Dariusz Banaszewski, Mathematics Department, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

UNIVERSALLY BAD DARBOUX FUNCTIONS IN THE CLASS OF ADDITIVE FUNCTIONS

Abstract

The main result: For every family \mathcal{G} of additive functions with $\operatorname{card} \mathcal{G}=2^{\omega}$ if the covering of the family of all level sets of functions from \mathcal{G} is equal to 2^{ω}, then there exists an additive Darboux function f such that $f+g$ is Darboux for no $g \in \mathcal{G}$.

Definitions. Let us establish some terminology to be used. For a subset A of $\mathbb{R} \times \mathbb{R}$ we denote by dom (A) and $\operatorname{rng}(A)$ the x-projection and y-projection of A. We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Darboux function whenever $f(J)$ is connected for every interval $J \subset \mathbb{R}$. The family of all such functions we will denote by \mathcal{D}.

We shall consider \mathbb{R} as a linear space over \mathbb{Q}, the set of rationals. Every base of this space will be referred to as a Hamel basis. It is evident that the cardinality of every Hamel basis is equal to 2^{ω}.

If $A \subset \mathbb{R}$ is an arbitrary nonempty set, then by $L(A)$ we mean the linear subspace of \mathbb{R} spanned over A, i.e., the set of all finite linear combinations of elements of A (with coefficients from \mathbb{Q}). Analogously, for an arbitrary nonempty planar set $A \subset \mathbb{R} \times \mathbb{R}$ we put the set $L_{2}(A)$. For any $A \subset \mathbb{R}$ and $x \in \mathbb{R}$ we define $x+A=\{x+a: a \in A\}$.

Let L be a linear subspace of \mathbb{R} over \mathbb{Q}. A function $f: L \rightarrow \mathbb{R}$ is called additive iff it satisfies Cauchy's equation $f(x+y)=f(x)+f(y)$ for all $x, y \in L$ [2]. (See also [5, p. 120], for the history of this notion.) Recall that every additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be obtained as the unique additive extension of a function defined on a Hamel basis. The class of all additive functions from \mathbb{R} to \mathbb{R} will be denoted by $\mathcal{A} d d$.

[^0]We do not distinguish between a function $f: L \rightarrow \mathbb{R}$ where $L \subset \mathbb{R}$ and its graph (i.e., a subset of $\mathbb{R} \times \mathbb{R}$). By $f+g$ we mean the function h : $\operatorname{dom}(f) \cap$ $\operatorname{dom}(g) \rightarrow \mathbb{R}$ such that $h(x)=f(x)+g(x)$ for each $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$.

The cardinality of a set A is denote by card (A). Cardinals are identified with initial ordinals. For an arbitrary cover \mathcal{B} of the real line we define the covering of \mathcal{B} as the smallest cardinal κ for which there exists a subfamily $\mathcal{B}_{0} \subset \mathcal{B}$ with $\operatorname{card}\left(\mathcal{B}_{0}\right)=\kappa$ and $\mathbb{R}=\bigcup \mathcal{B}_{0}$.

For a family $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ we denote by $\mathcal{M}_{a}(\mathcal{F})$ the maximal additive family for \mathcal{F}, i.e.,

$$
\mathcal{M}_{a}(\mathcal{F})=\left\{g \in \mathbb{R}^{\mathbb{R}}: f+g \in \mathcal{F} \text { for each } f \in \mathcal{F}\right\}
$$

Recall that $\mathcal{M}_{a}(\mathcal{D})$ is equal to the family of all constant functions [6].
For an infinite cardinal κ we say that a cardinal number λ is the cofinality of κ (and write $\lambda=\operatorname{cf}(\kappa))$ if λ is the least cardinal number such that there exists a family of sets $\left(X_{i}\right)_{i \in \lambda}$ with the property that $\bigcup_{i \in \lambda} X_{i}=\kappa$ and $\operatorname{card}\left(X_{i}\right)<\kappa$ for every $i \in \lambda$. For cardinals κ we say that κ is a regular cardinal if $\kappa=\operatorname{cf}(\kappa)$.

