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A CHARACTERIZATION THEOREM FOR
THE EXISTENCE OF A HELLINGER-TYPE

INTEGRAL

Abstract

Suppose that a < b and each of h and m is a real-valued function
defined on [a; b] with m nondecreasing such that if [p; q] ⊆ [a; b] and
m|qp = 0, then h|qp = 0. There are developed, among other things,
necessary and sufficient conditions in order that for each real-valued
function f defined and quasi-continuous on [a; b], the Hellinger — type
integral ∫

[a;b]

dfdh

dm

exists. As is well known, this integral has arisen in connection with,
among other things, representation theorems for certain classes of con-
tinuous linear functionals.

1 Introduction

Suppose that a < b. Previous authors [3], [5], [6], [7] have treated the repre-
sentation of the elements of particular classes of linear functionals, complex-
valued, defined on the space of complex-valued functions quasi-continuous on
[a; b], and satisfying certain continuity conditions. In certain of these investi-
gations, a Hellinger [2]-type integral, a limit of sums for subdivison refinement
(see below and Section 2), ∫

[a;b]

dfdh

dm

has arisen, where f belongs to the aforementioned space, and h and m are
special real-valued functions defined on [a; b] with m nondecreasing.
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The existence of a Hellinger-type Integral 237

We shall confine our attention in this paper to real-valued functions and
pursue an existence characterization question that arises naturally in con-
nection with the above integral. We develop results that, among other things,
imply Theorem 1.1, which we state below following some preliminary remarks.

In order to make matters in this section more accessible and explicit, we
digress and give some preliminary material, mainly definitions, that ordinarily
would be in the initial part of Section 2. We label such things accordingly.

We adopt the convention that if each of x and y is in R, then x
y = 0 if

y = 0, and has the usual meaning otherwise.

Definition 2.1 Suppose that u < v. Then:
1) R[u; v] is the set of all functions f such that [u; v] ⊆ Dom(f) and

Rng(f) ⊆ R.
2) RSI[u; v] is the set of all functions A such that {[p; q] : u ≤ p < q ≤ v}

⊆ Dom(A) and Rng(A) ⊆ R.
3) exp(R)SI[u; v] is the set of all functions A such that {[p; q] : u ≤ p <

q ≤ v} ⊆ Dom(A) and Rng(A) ⊆ exp (R).
4) C[u; v] is the set of all elements of R[u; v] continuous on [u; v].
5) C0[u; v] is the set of all elements f of C[u; v] for which f(u) = 0.
6) BV[u; v] is the set of all elements of R[u; v] having bounded variation on

[u; v].
7) if m is in R[u; v] and is nondecreasing on [u; v], then Lip(m)[u; v] is the

set of all elements h of R[u; v] such that for some K ≥ 0, if u ≤ p < q ≤ v,
then |h(q)− h(p)| ≤ K(m(q)−m(p)).

Definition 2.2 Suppose that u < v. Then:
1) The statement that D is a subdivision of [u; v] means that D is a finite

collection of nonoverlapping intervals whose union is [u; v].
2) If E is a subdivision of [u; v], then the statement that H is a refinement

of E, written, when appropriate as “H � E” means that H is a subdivision
of [u; v] such that each element of H is a subset of some element of E.

Definition 2.3 Suppose that α is a function whose range is a collection of
sets. The statement that b is an α-function on S means that b is a function,
Dom(b) = S ⊆ Dom(α), and for each x in S, b(x) is in α(x).

Definition 2.4 Suppose that u < v and α is in exp (R)SI[u; v]. The statement
that K is an integral of α on [u; v] means that K is in R, and if 0 < c, then
there is D � {[a; b]} such that if E � D and b is an α-function on E, then∣∣∣K −∑

E

b(I)
∣∣∣ < c.

Basic Uniqueness Assertion and Notation. Given the setting of Defi-
nition 2.4, if each of K1 and K2 is an integral of α on [u; v], then K1 = K2;
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this element of R shall be called the integral of α on [u; v] and shall be denoted
by
∫
[u;v]

α(I) or
∫
[u;v]

α, depending on circumstances. We also adopt the con-

vention that the statement “
∫
[u;v]

α(I) exists” or “
∫
[u;v]

α exists” shall mean

that some K is the integral of α on [u; v].

Finite Additivity Fact. Suppose that s ≤ p < q < r ≤ t and α is in
exp (R)SI[s; t]. If each of

∫
[p;q]

α and
∫
[q;r]

α exists, then
∫
[p;r]

α exists and is∫
[p;q]

α+
∫
[q;r]

α.

Our discussion of further basic properties of subdivisions, sums and inte-
grals will be continued in Section 2.

We resume our introduction with the theorem, mentioned above, that sum-
marizes and follows from the main separate results of this paper. Note, with
regard to statement 5), the roll of convexity.

Theorem 1.1 Suppose that each of h and m is a real-valued function defined
on [a; b] with m nondecreasing and that if a ≤ p < q ≤ b and m(q)−m(p) = 0,
then h(q)− h(p) = 0. The following four statements are equivalent:

1) If f is a real-valued function defined and quasi-continuous on [a; b], then∫
[a;b]

dfdh

dm

exists (see Section 2 for our division convention as well as the notions and
notations below),

2) If f is a real-valued function defined and quasi-continuous on [a; b], then
for some subdivision D of [a; b], K ≥ 0, and every refinement E of D,∣∣∣∣∣∑

E

(f(q)− f(p))(h(q)− h(p))

m(q)−m(p)

∣∣∣∣∣ ≤ K,
3) If f is a real-valued function defined and continuous on [a; b], then for

some subdivision D of [a; b], K ≥ 0, and every refinement E of D,∣∣∣∣∣∑
E

(f(q)− f(p))(h(q)− h(p))

m(q)−m(p)

∣∣∣∣∣ ≤ K,
4) h is in Lip (m)[a; b] and “has bounded difference quotient variation with

respect to m on [a; b]”, i.e., for some M ≥ 0, nondegenerate subdivision D of
[a; b] and each refinement E of D,∑

Eo

∣∣∣∣ h(q)− h(p)

m(q)−m(p)
− h(q′)− h(p′)

m(q′)−m(p′)

