Dariusz Banaszewski, Mathematics Department, Pedagogical University, Chodkiewicza 30, 85–064 Bydgoszcz, Poland.

UNIVERSALLY BAD DARBOUX FUNCTIONS IN THE CLASS OF ADDITIVE FUNCTIONS

Abstract

The main result: For every family \mathcal{G} of additive functions with $\operatorname{card} \mathcal{G} = 2^{\omega}$ if the covering of the family of all level sets of functions from \mathcal{G} is equal to 2^{ω} , then there exists an additive Darboux function f such that f + g is Darboux for no $g \in \mathcal{G}$.

Definitions. Let us establish some terminology to be used. For a subset A of $\mathbb{R} \times \mathbb{R}$ we denote by dom (A) and rng (A) the *x*-projection and *y*-projection of A. We say that $f : \mathbb{R} \to \mathbb{R}$ is a Darboux function whenever f(J) is connected for every interval $J \subset \mathbb{R}$. The family of all such functions we will denote by \mathcal{D} .

We shall consider \mathbb{R} as a linear space over \mathbb{Q} , the set of rationals. Every base of this space will be referred to as a *Hamel basis*. It is evident that the cardinality of every Hamel basis is equal to 2^{ω} .

If $A \subset \mathbb{R}$ is an arbitrary nonempty set, then by L(A) we mean the linear subspace of \mathbb{R} spanned over A, i.e., the set of all finite linear combinations of elements of A (with coefficients from \mathbb{Q}). Analogously, for an arbitrary nonempty planar set $A \subset \mathbb{R} \times \mathbb{R}$ we put the set $L_2(A)$. For any $A \subset \mathbb{R}$ and $x \in \mathbb{R}$ we define $x + A = \{x + a : a \in A\}$.

Let L be a linear subspace of \mathbb{R} over \mathbb{Q} . A function $f: L \to \mathbb{R}$ is called additive iff it satisfies Cauchy's equation f(x+y) = f(x) + f(y) for all $x, y \in L$ [2]. (See also [5, p. 120], for the history of this notion.) Recall that every additive function $f: \mathbb{R} \to \mathbb{R}$ can be obtained as the unique additive extension of a function defined on a Hamel basis. The class of all additive functions from \mathbb{R} to \mathbb{R} will be denoted by $\mathcal{A}dd$.

284

Key Words: Darboux function, additive function, universally bad Darboux function, maximal additive family

Mathematical Reviews subject classification: Primary 26A15. Secondary 26A51 Received by the editors May 15, 1996

We do not distinguish between a function $f: L \to \mathbb{R}$ where $L \subset \mathbb{R}$ and its graph (i.e., a subset of $\mathbb{R} \times \mathbb{R}$). By f + g we mean the function $h: \text{dom}(f) \cap \text{dom}(g) \to \mathbb{R}$ such that h(x) = f(x) + g(x) for each $x \in \text{dom}(f) \cap \text{dom}(g)$.

The cardinality of a set A is denote by card (A). Cardinals are identified with initial ordinals. For an arbitrary cover \mathcal{B} of the real line we define the *covering* of \mathcal{B} as the smallest cardinal κ for which there exists a subfamily $\mathcal{B}_0 \subset \mathcal{B}$ with card $(\mathcal{B}_0) = \kappa$ and $\mathbb{R} = \bigcup \mathcal{B}_0$.

For a family $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ we denote by $\mathcal{M}_a(\mathcal{F})$ the maximal additive family for \mathcal{F} , i.e.,

$$\mathcal{M}_a(\mathcal{F}) = \{g \in \mathbb{R}^{\mathbb{R}} \colon f + g \in \mathcal{F} \text{ for each } f \in \mathcal{F}\}.$$

Recall that $\mathcal{M}_a(\mathcal{D})$ is equal to the family of all constant functions [6].

For an infinite cardinal κ we say that a cardinal number λ is the *cofinality* of κ (and write $\lambda = \operatorname{cf}(\kappa)$) if λ is the least cardinal number such that there exists a family of sets $(X_i)_{i \in \lambda}$ with the property that $\bigcup_{i \in \lambda} X_i = \kappa$ and $\operatorname{card}(X_i) < \kappa$ for every $i \in \lambda$. For cardinals κ we say that κ is a regular cardinal if $\kappa = \operatorname{cf}(\kappa)$.