Given a family $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ consider the condition
$c(\mathcal{F})$: there is a $f \in \mathcal{D}$ such that $f+g \notin \mathcal{D}$ for each $g \in \mathcal{F}$.
Such a function f is called a universally bad Darboux function for \mathcal{F}. Determining for which families \mathcal{F} the condition $c(\mathcal{F})$ is fulfilled is a problem considered by several authors (see, e.g., [6], [8], [1], [3] and [4]). In particular, if the additivity of the ideal of all first category subsets of \mathbb{R} is equal to 2^{ω} (e.g., if Martin's Axiom or CH hold), then $c\left(C^{*}\right)$ holds for the family C^{*} of all nowhere constant, continuous functions [3]. On the other hand, there is a model of set theory in which $c\left(C^{*}\right)$ fails to hold. ([7]) In this paper we study analogous problems for the class of additive functions.

Lemma 1 Let $f \in \mathcal{A} d d$ be such that $\operatorname{ker}(f) \neq\{0\}$ and $\operatorname{rng}(f)=\mathbb{R}$. Then f has the Darboux property.

Proof. Observe that $f \in \mathcal{A} d d, \operatorname{ker}(f)$ is a linear subspace of \mathbb{R} and, since $\operatorname{ker}(f) \neq\{0\}, \operatorname{ker}(f)$ is dense in \mathbb{R}. Moreover, it is well-known that each two level sets of an additive function are congruent under translations, so any level set of f is dense in \mathbb{R}. Hence $f(I)=\mathbb{R}$ for every interval $I \subset \mathbb{R}$ and $f \in \mathcal{D}$.

Lemma 2 Let \mathcal{B} be a cover of \mathbb{R} such that $\operatorname{card}(\mathcal{B})=2^{\omega}$ and the covering of \mathcal{B} is equal to 2^{ω}. There exists a Hamel basis H such that $H \backslash \bigcup \mathcal{B}^{*} \neq \emptyset$ for every $\mathcal{B}^{*} \subset \mathcal{B}$ with $\operatorname{card}\left(\mathcal{B}^{*}\right)<\operatorname{cf}\left(2^{\omega}\right)$.

Proof. Let $\mathcal{B}=\left\{B_{\alpha}: \alpha<2^{\omega}\right\}$ and $h_{0} \neq 0$. Fix $\alpha<2^{\omega}$ and assume that we have chosen a linearly independent set $\left\{h_{\beta}: \beta<\alpha\right\}$ such that $h_{\beta} \notin \bigcup_{\gamma<\beta} B_{\gamma}$ for each $\beta<\alpha$. Let $E_{\alpha}=L\left(\left\{h_{\beta}: \beta<\alpha\right\}\right)$. For each $x \in E_{\alpha}$ choose $C_{x} \in \mathcal{B}$ with $x \in C_{x}$. Since card $\left(E_{\alpha}\right)<2^{\omega}$, by our assumption we obtain that the family $\mathcal{B}_{\alpha}=\left\{C_{x}: x \in E_{\alpha}\right\} \cup\left\{B_{\beta}: \beta<\alpha\right\}$ does not cover \mathbb{R}. Choose $h_{\alpha} \in \mathbb{R} \backslash \bigcup \mathcal{B}_{\alpha}$. Then the set $\left\{h_{\alpha}: \alpha<2^{\omega}\right\}$ is linearly independent. Let H be a Hamel basis containing $\left\{h_{\alpha}: \alpha<2^{\omega}\right\}$. For every $\mathcal{B}^{*} \subset \mathcal{B}$ with $\operatorname{card}\left(\mathcal{B}^{*}\right)<$ $\operatorname{cf}\left(2^{\omega}\right)$ there is $\alpha<2^{\omega}$ such that $\mathcal{B}^{*} \subset\left\{B_{\beta}: \beta<\alpha\right\}$, so $h_{\alpha} \in H \backslash \mathcal{B}^{*}$.

If we assume that 2^{ω} is a regular cardinal, then for each cover \mathcal{B} of \mathbb{R} such that the covering of \mathcal{B} equals 2^{ω} there exists a Hamel basis H such that $H \backslash \bigcup \mathcal{B}^{*} \neq \emptyset$ for every $\mathcal{B}^{*} \subset \mathcal{B}$ with $\operatorname{card}\left(\mathcal{B}^{*}\right)<2^{\omega}$. We are unable to determine whether this statement can be proved in ZFC.