∣∣∣∣ ≤M,
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where [a; y] is in E, Eo = E−{[a; y]} and for each [p; q] in Eo, [p′; q′] is in E
and q′ = p, and

5) there are f1 and f2, each in Lip (m)[a; b], such that:
a) if a ≤ x ≤ b, then f1(x)− f2(x) = h(x)− h(a),
b) if i = 1, 2, then

i) for some Mi ≥ 0, nondegenerate subdivision Di of [a; b] and each
refinement E of Di,∑

Eo

∣∣∣∣ fi(q)− fi(p)m(q)−m(p)
− fi(q

′)− fi(p′)
m(q′)−m(p′)

∣∣∣∣ ≤Mi,

notation as in 4) above, and
ii) if i = 1, 2, then fi is “m convex upward on [a; b]”, i.e., if a ≤ t <

u ≤ w < v ≤ b and 0 < min{m|ut ,m|vw}, then

fi(u)− fi(t)
m(u)−m(t)

≤ fi(v)− fi(w)

m(v)−m(w)
.

Now, it is obvious that in Theorem 1.1, 1) immediately implies 2) and 2)
immediately implies 3). So the pattern that we will follow will be to show
that 3) implies 4), 4) implies 1), 4) implies 5) and 5) implies 4). Accordingly,
in Sections 3, 4 and 5, respectively, we prove Theorems 3.3, 4.8, and 5.4,
stated below; clearly, the first of these is a generalization of the assertion that
3) implies 4), the second states that 4) implies 1), and the third states the
equivalence of 4) and 5).

Theorem 3.3 Suppose that a < b and A is a real-valued function defined on
the set of subintervals of [a; b] such that if f is a real-valued function defined
and continuous on [a; b], then there is a subdivision D of [a; b] such that{∑

E

(f(q)− f(p))A[p; q] : E a refinement of D

}

is bounded. Then there is a nondegenerate subdivision H of [a; b] and M ≥ 0
such that if E is a refinement of H, [a; r] is in E, Eo = E − {[a; r]}, and for
each [p; q] in Eo, [p′; q′] is in E and q′ = p, then∑

Eo

|A[p; q]−A[p′; q′]| ≤M,

and if [p; q] is in E, then

|A[p; q]| ≤M.
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Theorem 4.8 Suppose that a < b, each of h, m, and w is a real-valued
function defined on [a; b], M ≥ 0, w is quasi-continuous on [a; b], m is nonde-
creasing on [a; b], h is in Lip(m)[a; b] and for some nondegenerate subdivision
D of [a; b], for each refinement E of D (see Theorem 3.3 above for notation)∑

Eo

∣∣∣∣ h(q)− h(p)

m(q)−m(p)
− h(q′)− h(p′)

m(q′)−m(p′)

∣∣∣∣ ≤M.

Then ∫
[a;b]

dw dh

dm

exists.

Theorem 5.4 Suppose that a < b, each of h and m is a real-valued func-
tion defined on [a; b] with m nondecreasing on [a; b]. Then the following two
statements are equivalent:

1) h is in Lip (m)[a; b] and, for some M ≥ 0, nondegenerate subdivision D
of [a; b] and each refinement E of D,∑

Eo

∣∣∣∣ h(q)− h(p)

m(q)−m(p)
− h(q′)− h(p′)

m(q′)−m(p′)

∣∣∣∣ ≤M,

where [a; y] is in E, Eo = E−{[a; y]} and for each [p; q] in Eo, [p′; q′] is in E
and q′ = p.

2) There are f1 and f2, each in Lip (m)[a; b], such that
a) if a ≤ x ≤ b, then f1(x)− f2(x) = h(x)− h(a),
b) if i = 1, 2, then

i) for some Mi ≥ 0, nondegenerate subdivision Di of [a; b] and each
refinement E of Di,∑

Eo

∣∣∣∣ fi(q)− fi(p)m(q)−m(p)
− fi(q

′)− fi(p′)
m(q′)−m(p′)

∣∣∣∣ ≤Mi,

notation as in 1) above, and
ii) if i = 1, 2, then fi is “m convex upward on [a; b]”, i.e., if a ≤ t <

u ≤ w < v ≤ b and 0 < min{m|ut ,m|vw}, then

fi(u)− fi(t)
m(u)−m(t)

≤ fi(v)− fi(w)

m(v)−m(w)
.

We end this section with the remark that Theorem 1.1, some fairly simple
integral equivalence results, a continuous function approximation theorem and
integration by parts lead to a proof of the “classic” form of the Riesz Represen-
tation Theorem that does not require the use of certain well-known theorems
of Helly. Space limitations preclude our inclusion of this development.
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2 Preliminary Theorems and Definitions

We now resume our discussion of preliminary matters begun in the introduc-
tion.

Definition 2.5 Suppose that u < v and α is in exp (R)SI[u; v]. If u ≤ p <
q ≤ v, then the statement that α is

∑
-bounded on [p; q] with respect to D

means that D � {[u; v]} and{∑
E

b(I) : E � {[p; q]}, E ⊆ H � D

}

is bounded; furthermore,

LD(α)[p; q] and GD(α)[p; q]

denote, respectively, the sup and inf of the above mentioned set.

Theorem 2.A.1 Suppose that u < v, α is in exp (R)SI[u; v], u ≤ p < q ≤ v
and α is

∑
-bounded on [p; q] with respect to D (we omit the subscript for L

and G in the assertions that follow). Then:
1) If p ≤ r < s ≤ q, then α is

∑
-bounded on [r; s] with respect to D.

2) If D3 � D1 � {[p; q]} and D3 � D2 � {[p; q]}, then∑
D1

G(α)(I1) ≤
∑
D3

G(α)(I3) ≤
∑
D3

L(α)(I3) ≤
∑
D2

L(α)(I2),

so that the following integrals exist and the following inequality holds:∫
[p;q]

G(α) ≤
∫
[p;q]

L(α).

3)
∫
[p;q]

α exists iff
∫
[p;q]

G(α) =
∫
[p;q]

L(α),, in which case∫
[p;q]

G(α) =

∫
[p;q]

α =

∫
[p;q]

L(α).

We now state a theorem which is essentially Kolmogoroff’s [4] Differential
Equivalence Theorem for the setting of this paper.

