (iii) u; € rng (f+g;). But conditions (4) and (i) imply that rng (f+g;)
is dense in R. Thus f + g; € D. O

Corollary 3 M,(AddnD) = {0}.

Proor. The inclusion “D” is obvious. To prove the inclusion “C” assume
that f € M,(Add N D)\ {0}. Note that f € Add N D, because the constant
function g = 0 belongs to the class Add ND. So, rng (f) = R. By Theorem 2,
f+h & Add N D for some h € Add N D. Hence f ¢ M,(Add N D), an
impossibility. O

The importance of the assumptions in Theorem 1 is not clear. In particular,
the following problem is open.

Problem 1 Assume CH and G = {gq: @ < 2¥} is a family of additive func-
tions. Does there exists f € Add N'D such that f + go € D for each a?
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