Given a family $\mathcal{F}\subset\mathbb{R}^{\mathbb{R}}$ consider the condition

 $c(\mathcal{F})$: there is a $f \in \mathcal{D}$ such that $f + g \notin \mathcal{D}$ for each $g \in \mathcal{F}$.

Such a function f is called a universally bad Darboux function for \mathcal{F} . Determining for which families \mathcal{F} the condition $c(\mathcal{F})$ is fulfilled is a problem considered by several authors (see, e.g., [6], [8], [1], [3] and [4]). In particular, if the additivity of the ideal of all first category subsets of \mathbb{R} is equal to 2^{ω} (e.g., if Martin's Axiom or CH hold), then $c(C^*)$ holds for the family C^* of all nowhere constant, continuous functions [3]. On the other hand, there is a model of set theory in which $c(C^*)$ fails to hold. ([7]) In this paper we study analogous problems for the class of additive functions.

Lemma 1 Let $f \in Add$ be such that $\ker(f) \neq \{0\}$ and $\operatorname{rng}(f) = \mathbb{R}$. Then f has the Darboux property.

PROOF. Observe that $f \in Add$, ker(f) is a linear subspace of \mathbb{R} and, since ker $(f) \neq \{0\}$, ker(f) is dense in \mathbb{R} . Moreover, it is well-known that each two level sets of an additive function are congruent under translations, so any level set of f is dense in \mathbb{R} . Hence $f(I) = \mathbb{R}$ for every interval $I \subset \mathbb{R}$ and $f \in \mathcal{D}$. \Box

Lemma 2 Let \mathcal{B} be a cover of \mathbb{R} such that $\operatorname{card}(\mathcal{B}) = 2^{\omega}$ and the covering of \mathcal{B} is equal to 2^{ω} . There exists a Hamel basis H such that $H \setminus \bigcup \mathcal{B}^* \neq \emptyset$ for every $\mathcal{B}^* \subset \mathcal{B}$ with $\operatorname{card}(\mathcal{B}^*) < \operatorname{cf}(2^{\omega})$.

PROOF. Let $\mathcal{B} = \{B_{\alpha} : \alpha < 2^{\omega}\}$ and $h_0 \neq 0$. Fix $\alpha < 2^{\omega}$ and assume that we have chosen a linearly independent set $\{h_{\beta} : \beta < \alpha\}$ such that $h_{\beta} \notin \bigcup_{\gamma < \beta} B_{\gamma}$ for each $\beta < \alpha$. Let $E_{\alpha} = L(\{h_{\beta} : \beta < \alpha\})$. For each $x \in E_{\alpha}$ choose $C_x \in \mathcal{B}$ with $x \in C_x$. Since card $(E_{\alpha}) < 2^{\omega}$, by our assumption we obtain that the family $\mathcal{B}_{\alpha} = \{C_x : x \in E_{\alpha}\} \cup \{B_{\beta} : \beta < \alpha\}$ does not cover \mathbb{R} . Choose $h_{\alpha} \in \mathbb{R} \setminus \bigcup \mathcal{B}_{\alpha}$. Then the set $\{h_{\alpha} : \alpha < 2^{\omega}\}$ is linearly independent. Let H be a Hamel basis containing $\{h_{\alpha} : \alpha < 2^{\omega}\}$. For every $\mathcal{B}^* \subset \mathcal{B}$ with card $(\mathcal{B}^*) <$ $cf(2^{\omega})$ there is $\alpha < 2^{\omega}$ such that $\mathcal{B}^* \subset \{B_{\beta} : \beta < \alpha\}$, so $h_{\alpha} \in H \setminus \mathcal{B}^*$. \Box

If we assume that 2^{ω} is a regular cardinal, then for each cover \mathcal{B} of \mathbb{R} such that the covering of \mathcal{B} equals 2^{ω} there exists a Hamel basis H such that $H \setminus \bigcup \mathcal{B}^* \neq \emptyset$ for every $\mathcal{B}^* \subset \mathcal{B}$ with card $(\mathcal{B}^*) < 2^{\omega}$. We are unable to determine whether this statement can be proved in ZFC.

Theorem 1 Assume that 2^{ω} is a regular cardinal and $\mathcal{G} = \{g_{\alpha} : \alpha < 2^{\omega}\} \subset \mathcal{A}$ dd satisfies the condition

(*) the covering of the family $\mathcal{B} = \{g^{-1}(y) \colon g \in \mathcal{G} \& y \in \mathbb{R}\}$ is equal to 2^{ω} .

