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ON CHARACTERIZING EXTENDABLE
CONNECTIVITY FUNCTIONS BY

ASSOCIATED SETS

Abstract

We answer two questions in [11]. We show that the class of extend-
able connectivity functions from I into I (I = [0, 1]) cannot be char-
acterized in terms of associated sets, and we show that one of Jones’
functions obeying f(x + y) = f(x) + f(y) is an example of an almost
continuous function from R into R which is not the uniform limit of any
sequence of extendable connectivity functions.

A class K of real-valued functions defined on an interval is characterized
by associated sets if there exists a family P of subsets of R such that f ∈ K
if and only if for every α ∈ R, the “associated” sets Eα(f) = {x : f(x) < α}
and Eα(f) = {x : f(x) > α} belong to P . For example, the family P of open
sets characterizes the class K of continuous functions.

A Darboux function f : I → I has the intermediate value property. A func-
tion f : I → I has the Weak Cantor Intermediate Value Property (WCIV P )
if for each subinterval (x, y) of I with f(x) 6= f(y), there exists a Cantor set C
in (x, y) such that f(C) lies between f(x) and f(y). A connectivity function
f : I → I or F : I2 → I obeys the property that the graph of its restriction to
each connected subset of its domain is a connected set. A connectivity func-
tion f : I → I is extendable if there exists a connectivity function F : I2 → I
such that F (x, 0) = f(x) for all x ∈ I. Each neighborhood of the graph of
an almost continuous function f : I → I in I × I contains the graph of a
continuous function from I into I. Similar definitions hold for R replacing I.

Of the above classes of functions, these have been shown by the following
to be not characterizable by associated sets:
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Darboux functions Bruckner [1]
connectivity functions Cristian and Tevy [3]
almost continuous functions Kellum [9]

We continue this pattern for extendable connectivity functions.

Theorem 1 The class K of extendable connectivity functions from I into I
cannot be characterized by associated sets.

Proof. Assume K is characterized by a family P of associated sets. It follows
from [12] or [2] that there exists an extendable connectivity function f : I → I
whose graph is dense in I2 and f(I) = (0, 1). By [11], there exists a dense
Gδ-subset A of (0, 1) that is f -negligible. This means that every function
from I into I obtained by arbitrarily redefining f on A is still an extendable
connectivity function. Therefore the function g : I → I defined by

g(x) =

{
f(x) if x ∈ I \A
0 if x ∈ A

belongs to K, and so E0(g) = {x ∈ I : g(x) > 0} = I \A ∈ P . As in [12], we
show that I \A is negligible for some extendable connectivity function. Since
I \A is of the first category, it follows from Lemma 3 in [10] that there exists a
homeomorphism h : I → I such that (I \A)∩h(I \A) = ∅. I \A ⊂ h−1(A) and
f ◦ h : I → (0, 1). According to Corollary 1 and Lemma 2 in [10], f ◦ h is an
extendable connectivity function, and h−1(A) is (f ◦ h)-negligible. Therefore
I \A is (f ◦ h)-negligible. Then the function φ : I → I defined by

φ(x) =

{
(f ◦ h)(x) if x ∈ A
0 if x ∈ I \A

belongs to K, and so E0(φ) = {x ∈ I : φ(x) > 0} = A ∈ P . Define the
function ψ : I → I by

ψ(x) =

{
0 if x ∈ A
1 if x ∈ I \A.

Then for every α ∈ R, Eα(ψ), Eα(ψ) ∈ P , yet ψ /∈ K, a contradiction. �

Theorem 2 The class K of uniform limits of sequences of extendable con-
nectivity functions fn : R→ R is not characterized by associated sets.
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Proof. Assume K is characterizable in terms of a family P of associated sets.
By [12] or [2], there exists an extendable connectivity function g : R→ R whose
graph is dense in R2. According to Theorem 1 in [11] which still holds there
for R replacing I, there exists a dense Gδ-subset A of R that is g-negligible.
We may suppose A∩ g−1(1/2) = ∅. Therefore g−1(1/2) = ∪∞i=1Ci, where each
Ci is nowhere dense in R and if i 6= j, then Ci ∩ Cj = ∅. Like Example 1 in
[11], for each positive integer n, define fn : R→ R by

fn(x) =

{
g(x) if x ∈ R \ ∪ni=1Ci
i+2
2i if x ∈ Ci and i = 1, 2, . . . , n

Then the sequence of extendable connectivity functions fn converges uniformly
to a function f : R → R with range R \ {1/2}. Then f ∈ K and so E1/2(f),
E1/2(f) ∈ P . Define a function h : R→ R by

h(x) =

{
1 if x ∈ E1/2(f)

0 if x ∈ E1/2(f).

Clearly, h cannot be a uniform limit of a sequence of Darboux functions, and so
h /∈ K. Yet for every α ∈ R, Eα(h), Eα(h) ∈ P , and so h ∈ K, a contradiction.
�

In [5], Gibson and Roush gave an example of a Darboux function f : I → R
which is not the uniform limit of a sequence of connectivity functions, and in
[6], Jastrzebski gave an example of a connectivity function f : I → R which
is not the uniform limit of a sequence of almost continuous functions. We
continue this trend with an example of an almost continuous function f : R→
R that is not the uniform limit of any sequence of extendable connectivity
functions. We prove two preliminary results.

Theorem 3 There exists a function f : R→ R obeying f(x+y) = f(x)+f(y)
that is almost continuous but does not have the WCIV P .

Proof. Jones constructed a function f : R → R such that f(x + y) =
f(x) + f(y) and such that its graph intersects every perfect subset P of R2

with x-projection π1(P ) having c-many points [7]. Kellum showed it was
almost continuous [8].

Suppose x < y, f(x) 6= f(y), and C is an arbitrary Cantor set between
x and y. By construction, f meets the perfect subset C × {f(x)} of R2, and
so f(C) does not lie between f(x) and f(y). Therefore f does not have the
WCIV P . �
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According to [4], an extendable connectivity function has the WCIV P .
Therefore the example given by Theorem 3 is not an extendable connectivity
function.

Theorem 4 The uniform limit f of a sequence of extendable connectivity
functions fn : R→ R has the WCIV P .

Proof. Suppose x < y and f(x) 6= f(y). Choose x1 and y1 such that
x < x1 < y1 < y, f(x1) 6= f(y1), and f(x1) and f(y1) lie between f(x) and
f(y). We may suppose f(x) < f(x1) < f(y1) < f(y). Let

ε = (1/2) min{f(x1)− f(x), f(y)− f(y1), f(y1)− f(x1)} .

There is an integer N such that for every n ≥ N and for every z ∈ R, |f(z)−
fn(z)| < ε. Since fN (x1) 6= fN (y1), there exists a Cantor set C ⊂ (x1, y1) such
that fN (C) ⊂ (fN (x1), fN (y1)). Then C ⊂ (x, y) and f(C) ⊂ (f(x), f(y)).
This shows f has the WCIV P . �

Since Jones’ function f in Theorem 3 does not have the WCIV P , then
according to Theorem 4, f cannot be the uniform limit of a sequence of ex-
tendable connectivity functions. This proves the following result.

Theorem 5 There exists an almost continuous function f : R → R that is
not the uniform limit of a sequence of extendable connectivity functions from
R into R.
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