Theorem 2.K.1 Suppose that u < v, α is in exp (R)SI[u; v], u ≤ p < q ≤ v
and

∫
[p;q]

α exists. Then:

1) if p ≤ r < s ≤ q, then
∫
[r;s]

α exists, and
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2) the following existence and equality assertion holds:∫
[p;q]

∣∣∣∣α(I)−
∫
I

α

∣∣∣∣ = 0,

i.e., if 0 < c, then there is D � {[p; q]} such that if E � D and b is an
α-function on E, then ∑

E

∣∣∣∣b(I)−
∫
I

α

∣∣∣∣ < c.

We now discuss some integral existence and equivalence properties that
shall use in Section 4 (also see [1]).

Theorem 2.A.2 The following statements are true:
1) Suppose that each of β and γ is in RSI[a; b] and is interval-wise additive

on [a; b], i.e., if δ is β or γ and a ≤ p < q < r ≤ b, then δ[p; q]+δ[q; r] = δ[p; r].
The following statements hold:
a) If a ≤ u < v ≤ b and for i = 1, 2, E � D � {[u; v]}, then∑

E1

min{β(J), γ(J)} ≤
∑
D

min{β(I), γ(I)}

≤
∑
D

max{β(I), γ(I)} ≤
∑
E2

max{β(J), γ(J)}.

b) From a) it follows that if a ≤ u < v ≤ b, then
∫
[u;v]

min{β, γ} exists iff

{
∑

H min{β(J), γ(J)} :H � {[u; v]}} is bounded below, and
∫
[u;v]

max{β, γ}
exists iff {

∑
H max{β(J), γ(J)} :H � {[u; v]}} is bounded above.

2) If a ≤ u < v ≤ b, each of A and B is in exp (R)SI[u; v], each of
∫
[u;v]

A

and
∫
[u;v]

B exists and Q is max or min, then, by Theorem 2.K.1, (see [1]

again) ∫
[u;v]

∣∣∣∣Q{A(I), B(I)} −Q
{∫

I

A,

∫
I

B

}∣∣∣∣ = 0,

so that if u ≤ p < q ≤ v, then∫
[p;q]

Q{A(I), B(I)} exists iff

∫
[p;q]

Q

{∫
I

A,

∫
I

B

}
exists,

in which case equality holds.
3) From 2) it follows that if a ≤ u < v ≤ b and C is in exp (R)SI[u; v] and∫

[u;v]
C exists, then ∫

[u;v]

∣∣∣|C(I)| −
∣∣∣∫

I

C
∣∣∣∣∣∣ = 0,
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so that if u ≤ p < q ≤ v, then∫
[p;q]

|C(I)| exists iff

∫
[p;q]

∣∣∣∫
I

C
∣∣∣ exists ,

in which case equality holds.
4) From 1b) it follows that if β and γ are further such that if δ is β or

γ, then {
∑

H |δ(J)| : H � {[u; v]}} is bounded and Q is max or min, then∫
[u;v]

Q{β, γ} exists.

3 Consequences of Certain Kinds of Σ-boundedness

In this section we prove Theorem 3.5, as stated in the introduction

Notation. (the usual ∆-notation) If r < s and z is a real-valued function
defined on [r; s] = I, then ∆Iz = z(s)− z(r).

Theorem 3.1 Suppose that a < b, A is in RSI[a; b] and for each f in C[a; b]
there is D � [a; b] such that{∑

E

∆IfA(I) : E � D

}
is bounded. It follows that if a < w ≤ b, then for some u such that a ≤ u < w,
{A[v;w] : u ≤ v < w} is bounded, and if a ≤ w < b, then for some v such that
w < v ≤ b, {A[w; y] : w < y ≤ v} is bounded.

Proof. We show the first part of the conclusion; the second part follows
similarly.

Suppose the contrary. Then, for some increasing sequence {uk}∞k=1 of num-
bers of [a;w], un → w and |A[un;w]| → ∞, n→∞. There are subsequences,
{pi}∞i=1 and {qi}∞i=1 of {uk}∞k=1 such that for all i, pi < qi < pi+1 < qi+1 and
for all n in P,∣∣∣A[pn+1;w]

∞∑
j=n+1

2−j
∣∣∣ > n+ 1 +

n∑
i=1

∣∣A[pi; qi]2
−i∣∣ .

There is an element g of C[a; b] such that for all m in P,

g(x) =


∑∞

j=1 2−j if a ≤ x ≤ p1,∑∞
j=m 2−j if x = pm,∑∞
j=m+1 2−j if qm ≤ x ≤ pm+1,

0 if w ≤ x ≤ b.
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Now, suppose that D � {[a; b]} and 0 < K. There is E � D such that
for some n∗ in P, [pn∗ ;w] is in E. There is W in P such that

W > max
{
n∗ + 1,K +

∣∣∣ ∑
E−{[pn∗ ;w]}

A(I)∆Ig
∣∣∣}

Let

H = (E − {[pn∗ ;w]}) ∪ {[pn∗ ; qn∗ ], [qn∗ ; pn∗+1], [pn∗+1; qn∗+1], . . . , [pW ;w]}

Then H � E and∣∣∣∑
H

A(I)∆Ig
∣∣∣

=
∣∣∣A[pW ;w]

∞∑
j=W

(−2−j) +

W−1∑
i=n∗

A[pi; qi](−2−i) +
∑

E−{[pn∗ ;w]}

A(I)∆Ig
∣∣∣

≥
∣∣∣A[pW ;w]

∞∑
j=W

2−j
∣∣∣−W−1∑

i=n∗

∣∣∣A[pi; qi]2
−i
∣∣∣− ∣∣∣ ∑

E−{[pn∗ ;w]}

A(I)∆Ig
∣∣∣

> W +

W−1∑
i=1

∣∣A[pi; qi]2
−i∣∣−W−1∑

i=n∗

∣∣A[pi; qi]2
−i∣∣− ∣∣∣ ∑

E−{[pn∗ ;w]}

A(I)∆Ig
∣∣∣

≥W −
∣∣∣ ∑
E−{[pn∗ ;w]}

A(I)∆Ig
∣∣∣ > K,

a contradiction.
Therefore the conclusion of the theorem is true. �

Notational device. If, in a given discussion, an expression of substantial
complexity is to be written more than once, it will be enclosed in brackets
and a subscript affixed; thereafter only the brackets with subscript need be
written.