Then there is $f \in Add \cap D$ such that $f + g_{\alpha} \notin D$ for each $\alpha < 2^{\omega}$.

PROOF. Let $H = \{h_{\alpha} : \alpha < 2^{\omega}\}$ be the Hamel basis constructed in Lemma 2 for the cover \mathcal{B} . For every $\alpha < 2^{\omega}$ we will construct an additive function f_{α} and choose $u_{\alpha} \in H$ such that

- (i) $f_{\beta} \subset f_{\alpha}$ for $\beta < \alpha$,
- (ii) $h_{\alpha} \in \text{dom}(f_{\alpha}) \cap \text{rng}(f_{\alpha}) \text{ and } \ker(f_{\alpha}) \neq \{0\},\$
- (iii) rng $(f_{\alpha} + g_{\alpha}) \neq \{0\},\$
- (iv) $u_{\beta} \notin \operatorname{rng} (f_{\alpha} + g_{\beta})$ for each $\beta \leq \alpha$,
- (v) card $(\text{dom}(f_{\alpha})) = \max(\omega, \text{card}(\alpha)).$

First assume that $\alpha = 0$. Choose $h \in H$ such that $h \neq -g_0(h_2)$ and set $f_0 = L_2(\{(h_0, 0), (h_1, h_0), (h_2, h)\})$. Since card $(\operatorname{rng}(f_0 + g_0)) = \omega$, we can choose $u_0 \in H \setminus \operatorname{rng}(f_0 + g_0)$. It is easy to verify that f_0 and u_0 fulfill conditions (i)-(v).

Now fix $\alpha < 2^{\omega}$ and assume that we have chosen for $\beta < \alpha$ functions f_{β} and points u_{β} which satisfy conditions (i)–(v). Set $f_{\alpha}^{(0)} = \bigcup_{\beta < \alpha} f_{\beta}$. We consider two cases. If $h_{\alpha} \in \operatorname{rng}(f_{\alpha}^{(0)})$, then define $f_{\alpha}^{(1)} = f_{\alpha}^{(0)}$. Otherwise we will choose $y_{\alpha} \in H$ such that $y_{\alpha} \notin \operatorname{dom}(f_{\alpha}^{(0)})$ and

$$u_{\beta} \notin L\left(\operatorname{rng}\left(f_{\alpha}^{(0)} + g_{\beta}\right) \cup \{g_{\beta}(y_{\alpha}) + h_{\alpha}\}\right) \text{ for } \beta < \alpha.$$

$$(1)$$

To choose y_{α} observe that the family

$$\mathcal{B}_{\alpha} = \bigcup_{\beta < \alpha} \left\{ g_{\beta}^{-1}(y) \colon y \in L\left(\operatorname{rng}\left(f_{\alpha}^{(0)} + g_{\beta} \right) \cup \{u_{\beta}\} \right) - h_{\alpha} \right\} \cup \left\{ g_{\alpha}^{-1}(h_{\alpha}) \right\}$$

has cardinality less than 2^{ω} . For each $x \in \text{dom}(f_{\alpha}^{(0)})$ choose $C_x \in \mathcal{B}$ with $x \in C_x$. Since card $(\text{dom}(f_{\alpha}^{(0)})) < 2^{\omega}, H \setminus \left(\bigcup \mathcal{B}_{\alpha} \cup \bigcup_{x \in \text{dom}(f_{\alpha}^{(0)})} C_x\right) \neq \emptyset$. Take an arbitrary

$$y_{\alpha} \in H \setminus \left(\bigcup \mathcal{B}_{\alpha} \cup \bigcup_{x \in \operatorname{dom}(f_{\alpha}^{(0)})} C_x \right)$$

$$\tag{2}$$

To prove (1) fix $\beta < \alpha$ and suppose that $u_{\beta} = q_1 y + q_2(g_{\beta}(y_{\alpha}) + h_{\alpha})$, where $q_1, q_2 \in \mathbb{Q}$ and $y \in \operatorname{rng}(f_{\alpha}^{(0)} + g_{\beta})$. By (2) we obtain $q_2 = 0$. So $u_{\beta} \in \operatorname{rng}(f_{\tau} + g_{\beta})$, where $\tau = \min\{\gamma \colon u_{\beta} \in \operatorname{rng}(f_{\gamma} + g_{\beta})\}$. By (iv), $\tau < \beta < \alpha$. But then $u_{\beta} \in \operatorname{rng}(f_{\tau} + g_{\beta}) \subset \operatorname{rng}(f_{\beta} + g_{\beta})$, contrary to (iv).