Theorem 1 Assume that 2^{ω} is a regular cardinal and $\mathcal{G}=\left\{g_{\alpha}: \alpha<2^{\omega}\right\} \subset$ $\mathcal{A} d d$ satisfies the condition
(\star) the covering of the family $\mathcal{B}=\left\{g^{-1}(y): g \in \mathcal{G} \& y \in \mathbb{R}\right\}$ is equal to 2^{ω}.
Then there is $f \in \mathcal{A} d d \cap \mathcal{D}$ such that $f+g_{\alpha} \notin \mathcal{D}$ for each $\alpha<2^{\omega}$.
Proof. Let $H=\left\{h_{\alpha}: \alpha<2^{\omega}\right\}$ be the Hamel basis constructed in Lemma 2 for the cover \mathcal{B}. For every $\alpha<2^{\omega}$ we will construct an additive function f_{α} and choose $u_{\alpha} \in H$ such that
(i) $f_{\beta} \subset f_{\alpha}$ for $\beta<\alpha$,
(ii) $h_{\alpha} \in \operatorname{dom}\left(f_{\alpha}\right) \cap \operatorname{rng}\left(f_{\alpha}\right)$ and $\operatorname{ker}\left(f_{\alpha}\right) \neq\{0\}$,
(iii) $\operatorname{rng}\left(f_{\alpha}+g_{\alpha}\right) \neq\{0\}$,
(iv) $u_{\beta} \notin \operatorname{rng}\left(f_{\alpha}+g_{\beta}\right)$ for each $\beta \leq \alpha$,
(v) $\operatorname{card}\left(\operatorname{dom}\left(f_{\alpha}\right)\right)=\max (\omega, \operatorname{card}(\alpha))$.

First assume that $\alpha=0$. Choose $h \in H$ such that $h \neq-g_{0}\left(h_{2}\right)$ and set $f_{0}=L_{2}\left(\left\{\left(h_{0}, 0\right),\left(h_{1}, h_{0}\right),\left(h_{2}, h\right)\right\}\right)$. Since card $\left(\operatorname{rng}\left(f_{0}+g_{0}\right)\right)=\omega$, we can choose $u_{0} \in H \backslash \operatorname{rng}\left(f_{0}+g_{0}\right)$. It is easy to verify that f_{0} and u_{0} fulfill conditions (i)-(v).

Now fix $\alpha<2^{\omega}$ and assume that we have chosen for $\beta<\alpha$ functions f_{β} and points u_{β} which satisfy conditions (i)-(v). Set $f_{\alpha}^{(0)}=\bigcup_{\beta<\alpha} f_{\beta}$. We consider two cases. If $h_{\alpha} \in \operatorname{rng}\left(f_{\alpha}^{(0)}\right)$, then define $f_{\alpha}^{(1)}=f_{\alpha}^{(0)}$. Otherwise we will choose $y_{\alpha} \in H$ such that $y_{\alpha} \notin \operatorname{dom}\left(f_{\alpha}^{(0)}\right)$ and

$$
\begin{equation*}
u_{\beta} \notin L\left(\operatorname{rng}\left(f_{\alpha}^{(0)}+g_{\beta}\right) \cup\left\{g_{\beta}\left(y_{\alpha}\right)+h_{\alpha}\right\}\right) \text { for } \beta<\alpha \tag{1}
\end{equation*}
$$

To choose y_{α} observe that the family

$$
\mathcal{B}_{\alpha}=\bigcup_{\beta<\alpha}\left\{g_{\beta}^{-1}(y): y \in L\left(\operatorname{rng}\left(f_{\alpha}^{(0)}+g_{\beta}\right) \cup\left\{u_{\beta}\right\}\right)-h_{\alpha}\right\} \cup\left\{g_{\alpha}^{-1}\left(h_{\alpha}\right)\right\}
$$

has cardinality less than 2^{ω}. For each $x \in \operatorname{dom}\left(f_{\alpha}^{(0)}\right)$ choose $C_{x} \in \mathcal{B}$ with $x \in C_{x}$. Since card $\left(\operatorname{dom}\left(f_{\alpha}^{(0)}\right)\right)<2^{\omega}, H \backslash\left(\bigcup \mathcal{B}_{\alpha} \cup \bigcup_{x \in \operatorname{dom}\left(f_{\alpha}^{(0)}\right)} C_{x}\right) \neq \emptyset$. Take an arbitrary

$$
\begin{equation*}
y_{\alpha} \in H \backslash\left(\bigcup \mathcal{B}_{\alpha} \cup \bigcup_{x \in \operatorname{dom}\left(f_{\alpha}^{(0)}\right)} C_{x}\right) \tag{2}
\end{equation*}
$$