Theorem 3.2 Suppose the hypothesis of Theorem 3.1. Then there is D �
{[a; b]} such that {A(I) : I in H � D} is bounded.

Proof. Suppose the contrary. Then there is a set, M , such that x is in M iff
a < x ≤ b and if D � {[a;x]}, then {A(I) : I in H � D} is unbounded. Let
z denote infM . a ≤ z and z is in M or not.

Suppose that z is in M . Then a < z. Suppose that a < y < z. Then there
is E � {[a; y]} such that {A(I) : I in H � E} is bounded. Suppose that
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P � {[y; z]}. Since {A(I) : I in H � E ∪ P} is unbounded, it follows that
{A(I) : I in H � P} is unbounded.

Suppose that z is not in M . Then z < b. Suppose that z < y < b. There is
t in M such that t < y. z < t < y. If D � {[a; t]}, then {A(I) : I in H � D}
is unbounded. If z = a, then, if D � {[z; t]}, then {A(I) : I in H � D}
is unbounded. So suppose that a < z. Then there is E � {[a; z]} such
that {A(I) : I in H � E} is bounded. Suppose that Q � {[z; t]}. Then
{A(I) : I in H � E ∪ Q} is unbounded, so that {A(I) : I in H � Q} is
unbounded, so that if P � {[z; y]}, then {A(I) : I in H � P} is unbounded.

Therefore there is z in [a; b] such that either:
i) z < b and if z < y < b and D � {[z; y]}, then {A(I) : I in H � D} is

unbounded, or
ii) a < z and if a < y < z and D � {[y; z]}, then {A(I) : I in H � D} is

unbounded.
We shall assume i); the conclusion of the theorem follows from ii) similarly.

Now, it follows from Theorem 3.1 that there is K∗ ≥ 0 and s such that z < s ≤
b such that if z < r ≤ s, then |A[z; r]| ≤ K∗. Now, suppose that K∗ < K ′,
z < t ≤ s and D � {[z; t]}. Since {A(I) : I in H � D} is unbounded, it
follows that for some [p; q] ⊆ some element W of D, K ′ < |A[p; q]|. Clearly
p 6= z, so z < p < q ≤ t.

It follows that there is a sequence {[pi; qi]}∞i=1 of intervals such that for all
i in P,

z < pi+1 < qi+1 ≤ pi < qi ≤ s, qn → z, n→∞,

and for all n, ∣∣∣2−(n+1)A[pn+1; qn+1]
∣∣∣ > n+

n∑
i=1

∣∣2−iA[pi; qi]
∣∣ .

Routine considerations tell us that there is an element g of C[a; b] such that if
i is in P, then

g(qi)− g(pi) = 2−i and g(pi)− g(qi+1) = 0.

Now, suppose that D � {[a; b]} and 0 < K. There is E � D such that for
some n∗ in P, [z; qn∗ ] is in E. There is W in P such that

W >n∗ + 1 and W > K

+K∗ sup {|∆Ig| : I subinterval of [a; b]}+
∣∣∣ ∑
E−{[z;qn∗ ]}

A(I)∆Ig
∣∣∣.

Let
H = (E − {[z; qn∗ ]}) ∪ {[z; pW ], [pW ; qW ], . . . , [pn∗ ; qn∗ ]}.
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Clearly H � E and

∣∣∣∑
H

A(I)∆Ig
∣∣∣

=
∣∣∣A[z; pW ]∆[z;pW ]g +

W∑
i=n∗

A[pi; qi]2
−i +

∑
E−{[z;qn∗ ]}

A(I)∆Ig
∣∣∣

=
∣∣∣A[pW ; qW ]2−W +

W−1∑
i=n∗

A[pi; qi]2
−i +A[z; pW ]∆[z;pW ]g

+
∑

E−{[z;qn∗ ]}

A(I)∆Ig
∣∣∣

≥
∣∣A[pW ; qW ]2−W

∣∣−W−1∑
i=n∗

∣∣A[pi; qi]2
−i∣∣− |A[z; pW ]|

∣∣∆[z;pW ]g
∣∣

−
∣∣∣ ∑
E−{[z;qn∗ ]}

A(I)∆Ig
∣∣∣

>W +

W−1∑
i=1

∣∣A[pi; qi]2
−i∣∣−W−1∑

i=n∗

∣∣A[pi; qi]2
−i∣∣

−K∗ sup {|∆Ig| : I subinterval of [a; b]} −
∣∣∣ ∑
E−{[z;qn∗ ]}

A(I)∆Ig
∣∣∣

>K +
[
K∗ sup {|∆Ig| : I subinterval of [a; b]}+

∣∣∣ ∑
E−{[z;qn∗ ]}

A(I)∆Ig
∣∣∣]

1

− [ ]1 = K,

a contradiction of the hypothesis.
Therefore the conclusion of the theorem is true. �

Before continuing, we introduce some notation and make some elementary
observations.

Definition 3.1 Suppose that u < v, D � {[u; v]} and D contains two ele-
ments. Then LD denotes [u; t] in D, RD denotes [w; v] in D, for each [p; q] in
D not LD, [p′; q′] denotes [l; p] in D, and Do = D − {LD}.

Definition 3.2 Assume the setting of Definition 3.1, h is in R[u; v], B is a
real-valued function defined on D, and G is a function from R into R. Then∑

Do hG(∆B) denotes
∑

Do h(p)G(B[p; q]−B[p′; q′]).
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Observation 3.1 Suppose that k < l < m, D1 � {[k; l]}, D2 � {[l;m]}, D1

and D2 each contain two elements, h is in R[k;m], B is a real-valued function
defined on D1 ∪D2, and G is a function from R into R. Then

∑
[D1∪D2]o

hG(∆B) =
∑
Do

1

hG(∆B) + h(l)G(B(LD2
)−B(RD1

)) +
∑
Do

2

hG(∆B).

Observation 3.2 Assume the setting of Definition 3.2. Then

∑
D

[h(q)− h(q)]B[p; q] = h(v)B(RD)− h(u)B(LD)−
∑
Do

h∆B.