Now set

$$f_{\alpha}^{(1)} = L_2(f_{\alpha}^{(0)} \cup \{(y_{\alpha}, h_{\alpha})\}).$$

If $h_{\alpha} \in \text{dom}(f_{\alpha}^{(1)})$, then put $f_{\alpha} = f_{\alpha}^{(1)}$. Otherwise choose

$$v_{\alpha} \in H \setminus \bigcup_{\beta < \alpha} \left(L \left(\operatorname{rng} \left(f_{\alpha}^{(1)} + g_{\beta} \right) \cup \{ u_{\beta} \} \right) - g_{\beta}(h_{\alpha}) \right)$$

and put

$$f_{\alpha} = L_2(f_{\alpha}^{(1)} \cup \{(h_{\alpha}, v_{\alpha})\}).$$

Finally, since card $(\operatorname{dom}(f_{\alpha})) < 2^{\omega}$, we can choose $u_{\alpha} \in H \setminus \operatorname{rng}(f_{\alpha} + g_{\alpha})$. It can be easily seen that f_{α} fulfills conditions (i)–(v).

Define f by

$$f = \bigcup_{\alpha < 2^{\omega}} f_{\alpha}.$$

Because $H \subset \text{dom}(f), f \in \mathcal{A}dd$. Since $\text{ker}(f) \neq \{0\}$ and $H \subset \text{rng}(f)$, by Lemma 1, $f \in \mathcal{D}$. Notice that $f + g_{\beta} \notin \mathcal{D}$ for each $\beta < 2^{\omega}$. Indeed, fix an arbitrary $\beta < 2^{\omega}$. Then by (iv) $u_{\beta} \notin \text{rng}(f + g_{\beta})$. But, by (iii), $\text{rng}(f + g_{\beta})$ is dense in \mathbb{R} , which shows that $f + g_{\beta} \notin \mathcal{D}$.

Remark. Since all level sets of an additive function are congruent under translations, the condition (\star) is equivalent to the following:

(**) the covering of the family $\mathcal{B} = \{ \ker(g) + y \colon g \in \mathcal{G} \& y \in \mathbb{R} \}$ is equal to 2^{ω} .

Corollary 1 Assume that 2^{ω} is a regular cardinal, $\mathcal{G} \subset \mathcal{A}dd$, card $(\mathcal{G}) = 2^{\omega}$ and there exists an ideal $\mathcal{J} \supset \{\ker(g) : g \in \mathcal{G}\}$ satisfies the following conditions:

- (i) \mathcal{J} is invariant under translations, i.e., $A + x \in \mathcal{J}$ for all $A \in \mathcal{J}$ and $x \in \mathbb{R}$;
- (ii) the covering of \mathcal{J} is equal to 2^{ω} .

Then there is $f \in Add \cap D$ such that $f + g \notin D$ for each $g \in G$.

If Martin's Axiom (MA) or the Continuum Hypothesis (CH) hold, then the ideals \mathcal{K} of all meager sets and \mathcal{N} of all null sets fulfill the statements (i) and (ii). Therefore we have the following corollary.

Corollary 2 (MA) Assume that \mathcal{G} is a family of additive functions such that $\operatorname{card}(\mathcal{G}) = 2^{\omega}$ and either $\operatorname{ker}(g) \in \mathcal{N}$ for each $g \in \mathcal{G}$ or $\operatorname{ker}(g) \in \mathcal{K}$ for each $g \in \mathcal{G}$. Then there is $f \in \mathcal{A}dd \cap \mathcal{D}$ such that $f + g \notin \mathcal{D}$ for each $g \in \mathcal{G}$.

Proposition 1 The covering of the family $S(\mathbb{R})$ of all proper linear subspaces of \mathbb{R} over \mathbb{Q} is equal to ω .