To prove (1) fix $\beta<\alpha$ and suppose that $u_{\beta}=q_{1} y+q_{2}\left(g_{\beta}\left(y_{\alpha}\right)+h_{\alpha}\right)$, where $q_{1}, q_{2} \in \mathbb{Q}$ and $y \in \operatorname{rng}\left(f_{\alpha}^{(0)}+g_{\beta}\right)$. By (2) we obtain $q_{2}=0$. So $u_{\beta} \in$ $\operatorname{rng}\left(f_{\tau}+g_{\beta}\right)$, where $\tau=\min \left\{\gamma: u_{\beta} \in \operatorname{rng}\left(f_{\gamma}+g_{\beta}\right)\right\}$. By (iv), $\tau<\beta<\alpha$. But then $u_{\beta} \in \operatorname{rng}\left(f_{\tau}+g_{\beta}\right) \subset \operatorname{rng}\left(f_{\beta}+g_{\beta}\right)$, contrary to (iv).

Now set

$$
f_{\alpha}^{(1)}=L_{2}\left(f_{\alpha}^{(0)} \cup\left\{\left(y_{\alpha}, h_{\alpha}\right)\right\}\right) .
$$

If $h_{\alpha} \in \operatorname{dom}\left(f_{\alpha}^{(1)}\right)$, then put $f_{\alpha}=f_{\alpha}^{(1)}$. Otherwise choose

$$
v_{\alpha} \in H \backslash \bigcup_{\beta<\alpha}\left(L\left(\operatorname{rng}\left(f_{\alpha}^{(1)}+g_{\beta}\right) \cup\left\{u_{\beta}\right\}\right)-g_{\beta}\left(h_{\alpha}\right)\right)
$$

and put

$$
f_{\alpha}=L_{2}\left(f_{\alpha}^{(1)} \cup\left\{\left(h_{\alpha}, v_{\alpha}\right)\right\}\right) .
$$

Finally, since card $\left(\operatorname{dom}\left(f_{\alpha}\right)\right)<2^{\omega}$, we can choose $u_{\alpha} \in H \backslash \operatorname{rng}\left(f_{\alpha}+g_{\alpha}\right)$. It can be easily seen that f_{α} fulfills conditions (i)-(v).

Define f by

$$
f=\bigcup_{\alpha<2 \omega} f_{\alpha} .
$$

Because $H \subset \operatorname{dom}(f), f \in \mathcal{A} d d$. Since $\operatorname{ker}(f) \neq\{0\}$ and $H \subset \operatorname{rng}(f)$, by Lemma $1, f \in \mathcal{D}$. Notice that $f+g_{\beta} \notin \mathcal{D}$ for each $\beta<2^{\omega}$. Indeed, fix an arbitrary $\beta<2^{\omega}$. Then by (iv) $u_{\beta} \notin \operatorname{rng}\left(f+g_{\beta}\right)$. But, by (iii), $\operatorname{rng}\left(f+g_{\beta}\right)$ is dense in \mathbb{R}, which shows that $f+g_{\beta} \notin \mathcal{D}$.
Remark. Since all level sets of an additive function are congruent under translations, the condition (\star) is equivalent to the following:
($\star \star$) the covering of the family $\mathcal{B}=\{\operatorname{ker}(g)+y: g \in \mathcal{G} \& y \in \mathbb{R}\}$ is equal to 2^{ω}.

Corollary 1 Assume that 2^{ω} is a regular cardinal, $\mathcal{G} \subset \mathcal{A} d d$, $\operatorname{card}(\mathcal{G})=2^{\omega}$ and there exists an ideal $\mathcal{J} \supset\{\operatorname{ker}(g): g \in \mathcal{G}\}$ satisfies the following conditions:
(i) \mathcal{J} is invariant under translations, i.e., $A+x \in \mathcal{J}$ for all $A \in \mathcal{J}$ and $x \in \mathbb{R}$;
(ii) the covering of \mathcal{J} is equal to 2^{ω}.