Theorem 3.3 Suppose the hypothesis of Theorem 3.1. Then there is D �
{[a; b]} such that D contains two elements and

{∑
Eo |∆A| : E � D

}
is

bounded.

Proof. From Theorem 3.2 it follows that there is K∗ ≥ 0 and D∗ � {[a; b]}
such that if I is in H � D∗, then |A(I)| ≤ K∗. Suppose that the conclusion
is not true. Then there is a set M such that x is in M iff a < x ≤ b and
if D � {[a;x]} and D contains two elements, then

{∑
Eo |∆A| : E � D

}
is

unbounded. Note that if x is in M and x < y ≤ b, then y is in M . Let z
denote inf M . a ≤ z, and z is in M or not.

Suppose that z is not in M . Then z < b. Suppose that z < y < b. There is
x in M such that z < x < y, so that y is in M . Therefore, if D � {[a; y]} and
contains two elements, then {

∑
Eo |∆A| : E � D} is unbounded. If z = a,

then, if D � {[a; y]} and contains two elements, then {
∑

Eo |∆A| : E � D}
is unbounded.

So, still supposing that z is not in M , suppose that a < z. Then there
is P � {[a; z]} such that P contains two elements and {

∑
Eo |∆A| : E �

P} is bounded. Suppose that Q � {[z; y]}. There is P ′ � P such that
P ′ ⊆ H ′ � D∗, and there is Q′ � Q such that Q′ ⊆ H ′′ � D∗. Now,{∑

W o |∆A| : W � P ′ ∪ Q′
}

is unbounded. There is K∗∗ ≥ 0 such that if
H � P ′, then

∑
Ho |∆A| ≤ K∗∗. Suppose that 0 < K. There is W � P ′ ∪Q′

such that
∑

W o |∆A| > K +K∗∗ + 2K∗. Let

W1 = {I : I in W , I ⊆ J in P ′} and W2 = {I : I in W , I ⊆ J in Q′} .
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Clearly, W1 � P ′ � P , W2 � Q′ � Q, and W1 ∪W2 = W . We see that∑
W o

2

|∆A| =
∑
W o

2

|∆A|+ |A(LW2)−A(RW1)| − |A(LW2)−A(RW1)|

+
∑
W o

1

|∆A| −
∑
W o

1

|∆A|

=
∑
W o

|∆A| − |A(LW2)−A(RW1)| −
∑
W o

1

|∆A| > K +K∗∗ + 2K∗

− 2K∗ −K∗∗ = K.

Therefore
{∑

Eo |∆A| : E � Q
}

is unbounded.

Now, suppose that z is in M . Then a < z. Suppose that a < y < z. y
is not in M , so that there is P � {[a; y]} such that

{∑
Ho |∆A| : H � P

}
is bounded. Suppose that Q � {[y; z]}. There is P ′ � P such that P ′ ⊆
H ′ � D∗ and there is Q′ � Q such that Q′ ⊆ H ′′ � D∗.

{∑
W o |∆A| : W �

P ′ ∪Q′
}

is unbounded. Except for what amounts to the interchange of y and
z, the rest of this portion of the argument proceeds as in the above paragraph,
and we again have the conclusion that

{∑
Eo |∆A| : E � Q

}
is unbounded.

Therefore, either:

i) a ≤ z < b and if z < y < b and D � {[z; y]}, then
{∑

No |∆A| : N � D
}

is unbounded, or

ii) a < z ≤ b and if a < y < z and D � {[y; z]}, then
{∑

No |∆A| : N �
D
}

is unbounded.

We shall assume ii); the conclusion of the theorem for i) follows similarly.
There is D′ � D∗ such that for some w < z, [w; z] is in D′. Now, suppose
that 0 < K ′ and w ≤ t < z. There is H � {[t; z]} such that H has at least
two elements and ∑

Ho

|∆A| > K ′ + 2K∗.

Now,

max {|A(LH)|, |A(RH)|} ≤ K∗,

so H has at least three elements. So

K ′ + 2K∗ <
∑
Ho

|∆A| =
[ ∑
Ho−{RH}

|∆A|
]
1

+ |A[l; z]−A[l′; l]| ≤ [ ]1 + 2K∗,

so that

K ′ <
∑

Ho−{RH}

|∆A|.
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It therefore follows that there is a sequence {[pj ; qj ]}∞j=1 of subintervals of
[w; z] and for each j in P, a subdivision Qj of [pj ; qj ] containing at least two
elements such that:

i) For all n in P, qn = pn+1 → z, n→∞.
ii) For all n in P,

(n+ 1)
[ n∑
j=1

[∑
Qj

2|A[r; s]|
]

+ n
]
<
∑
Qo

n+1

|∆A|,

so that
n∑

j=1

[∑
Qj

2|A[r; s]|
]

+ n <
1

n+ 1

∑
Qo

n+1

|∆A|.

There is an element g of C[a; b] such that Rng(g) ⊆ [−1; 1] and for each n
in P and [r; s] in Qo

n,

g(r)(A[r; s]−A[r′; s′]) =
1

n
|A[r; s]−A[r′; s′]|.

Suppose that 0 < K and D � {[a; b]}. There is D′ � D such that D′ � D∗

and for some N in P such that N > 1, [pN ; z] is in D′. Let E′ = D′−{[pN ; z]}.
There is N∗ in P such that

N∗ > N + 1 +K + 4K∗ + 2
∑
E′

|A[r; s]|.

Let
E′′ = E′ ∪

[
∪N

∗

j=NQj

]
∪ {[qN∗ ; z]} .