PROOF. Let $\mathcal{B}_0 \subset \mathcal{S}(\mathbb{R})$ be such that $\bigcup \mathcal{B}_0 = \mathbb{R}$. We will show that card $(\mathcal{B}_0) \geq \omega$. By way of contradiction suppose that $\mathcal{B}_0 = \{V_1, \ldots, V_n\}$ for some $n \in \mathbb{N}$. We may assume that $V_i \setminus \bigcup_{k \neq i} V_k \neq \emptyset$ for every $i \leq n$. Note that $n \geq 2$, because all V_i are proper. For i = 1, 2 choose

$$v_i \in V_i \setminus \bigcup_{k \neq i} V_k \tag{3}$$

and set $v_k = (k-2)v_2 + v_1$ for k > 2 Then there exists $i \le n$ for which the set $N_i = \{k: v_k \in V_i\}$ is infinite. Fix $j, k \in N_i$ with 2 < j < k. Then we have

$$v_k - v_j = (k - j)v_2 \in V_2 \cap V_i$$

Therefore $v_2 \in V_i$ and, by (3), i = 2. But then $v_1 = v_k - (k-2)v_2 \in V_2$, contrary to the choice of v_1 .

Now we will construct a family $\mathcal{B}_0 \subset \mathcal{S}(\mathbb{R})$ such that card $(\mathcal{B}_0) = \omega$ and $\bigcup \mathcal{B}_0 = \mathbb{R}$. Let $H \subset \mathbb{R}$ be an arbitrary Hamel basis and let $\{H_n : n \in \mathbb{N}\}$ be a partition of H into proper subsets. Put

$$\mathcal{B}_0 = \left\{ L\left(\bigcup_{n \in A} H_n\right) : A \subset \mathbb{N}, \text{ card } (A) < \omega \right\}$$

It is obvious that $\operatorname{card}(\mathcal{B}_0) = \omega$ and $\mathbb{R} \notin \mathcal{B}_0$. Fix an arbitrary $x \in \mathbb{R}$. Then $x = \sum_{n=1}^k q_n h_n$ for some $k \in \mathbb{N}$, $q_n \in \mathbb{Q}$, and $h_n \in H$ $n = 1, \ldots k$. Since $A_x = \{j : \exists_{n \leq k} h_n \in H_j\}$ is finite, $x \in L(\bigcup_{n \in A_x} H_n) \in \mathcal{B}_0$. Consequently, $\bigcup \mathcal{B}_0 = \mathbb{R}$.

Proposition 2 If a family $\mathcal{G} \subset \mathcal{A}dd$ satisfies the condition (\star) , then $\operatorname{card}(\operatorname{rng}(g)) = 2^{\omega}$ for each $g \in \mathcal{G}$.

PROOF. If card $(\operatorname{rng}(g)) < 2^{\omega}$ for some $g \in \mathcal{G}$, then $\bigcup_{y \in \operatorname{rng}(g)} g^{-1}(y) = \mathbb{R}$. So the covering of \mathcal{G} is less than 2^{ω} .

Lemma 3 Assume that $n \in \mathbb{N}$ and $\mathcal{G} = \{g_i : i \leq n\}$ is a family of additive functions such that card $(\operatorname{rng}(g_i)) = 2^{\omega}$ for $i \leq n$. Then \mathcal{G} satisfies condition (\star) .

PROOF. Let \mathcal{B}_0 be a subfamily of $\{g^{-1}(y): g \in \mathcal{G} \text{ and } y \in \mathbb{R}\}$ such that $\operatorname{card}(\mathcal{B}_0) < 2^{\omega}$. Define $Y_i = L(\{y \in \mathbb{R}: g_i^{-1}(y) \in \mathcal{B}_0\})$ and $V_i = g_i^{-1}(Y_i)$. Note that $\operatorname{card}(Y_i) < 2^{\omega}$ for $i = 1, \ldots, n$. Because $\operatorname{card}(\operatorname{rng}(g_i)) = 2^{\omega}, V_i \neq \mathbb{R}$ for every $i = 1, \ldots, n$. So by Proposition 1, $V = \bigcup_{i=1}^n V_i \neq \mathbb{R}$. But $\bigcup \mathcal{B}_0 \subset V$. Thus $\bigcup \mathcal{B}_0 \neq \mathbb{R}$, which completes the proof. \Box

Lemma 4 Assume that $n \in \mathbb{N}$, $\mathcal{G} = \{g_i : i \leq n\} \subset \mathcal{A}dd$ and card $(\operatorname{rng}(g)) = 2^{\omega}$ for each $g \in \mathcal{G}$. Then there exists a linearly independent set $H_1 \subset \mathbb{R}$ such that card $(H_1) = 2^{\omega}$ and $g_i | L(H_1)$ is an injection for each $i \leq n$.