Then there is $f \in \mathcal{A} d d \cap \mathcal{D}$ such that $f+g \notin \mathcal{D}$ for each $g \in \mathcal{G}$.
If Martin's Axiom (MA) or the Continuum Hypothesis (CH) hold, then the ideals \mathcal{K} of all meager sets and \mathcal{N} of all null sets fulfill the statements (i) and (ii). Therefore we have the following corollary.

Corollary 2 (MA) Assume that \mathcal{G} is a family of additive functions such that $\operatorname{card}(\mathcal{G})=2^{\omega}$ and either $\operatorname{ker}(g) \in \mathcal{N}$ for each $g \in \mathcal{G}$ or $\operatorname{ker}(g) \in \mathcal{K}$ for each $g \in \mathcal{G}$. Then there is $f \in \mathcal{A} d d \cap \mathcal{D}$ such that $f+g \notin \mathcal{D}$ for each $g \in \mathcal{G}$.

Proposition 1 The covering of the family $\mathcal{S}(\mathbb{R})$ of all proper linear subspaces of \mathbb{R} over \mathbb{Q} is equal to ω.

Proof. Let $\mathcal{B}_{0} \subset \mathcal{S}(\mathbb{R})$ be such that $\bigcup \mathcal{B}_{0}=\mathbb{R}$. We will show that card $\left(\mathcal{B}_{0}\right) \geq$ ω. By way of contradiction suppose that $\mathcal{B}_{0}=\left\{V_{1}, \ldots, V_{n}\right\}$ for some $n \in \mathbb{N}$. We may assume that $V_{i} \backslash \bigcup_{k \neq i} V_{k} \neq \emptyset$ for every $i \leq n$. Note that $n \geq 2$, because all V_{i} are proper. For $i=1,2$ choose

$$
\begin{equation*}
v_{i} \in V_{i} \backslash \bigcup_{k \neq i} V_{k} \tag{3}
\end{equation*}
$$

and set $v_{k}=(k-2) v_{2}+v_{1}$ for $k>2$ Then there exists $i \leq n$ for which the set $N_{i}=\left\{k: v_{k} \in V_{i}\right\}$ is infinite. Fix $j, k \in N_{i}$ with $2<j<k$. Then we have

$$
v_{k}-v_{j}=(k-j) v_{2} \in V_{2} \cap V_{i}
$$

Therefore $v_{2} \in V_{i}$ and, by (3), $i=2$. But then $v_{1}=v_{k}-(k-2) v_{2} \in V_{2}$, contrary to the choice of v_{1}.

Now we will construct a family $\mathcal{B}_{0} \subset \mathcal{S}(\mathbb{R})$ such that $\operatorname{card}\left(\mathcal{B}_{0}\right)=\omega$ and $\bigcup \mathcal{B}_{0}=\mathbb{R}$. Let $H \subset \mathbb{R}$ be an arbitrary Hamel basis and let $\left\{H_{n}: n \in \mathbb{N}\right\}$ be a partition of H into proper subsets. Put

$$
\mathcal{B}_{0}=\left\{L\left(\bigcup_{n \in A} H_{n}\right): A \subset \mathbb{N}, \operatorname{card}(A)<\omega\right\}
$$

It is obvious that $\operatorname{card}\left(\mathcal{B}_{0}\right)=\omega$ and $\mathbb{R} \notin \mathcal{B}_{0}$. Fix an arbitrary $x \in \mathbb{R}$. Then $x=\sum_{n=1}^{k} q_{n} h_{n}$ for some $k \in \mathbb{N}, q_{n} \in \mathbb{Q}$, and $h_{n} \in H n=1, \ldots k$. Since $A_{x}=\left\{j: \exists_{n \leq k} h_{n} \in H_{j}\right\}$ is finite, $x \in L\left(\bigcup_{n \in A_{x}} H_{n}\right) \in \mathcal{B}_{0}$. Consequently, $\bigcup \mathcal{B}_{0}=\mathbb{R}$.