Clearly, E′′ � D′. Now,∣∣∣∑
E′′

(g(s)− g(r))A[r; s]
∣∣∣

=
∣∣∣∑
E′

(g(s)− g(r))A[r; s] +

N∗−1∑
j=N

∑
Qj

(g(s)− g(r))A[r; s]

+
∑
QN∗

(g(s)− g(r))A[r; s] + (g(z)− g(qN∗))A[qN∗ ; z]
∣∣∣

≥
∣∣∣∑
QN∗

(g(s)− g(r))A[r; s]
∣∣∣− ∣∣∣∑

E′

(g(s)− g(r))A[r; s]
∣∣∣

−
N∗−1∑
j=N

∑
Qj

|(g(s)− g(r))||A[r; s]| − |g(z)− g(qN∗)||A[qN∗ ; z]|
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≥
∣∣∣∑
QN∗

(g(s)− g(r))A[r; s]
∣∣∣− [2∑

E′

|A[r; s]|+
(N∗−1∑

j=N

∑
Qj

2|A[r; s]|
)

+ 2|A[qN∗ ; z]|
]
2

=
∣∣∣g(qN∗)A(RQN∗ )− g(pN∗)A(LQN∗ )−

∑
Qo

N∗

g∆A
∣∣∣− [ ]2

≥
∣∣∣∑
Qo

N∗

g∆A
∣∣∣−K∗ −K∗ − [ ]2

=
(∑
Qo

N∗

( 1

N∗

)
|∆A|

)
−K∗ −K∗ − [ ]2

>

N∗−1∑
j=1

[∑
Qj

2|A[r; s]|
]

+N∗ − 1− 2K∗ − 2
∑
E′

|A[r; s]|

−
N∗−1∑
j=N

[∑
Qj

2|A[r; s]|
]
− 2K∗

≥
N∗−1∑
j=N

[∑
Qj

2|A[r; s]|
]

+ 1 +K + 4K∗ + 2
∑
E′

|A[r; s]|

− 1− 2K∗ − 2
∑
E′

|A[r; s]| −
N∗−1∑
j=N

[∑
Qj

2|A[r; s]|
]
− 2K∗ = K,

a contradiction of the hypothesis.

Therefore the conclusion of the theorem holds. �

4 Some Limit Consequences of the Boundedness of Cer-
tain Sum Collections and an Integral Existence Asser-
tion

The main theorem of this section is Theorem 4.8, as stated in the introduction.

Theorem 4.1 Suppose that a < b, A is an element of RSI[a; b], D is a non-
degenerate subdivision of [a; b], 0 ≤M and if E � D, then∑

Eo

|A[p; q]−A[p′; q′]| ≤M.
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Then there are elements r∗ and l∗ of R[a; b] such that if a < x ≤ b, then
A[w; s] → l∗(x) as w → x, for a ≤ w < s < x, and if a ≤ x < b, then
A[w; s]→ r∗(x) as s→ x, for x < w < s ≤ b.

Proof. Clearly, it is sufficient to show convergence. We treat the case of
a < x ≤ b; the other case holds in a similar fashion. Suppose the contrary
convergence assumption. There is [u; v] in D such that u < x ≤ v. It follows
from routine completeness considerations that there is K < 0 such that if
u ≤ t < z < x, then for some [i; j] for which z < i < j < x, |A[t; z] −
A[i; j]| ≥ K. There is N in P such that N > M

K . It follows that there is a

sequence {[vk;wk]}N+1
k=1 of subintervals of [u;x] such that for all k in P such

that 1 ≤ k ≤ N , wk ≤ vk+1 and

N∑
k=1

|A[vk+1;wk+1]−A[vk;wk]| > NK > M,

Clearly, there is H � {[u;x]} such that {[vk;wk] : k = 1, . . . , N + 1} ⊆ H,
and there is E � D such that H ⊆ E, so that∑

Eo

|A[p; q]−A[p′; q′]| ≥
∑
Ho

|A[p; q]−A[p′; q′]|

≥
N∑

k=1

|A[vk+1;wk+1]−A[vk;wk]| > M ;

this contradiction establishes the theorem. �

Theorem 4.2 Suppose that a < b and each of h and m is an element of
R[a; b] such that:

1. m is nondecreasing on [a; b].
2. For some W > 0, |∆h| ≤W |∆m| for all subintervals of [a; b]
3. If A is an element of RSI[a; b] such that for each [p; q] ⊆ [a; b],

A[p; q] =
h(q)− h(p)

m(q)−m(p)
,

then A satisfies the hypothesis of Theorem 4.1.
Then, there are elements l and r of R[a; b] such that if a < x ≤ b, then

A[w;x] → l(x) as w → x, for a ≤ w < x, and if a ≤ x < b, then A[x;w] →
r(x) as w → x for x < w ≤ b.

Proof. Again, we need only to show convergence. We treat a < x ≤ b;
the other case follows in a similar fashion. As is well-known, h and m are
quasi-continuous on [a; b].
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Either m(x)−m(x−) = 0 or not. If not, then

h(w)− h(x)

m(w)−m(x)
→ h(x−)− h(x)

m(x−)−m(x)
as w → x, for a ≤ w < x.

Now, if for some y such that a ≤ y < x, m(x)−m(y) = 0, then for all w in
[y;x), m(x)−m(w) = 0, so by statement 2) of the hypothesis, h(x)−h(w) = 0,

so h(x)−h(w)
m(x)−m(w) = 0, so A[w;x]→ 0 as w → x, a ≤ w < x.

So now suppose that m(x) − m(x−) = 0 and that if a ≤ y < x, then
m(x) − m(y) 6= 0. Suppose that 0 < c. By Theorem 4.1 there is t in [a;x)
such that if t ≤ p < q < x, then, with reference to Theorem 4.1,

|l∗(x)−A[p; q]| < c

4
.

Suppose that t ≤ w < x. There is z in (w;x) such that

m(x)−m(z) < K =

[
m(x)−m(w)

2

]
min

{
1,

c

8(1 +W )

}
Note that

m(z)−m(w) >
m(x)−m(w)

2
.

Now,∣∣∣∣ h(x)− h(w)

m(x)−m(w)
− l∗(x)

∣∣∣∣
≤
[∣∣∣∣ (h(x)− h(z)) + (h(z)− h(w))

(m(x)−m(z)) + (m(z)−m(w))
− h(z)− h(w)

m(z)−m(w)

∣∣∣∣]
1

+ |A[w; z]− l∗(x)|

< [ ]1 +
c

4

=

∣∣∣∣ (h(x)− h(z))(m(z)−m(w))− (h(z)− h(w))(m(x)−m(z))

(m(x)−m(w))(m(z)−m(w))

∣∣∣∣+
c

4

≤
[
W (m(x)−m(z))(m(z)−m(w)) +W (m(z)−m(w))(m(x)−m(z))

(m(x)−m(w))

]
× 2

(m(x)−m(w))
+
c

4

≤ 4WK

[
(m(z)−m(w))

(m(x)−m(w))2

]
+
c

4
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≤ 4W

[
(m(x)−m(w))

2

] [
c

8(1 +W )

] [
1

(m(x)−m(w))

]
+
c

4

=
[ c

4

] [ W

1 +W

]
+
c

4
< c;

so the convergence assertion holds. �

Theorem 4.3 Suppose that a < b, h, m and A are as in the hypothesis of
Theorem 4.2 with M as in the hypothesis of Theorem 4.1 and l and r as in the
conclusion of Theorem 4.2. Then l and r have bounded variation on [a; b] and,
if a < x ≤ b, then l(x−) = r(x−), and, if a ≤ x < b, then l(x+) = r(x+).