PROOF. Choose an arbitrary $h_0 \neq 0$. Fix $\alpha < 2^{\omega}$ and assume that we have chosen a linearly independent set $\{h_{\beta}: \beta < \alpha\}$ such that $g_i|L(\{h_{\beta}: \beta < \alpha\})$ is an injection for each $i \leq n$. For each i we have card $(L(\{g_i(h_{\beta}): \beta < \alpha\})) < 2^{\omega}$ and card $(\operatorname{rng}(g_i)) = 2^{\omega}$. So $g_i^{-1}(L(\{g_i(h_{\beta}): \beta < \alpha\}))$ is a proper linear subspace of \mathbb{R} . By Theorem 1, we obtain

$$\mathbb{R} \setminus \bigcup_{i=1}^{n} g_i^{-1}(L(\{g_i(h_\beta) \colon \beta < \alpha\})) \neq \emptyset.$$

Choose $h_{\alpha} \in \mathbb{R} \setminus \bigcup_{i=1}^{n} g_i^{-1}(L(\{g_i(h_{\beta}) : \beta < \alpha\}))$. Then the set $H_1 = \{h_{\alpha} : \alpha < 2^{\omega}\}$ is linearly independent and $g_i|L(H_1)$ is an injection for $i = 1, \ldots, n$. \Box

Assuming $cf(2^{\omega}) = 2^{\omega}$, the next theorem is a consequence of Theorem 1 and Lemma 3. We shall prove it in ZFC, without additional set-theoretical assumptions.

Theorem 2 Assume that $\mathcal{G} = \{g_i : i = 1, ..., n\} \subset \mathcal{A}dd$ and card $(\operatorname{rng}(g)) = 2^{\omega}$ for each $g \in \mathcal{G}$. Then there is $f \in \mathcal{A}dd \cap \mathcal{D}$ such that $f + g \notin \mathcal{D}$ for $g \in \mathcal{G}$.

PROOF. Let $H_1 \subset \mathbb{R}$ be the set constructed in Lemma 4 for the family \mathcal{G} and let $H = \{h_{\alpha} : \alpha < 2^{\omega}\} \supset H_1$ be a Hamel basis. Choose

$$h \in H \setminus \{g_i(h_2) \colon i = 1, \le n\}$$

$$\tag{4}$$

and set $f_0 = L_2(\{(h_0, 0), (h_1, h_0), (h_2, h)\})$. Clearly card $(rng(f_0 + g_i)) = \omega$ for i = 1, ..., n.

For i = 1, ..., n choose $u_i \in H \setminus \operatorname{rng}(f_0 + g_i)$. For every $0 < \alpha < 2^{\omega}$ we will construct an additive function f_{α} such that

- (i) $f_0 \subset f_\beta \subset f_\alpha$ for $\beta < \alpha$,
- (ii) $h_{\alpha} \in \operatorname{dom}(f_{\alpha}) \cap \operatorname{rng}(f_{\alpha}),$
- (iii) $u_i \notin \operatorname{rng}(f_\alpha + g_i)$ for each $i = 1, 2, \ldots, n$,
- (iv) card $(\text{dom}(f_{\alpha})) = \max(\omega, \alpha)$.

Fix $\alpha < 2^{\omega}$ and assume that for $\beta < \alpha$ we have chosen the function f_{β} which satisfies conditions (i)–(iv). Set

$$f_{\alpha}^{(0)} = \bigcup_{\beta < \alpha} f_{\beta}.$$
 (5)

We consider two cases. If $h_{\alpha} \in \operatorname{rng}(f_{\alpha}^{(0)})$, then define $f_{\alpha}^{(1)} = f_{\alpha}^{(0)}$. Otherwise we will choose $y_{\alpha} \in H$ such that $y_{\alpha} \notin \operatorname{dom}(f_{\alpha}^{(0)})$ and

$$u_i \notin L\left(\operatorname{rng}\left(f_{\alpha}^{(0)} + g_i\right) \cup \{g_i(y_{\alpha}) + h_{\alpha}\}\right) \text{ for } i \le n.$$
(6)

To choose y_{α} , observe that $g_i|H_1$ is an injection, and by (iv),

card
$$\left(L\left(\operatorname{rng}\left(f_{\alpha}^{(0)}+g_{i}\right)\left\{u_{i}\right\}\right)-h_{\alpha}\right)<2^{\omega}.$$

So the cardinality of the set

$$A_{\alpha,i} = (g_i|H_1)^{-1} \left(L \left(\operatorname{rng} \left(f_{\alpha}^{(0)} + g_i \right) \{ u_i \} \right) - h_{\alpha} \right)$$

is less than 2^{ω} . Therefore, the cardinality of $A_{\alpha} = H_1 \setminus \bigcup_{i=1}^n A_{\alpha,i}$ is equal to 2^{ω} . Take an arbitrary $y_{\alpha} \in A_{\alpha}$. Now the proof of (6) is analogous to the proof of condition (1) in Theorem 1.