Proposition 2 If a family $\mathcal{G} \subset \mathcal{A} d d$ satisfies the condition (\star), then $\operatorname{card}(\operatorname{rng}(g))=2^{\omega}$ for each $g \in \mathcal{G}$.

Proof. If card $(\operatorname{rng}(g))<2^{\omega}$ for some $g \in \mathcal{G}$, then $\bigcup_{y \in \operatorname{rng}(g)} g^{-1}(y)=\mathbb{R}$. So the covering of \mathcal{G} is less than 2^{ω}.

Lemma 3 Assume that $n \in \mathbb{N}$ and $\mathcal{G}=\left\{g_{i}: i \leq n\right\}$ is a family of additive functions such that card $\left(\operatorname{rng}\left(g_{i}\right)\right)=2^{\omega}$ for $i \leq n$. Then \mathcal{G} satisfies condition (\star).

Proof. Let \mathcal{B}_{0} be a subfamily of $\left\{g^{-1}(y): g \in \mathcal{G}\right.$ and $\left.y \in \mathbb{R}\right\}$ such that $\operatorname{card}\left(\mathcal{B}_{0}\right)<2^{\omega}$. Define $Y_{i}=L\left(\left\{y \in \mathbb{R}: g_{i}^{-1}(y) \in \mathcal{B}_{0}\right\}\right)$ and $V_{i}=g_{i}^{-1}\left(Y_{i}\right)$. Note that $\operatorname{card}\left(Y_{i}\right)<2^{\omega}$ for $i=1, \ldots, n$. Because card $\left(\operatorname{rng}\left(g_{i}\right)\right)=2^{\omega}, V_{i} \neq \mathbb{R}$ for every $i=1, \ldots, n$. So by Proposition $1, V=\bigcup_{i=1}^{n} V_{i} \neq \mathbb{R}$. But $\bigcup \mathcal{B}_{0} \subset V$. Thus $\bigcup \mathcal{B}_{0} \neq \mathbb{R}$, which completes the proof.

Lemma 4 Assume that $n \in \mathbb{N}, \mathcal{G}=\left\{g_{i}: i \leq n\right\} \subset \mathcal{A} d d$ and $\operatorname{card}(\operatorname{rng}(g))=$ 2^{ω} for each $g \in \mathcal{G}$. Then there exists a linearly independent set $H_{1} \subset \mathbb{R}$ such that card $\left(H_{1}\right)=2^{\omega}$ and $g_{i} \mid L\left(H_{1}\right)$ is an injection for each $i \leq n$.

Proof. Choose an arbitrary $h_{0} \neq 0$. Fix $\alpha<2^{\omega}$ and assume that we have chosen a linearly independent set $\left\{h_{\beta}: \beta<\alpha\right\}$ such that $g_{i} \mid L\left(\left\{h_{\beta}: \beta<\alpha\right\}\right)$ is an injection for each $i \leq n$. For each i we have $\operatorname{card}\left(L\left(\left\{g_{i}\left(h_{\beta}\right): \beta<\alpha\right\}\right)\right)<2^{\omega}$ and $\operatorname{card}\left(\operatorname{rng}\left(g_{i}\right)\right)=2^{\omega}$. So $g_{i}^{-1}\left(L\left(\left\{g_{i}\left(h_{\beta}\right): \beta<\alpha\right\}\right)\right)$ is a proper linear subspace of \mathbb{R}. By Theorem 1, we obtain

$$
\mathbb{R} \backslash \bigcup_{i=1}^{n} g_{i}^{-1}\left(L\left(\left\{g_{i}\left(h_{\beta}\right): \beta<\alpha\right\}\right)\right) \neq \emptyset .
$$

Choose $h_{\alpha} \in \mathbb{R} \backslash \bigcup_{i=1}^{n} g_{i}^{-1}\left(L\left(\left\{g_{i}\left(h_{\beta}\right): \beta<\alpha\right\}\right)\right)$. Then the set $H_{1}=\left\{h_{\alpha}: \alpha<\right.$ $\left.2^{\omega}\right\}$ is linearly independent and $g_{i} \mid L\left(H_{1}\right)$ is an injection for $i=1, \ldots, n$.