Proof. We show bounded variation on [a; b] for l; r follows similarly. Clearly,
for a < x ≤ b, |l(x)| ≤ W . Suppose that E is a nondegerate refinement of D.
Let N = the number of elements of E. By Theorem 4.2, for each [p; q] in E,
there is zq in (p; q) such that

|A[zq; q]− l(q)| < 1

(N + 1)
.

There is [a; y] in E and

{[zv; v] : v is p or q for some [p; q] in Eo} ⊆ H � E.

So ∑
E

|l(q)− l(p)| = |l(y)− l(a)|+
∑
Eo

|l(q)−A[zq; q] +A[zq; q]−A[zp; p]

+A[zp; p]− l(p)|

≤ |l(a)|+W +
∑
Eo

|l(q)−A[zq; q]|+
∑
Eo

|A[zq; q]

−A[zp; p]|+
∑
Eo

|A[zp; p]− l(p)|

≤ |l(a)|+W +
N

(N + 1)
+M +

N

(N + 1)

< |l(a)|+W +M + 2.

Therefore l, and similarly r, has bounded variation on [a; b] and so each is
quasi-continuous on [a; b]

We now show that if a < x ≤ b, then l(x−) = r(x−); the corresponding
final equality follows similarly. Let l∗ and r∗ be as in Theorem 4.1. Suppose
that a < x ≤ b and 0 < c. By Theorem 4.1 there is t in [a;x) such that if
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t ≤ p < q < x, then |A[p; q] − l∗(x)| < c
4 . Suppose that z is in (t;x). z is in

some (u; v) ⊆ (t;x) such that

max
{
|A[u; z]− l(z)|, |A[z; v]− r(z)|

}
<
c

4
.

Clearly

max
{
|A[u; z]− l∗(x)|, |A[z; v]− l∗(x)|

}
<
c

4
so

max {|l(z)− l∗(x)|, |r(z)− l∗(x)|}
≤ max {|l(z)−A[u; z]|+ |A[u; z]− l∗(x)|, |r(z)−A[z; v]|+ |A[z; v]− l∗(x)|}

≤ max
{ c

4
+
c

4
,
c

4
+
c

4

}
=
c

2
< c.

Therefore l(x−) = l∗(x) = r(x−) and, in a similar fashion, l(x+) =
r∗(x) = r(x+). �

Theorem 4.4 Assume the hypothesis of Theorem 4.2. Suppose that 0 < c.
Then there is E � {[a; b]} such that if [p; q] is in E, then min{|r(p) −
A[p; q]|, |l(q)−A[p; q]|} < c.

Proof. There is y in (a; b] such that |r(a) − A[a; y]| < c. Therefore there is
a set Z such that x is in Z iff a < x ≤ b and for some subdivision E of [a;x],
if [p; q] is in E, then

min{|r(p)−A[p; q]|, |l(q)−A[p; q]|} < c.

Let t = sup Z. There is s in [a; t) such that if s ≤ y < t, then

|A[y; t]− l(t)| < c.

There is v in Z such that s ≤ v. If v = t, then clearly t is in Z. So suppose
that v < t. Then

|A[v; t]− l(t)| < c;

furthermore, for some subdivison H of [a; v], for each [p; q] in H,

min
{
|r(p)−A[p; q]|, |l(q)−A[p; q]|

}
< c;

considering H ′ = H ∪ {[v; t]}, we see that t is in Z.
Now suppose, on the contrary, that t < b. There is a subdivision H of [a; t]

such that if [p; q] is in H, then

min
{
|r(p)−A[p; q]|, |l(q)−A[p; q]|

}
< c.

There is u in (t; b] such that |r(t)−A[t;u]| < c. Considering H ′ = H ∪{[t;u]},
we see that u is in Z; since t < u, we have a contradiction.

Therefore the theorem is true. �
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Theorem 4.5 Again, assume the hypothesis of Theorem 4.2. Then there is
an element α of RSI[a; b]such that if a ≤ p < q ≤ b, then α[p; q] is r(p) or
l(q), and if a ≤ u < v ≤ b, then the following existence and equality holds:

h|vu =

∫
[u;v]

α(I) dm.

Proof. Let γr and γl denote the elements of RSI[a; b]given by

γr[p; q] = r(p) and γl[p; q] = l(q).

By virtue of the quasi-continuity of r and l and the fact that m is nonde-
creasing, it is well-known and easily shown that if a ≤ p < q ≤ b and γ is γr
or γl, then:

1)
∫
[p;q]

γ(I) dm exists, and

2) if W is an element of R[a; b] such that for a ≤ p < q ≤ b, W (q)−W (p) =∫
[p;q]

γ(I) dm, then W is in BV[a; b].

From Theorem 2.A.2 we have, for a ≤ u < v ≤ b, the following succession
of existence and equivalence assertions:∫

[u;v]

min

{∫
I

∣∣∣∣∫
J

γr dm− dh
∣∣∣∣ ,∫

I

∣∣∣∣∫
J

γl dm− dh
∣∣∣∣}

=

∫
[u;v]

min

{∫
I

|γr dm− dh|,
∫
I

|γl dm− dh|
}

(4.5.1)

=

∫
[u;v]

min {|γr dm− dh|, |γldm− dh|} .