Next let $f_{\alpha}^{(1)} = L_2(f_{\alpha}^{(0)} \cup \{(y_{\alpha}, h_{\alpha})\})$. If $h_{\alpha} \in \text{dom}(f_{\alpha}^{(1)})$, then put $f_{\alpha} = f_{\alpha}^{(1)}$. Otherwise choose

$$v_{\alpha} \in H \setminus \bigcup_{i=1}^{n} \left[L\left(\operatorname{rng}\left(f_{\alpha}^{(1)} + g_{i} \right) \cup \{u_{i}\} \right) - g_{i}(h_{\alpha}) \right]$$

and let $f_{\alpha} = L_2(f_{\alpha}^{(1)} \cup \{(h_{\alpha}, v_{\alpha})\})$. It can be seen that f_{α} fulfills conditions (i)–(iv).

290

Finally, let $f = \bigcup_{\alpha < 2^{\omega}} f_{\alpha}$. Because $H \subset \text{dom}(f), f \in \mathcal{A}dd$. Since ker $(f) \neq \{0\}$ and $H \subset \text{rng}(f)$, by Lemma 1, $f \in \mathcal{D}$.

Notice that $f + g_i \notin \mathcal{D}$ for each i = 1, ..., n. Indeed, fix arbitrary $i \leq n$. Then by (iii) $u_i \notin \operatorname{rng}(f+g_i)$. But conditions (4) and (i) imply that $\operatorname{rng}(f+g_i)$ is dense in \mathbb{R} . Thus $f + g_i \notin \mathcal{D}$.

Corollary 3 $\mathcal{M}_a(\mathcal{A}dd \cap \mathcal{D}) = \{0\}.$

PROOF. The inclusion " \supset " is obvious. To prove the inclusion " \subset " assume that $f \in \mathcal{M}_a(\mathcal{A}dd \cap \mathcal{D}) \setminus \{0\}$. Note that $f \in \mathcal{A}dd \cap \mathcal{D}$, because the constant function $g \equiv 0$ belongs to the class $\mathcal{A}dd \cap \mathcal{D}$. So, rng $(f) = \mathbb{R}$. By Theorem 2, $f + h \notin \mathcal{A}dd \cap \mathcal{D}$ for some $h \in \mathcal{A}dd \cap \mathcal{D}$. Hence $f \notin \mathcal{M}_a(\mathcal{A}dd \cap \mathcal{D})$, an impossibility. \Box

The importance of the assumptions in Theorem 1 is not clear. In particular, the following problem is open.

Problem 1 Assume CH and $\mathcal{G} = \{g_{\alpha} : \alpha < 2^{\omega}\}$ is a family of additive functions. Does there exists $f \in \mathcal{A}dd \cap \mathcal{D}$ such that $f + g_{\alpha} \notin \mathcal{D}$ for each α ?

References

- A. M. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97–102.
- [2] A. L. Cauchy, Cours d'analyse de l'Ecole Polytechnique, 1. Analyse algébrique, V., Paris, 1821.
- B. Kirchheim and T. Natkaniec, On universally bad Darboux functions, Real Analalysis Exch. 16 (1990–1991), 481–486.
- [4] P. Komjáth, A note on Darboux functions, Real Analalysis Exch. 18 (1992–93), 249–252.
- [5] M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, PWN Warszawa– Kraków–Katowice 1985.
- [6] T. Radaković, Über Darbouxsche und stetige Funktionen, Monat. Math. Phys. 38 (1931), 117–122.
- [7] J. Steprans, Sums of Darboux and continuous functions, Fund. Math. 146 (1995), 107–120.
- [8] R. Švarc, On the range of values of the sum of a continuous and a Darboux function, Čas. Pest. Mat. 98 (1973), 178–180, 213.