Assuming $\operatorname{cf}\left(2^{\omega}\right)=2^{\omega}$, the next theorem is a consequence of Theorem 1 and Lemma 3. We shall prove it in ZFC, without additional set-theoretical assumptions.

Theorem 2 Assume that $\mathcal{G}=\left\{g_{i}: i=1, \ldots, n\right\} \subset \mathcal{A} d d$ and card $(\operatorname{rng}(g))=$ 2^{ω} for each $g \in \mathcal{G}$. Then there is $f \in \mathcal{A} d d \cap \mathcal{D}$ such that $f+g \notin \mathcal{D}$ for $g \in \mathcal{G}$.

Proof. Let $H_{1} \subset \mathbb{R}$ be the set constructed in Lemma 4 for the family \mathcal{G} and let $H=\left\{h_{\alpha}: \alpha<2^{\omega}\right\} \supset H_{1}$ be a Hamel basis. Choose

$$
\begin{equation*}
h \in H \backslash\left\{g_{i}\left(h_{2}\right): i=1, \leq n\right\} \tag{4}
\end{equation*}
$$

and set $f_{0}=L_{2}\left(\left\{\left(h_{0}, 0\right),\left(h_{1}, h_{0}\right),\left(h_{2}, h\right)\right\}\right)$. Clearly card $\left(\operatorname{rng}\left(f_{0}+g_{i}\right)\right)=\omega$ for $i=1, \ldots, n$.

For $i=1, \ldots, n$ choose $u_{i} \in H \backslash \operatorname{rng}\left(f_{0}+g_{i}\right)$. For every $0<\alpha<2^{\omega}$ we will construct an additive function f_{α} such that
(i) $f_{0} \subset f_{\beta} \subset f_{\alpha}$ for $\beta<\alpha$,
(ii) $h_{\alpha} \in \operatorname{dom}\left(f_{\alpha}\right) \cap \operatorname{rng}\left(f_{\alpha}\right)$,
(iii) $u_{i} \notin \operatorname{rng}\left(f_{\alpha}+g_{i}\right)$ for each $i=1,2, \ldots, n$,
(iv) $\operatorname{card}\left(\operatorname{dom}\left(f_{\alpha}\right)\right)=\max (\omega, \alpha)$.

Fix $\alpha<2^{\omega}$ and assume that for $\beta<\alpha$ we have chosen the function f_{β} which satisfies conditions (i)-(iv). Set

$$
\begin{equation*}
f_{\alpha}^{(0)}=\bigcup_{\beta<\alpha} f_{\beta} \tag{5}
\end{equation*}
$$

We consider two cases. If $h_{\alpha} \in \operatorname{rng}\left(f_{\alpha}^{(0)}\right)$, then define $f_{\alpha}^{(1)}=f_{\alpha}^{(0)}$. Otherwise we will choose $y_{\alpha} \in H$ such that $y_{\alpha} \notin \operatorname{dom}\left(f_{\alpha}^{(0)}\right)$ and

$$
\begin{equation*}
u_{i} \notin L\left(\operatorname{rng}\left(f_{\alpha}^{(0)}+g_{i}\right) \cup\left\{g_{i}\left(y_{\alpha}\right)+h_{\alpha}\right\}\right) \text { for } i \leq n \tag{6}
\end{equation*}
$$

To choose y_{α}, observe that $g_{i} \mid H_{1}$ is an injection, and by $(i v)$,

$$
\operatorname{card}\left(L\left(\operatorname{rng}\left(f_{\alpha}^{(0)}+g_{i}\right)\left\{u_{i}\right\}\right)-h_{\alpha}\right)<2^{\omega}
$$

So the cardinality of the set

$$
A_{\alpha, i}=\left(g_{i} \mid H_{1}\right)^{-1}\left(L\left(\operatorname{rng}\left(f_{\alpha}^{(0)}+g_{i}\right)\left\{u_{i}\right\}\right)-h_{\alpha}\right)
$$

is less than 2^{ω}. Therefore, the cardinality of $A_{\alpha}=H_{1} \backslash \bigcup_{i=1}^{n} A_{\alpha, i}$ is equal to 2^{ω}. Take an arbitrary $y_{\alpha} \in A_{\alpha}$. Now the proof of (6) is analogous to the proof of condition (1) in Theorem 1.

Next let $f_{\alpha}^{(1)}=L_{2}\left(f_{\alpha}^{(0)} \cup\left\{\left(y_{\alpha}, h_{\alpha}\right)\right\}\right)$. If $h_{\alpha} \in \operatorname{dom}\left(f_{\alpha}^{(1)}\right)$, then put $f_{\alpha}=$ $f_{\alpha}^{(1)}$. Otherwise choose

$$
v_{\alpha} \in H \backslash \bigcup_{i=1}^{n}\left[L\left(\operatorname{rng}\left(f_{\alpha}^{(1)}+g_{i}\right) \cup\left\{u_{i}\right\}\right)-g_{i}\left(h_{\alpha}\right)\right]
$$

and let $f_{\alpha}=L_{2}\left(f_{\alpha}^{(1)} \cup\left\{\left(h_{\alpha}, v_{\alpha}\right)\right\}\right)$. It can be seen that f_{α} fulfills conditions (i)-(iv).

Finally, let $f=\bigcup_{\alpha<2^{\omega}} f_{\alpha}$. Because $H \subset \operatorname{dom}(f), f \in \mathcal{A} d d$. Since $\operatorname{ker}(f) \neq$ $\{0\}$ and $H \subset \operatorname{rng}(f)$, by Lemma $1, f \in \mathcal{D}$.

Notice that $f+g_{i} \notin \mathcal{D}$ for each $i=1, \ldots, n$. Indeed, fix arbitrary $i \leq n$. Then by (iii) $u_{i} \notin \operatorname{rng}\left(f+g_{i}\right)$. But conditions (4) and (i) imply that rng $\left(f+g_{i}\right)$ is dense in \mathbb{R}. Thus $f+g_{i} \notin \mathcal{D}$.

Corollary $3 \mathcal{M}_{a}(\mathcal{A} d d \cap \mathcal{D})=\{0\}$.
Proof. The inclusion " \supset " is obvious. To prove the inclusion " \subset " assume that $f \in \mathcal{M}_{a}(\mathcal{A} d d \cap \mathcal{D}) \backslash\{0\}$. Note that $f \in \mathcal{A} d d \cap \mathcal{D}$, because the constant function $g \equiv 0$ belongs to the class $\mathcal{A} d d \cap \mathcal{D}$. So, $\operatorname{rng}(f)=\mathbb{R}$. By Theorem 2, $f+h \notin \mathcal{A} d d \cap \mathcal{D}$ for some $h \in \mathcal{A} d d \cap \mathcal{D}$. Hence $f \notin \mathcal{M}_{a}(\mathcal{A} d d \cap \mathcal{D})$, an impossibility.

The importance of the assumptions in Theorem 1 is not clear. In particular, the following problem is open.
Problem 1 Assume $C H$ and $\mathcal{G}=\left\{g_{\alpha}: \alpha<2^{\omega}\right\}$ is a family of additive functions. Does there exists $f \in \mathcal{A} d d \cap \mathcal{D}$ such that $f+g_{\alpha} \notin \mathcal{D}$ for each α ?

References

[1] A. M. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
[2] A. L. Cauchy, Cours d'analyse de l'Ecole Polytechnique, 1. Analyse algébrique, V., Paris, 1821.
[3] B. Kirchheim and T. Natkaniec, On universally bad Darboux functions, Real Analalysis Exch. 16 (1990-1991), 481-486.
[4] P. Komjáth, A note on Darboux functions, Real Analalysis Exch. 18 (1992-93), 249-252.
[5] M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, PWN Warszawa-Kraków-Katowice 1985.
[6] T. Radaković, Über Darbouxsche und stetige Funktionen, Monat. Math. Phys. 38 (1931), 117-122.
[7] J. Steprans, Sums of Darboux and continuous functions, Fund. Math. 146 (1995), 107-120.
[8] R. Švarc, On the range of values of the sum of a continuous and a Darboux function, Čas. Pest. Mat. 98 (1973), 178-180, 213.

[^0]: Key Words: Darboux function, additive function, universally bad Darboux function, maximal additive family

 Mathematical Reviews subject classification: Primary 26A15. Secondary 26A51
 Received by the editors May 15, 1996