Clearly, there is an element α of RSI[a; b] such that if a ≤ p < q ≤ b, then

α[p; q] = γr[p; q] or γl[p; q], and (4.5.2)

|α[p; q]m|qp − h|qp| = min{|γr[p; q]m|qp − h|qp|, |γl[p; q]m|qp − h|qp|},

so that from (4.5.1) it immediately follows that if a ≤ u < v ≤ b, then∫
[u;v]

|α(I) dm− dh|

exists.
We now show that if a ≤ u < v ≤ b, then∫

[u;v]

|α(I) dm− dh| = 0.
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Suppose that 0 < c. There is D � {[u; v]} such that if E � D, then∣∣∣∫
[u;v]

|α(I) dm− dh| −
∑
E

|α∆Im−∆Ih|
∣∣∣ < c

2
. (4.5.5)

By Theorem 4.4, for each [p; q] in D, there is E[p; q]� {[p; q]} such that if J
is in E[p; q], then, from (4.5.2),∣∣∣∣α(J)− ∆Jh

∆Jm

∣∣∣∣ = min

{∣∣∣∣γr(J)− ∆Jh

∆Jm

∣∣∣∣ , ∣∣∣∣γl(J)− ∆Jh

∆Jm

∣∣∣∣} <
c

2(1 +m|vu)
,

so that∫
[u;v]

|α(I) dm− dh| ≤
∣∣∣∫

[u;v]

|α(I) dm− dh| −
∑
D

∑
E[p;q]

|α(J)∆Jm−∆Jh|
∣∣∣

+
∑
D

∑
E[p;q]

|α(J)∆Jm−∆Jh|

<
c

2
+
∑
D

∑
E[p;q]

∣∣∣∣α(J)− ∆Jh

∆Jm

∣∣∣∣∆Jm

≤ c

2
+
∑
D

∑
E[p;q]

[
c

2(1 +m|vu)

]
∆Jm

=
c

2
+
( c

2

)( m|vu
(1 +m|vu)

)
<
c

2
+
( c

2

)
= c.

Therefore ∫
[u;v]

|α(I) dm− dh| = 0,

which, by routine considerations, implies that

h|vu =

∫
[u;v]

α(I) dm. �

Theorem 4.6 Assume the hypothesis of Theorem 4.2. Suppose further that
w is in R[a; b], c is in [a; b] and either:

a) a ≤ c < b and for all x in [a; b], w(x) = 0 if a ≤ x ≤ c, and w(x) = 1 if
c < x ≤ b, or

b) a < c ≤ b and for all x in [a; b], w(x) = 0 if a ≤ x < c, and w(x) = 1 if
c ≤ x ≤ b, or

c) w(x) = 1 if a ≤ x ≤ b.
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Then ∫
[a;b]

dw dh

dm

exists.

Indication of proof. In each case, the verification of the convergence as-
sertion in very easy; we state the value of the integral and leave the details to
the reader: a) r(c). b) l(c). c) 0. �

Theorem 4.7 Assume the hypothesis of Theorem 4.2. Suppose further that
g is in R[a; b], P � {[a; b]} and if [p; q] is in P and p < x1 < x2 < q, then
g(x1) = g(x2). Then ∫

[a;b]

dg dh

dm

exists.

Indication of proof. g is a finite linear combination on [a; b] of functions,
each of which satisfies a), b) or c) of the hypothesis of Theorem 4.6. �

Theorem 4.8 Assume the hypothesis of Theorem 4.2. Suppose further that
k is in R[a; b], quasi-continuous on [a; b]. Then∫

[a;b]

dk dh

dm

exists.

Indication of proof. Suppose that 0 < c. There is g satisfying the hypoth-
esis of Theorem 4.7 such that

|k(x)− g(x)| < c

(1 + 2W +M)
, a ≤ x ≤ b.

Let f = k− g. Suppose that H � {[a; b]} and H is nondegenerate. Then (see
Definition 3.1 through Observation 3.2)∣∣∣∑

H

(k(q)− k(p))A[p; q]−
∑
H

(g(q)− g(p))A[p; q]
∣∣∣ =

∣∣∣∑
H

(f(q)− f(p))A[p; q]
∣∣∣

=
∣∣∣f(b)A(RH)− f(a)A(LH)−

∑
Ho

f(p)[A[p; q]−A[p′; q′]]
∣∣∣

≤ |f(b)||A(RH)|+ |f(a)||A(LH)|+
∑
Ho

|f(p)||A[p; q]−A[p′; q′]|

<

(
c

(1 + 2W +M)

)
[W +W +M ] < c.

Theorem 4.7 and routine completeness considerations complete the proof. �
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5 A Convexity Decomposition Theorem

In this section we prove Theorem 5.4, as stated in the introduction.
We begin with a special integral existence theorem.

Theorem 5.1 Suppose that a < b and each of f and g is in BV(R)[a; b].
Suppose that B is an element of RSI[a; b] given by

B(I) = sup {|j(x)− k(y)| : (x, y) in I × I, (j, k) in {f, g} × {f, g}} .

Then the following statements are true:
1) If [u; v] ⊆ [a; b] and E � D � {[u; v]}, then∑

D

B(I) ≤
∑
E

B(J), (5.1.1)

so that∫
[u;v]

B(I) exists iff
[
sup
{∑

H

B(J) : H � {[u; v]}
}]

1
<∞, (5.1.2)

in which case ∫
[u;v]

B(I) = [ ]1. (5.1.3)

2) If, for each x in [a; b], f(x+) = g(x+) if a ≤ x < b and f(x−) = g(x−)
if a < x ≤ b, then

∫
[a;b]

B(I) exists.

Proof. We shall first indicate a proof of (5.1.1) by showing a simple inequality
and leaving the induction to the reader.

Suppose that a ≤ p < q < s ≤ b. Suppose that 0 < c. There are x and y
such that p ≤ x ≤ y ≤ s and (j, k) in {f, g} × {f, g} such that

0 ≤ B[p; s]− |j(y)− k(x)| < c.

If p ≤ x ≤ y ≤ q or q ≤ x ≤ y ≤ s, then

B[p; s] < |j(y)− k(x)|+ c ≤ max{B[p; q], B[q; s]}+ c ≤ B[p; q] +B[q; s] + c.

If p ≤ x ≤ q ≤ y ≤ s, then

B[p; s] < |j(y)−k(x)|+c ≤ |j(y)−j(q)|+|j(q)−k(x)|+c ≤ B[q; s]+B[p; q]+c.

In either case,
B[p; s] ≤ B[p; q] +B[q; s] + c.
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Therefore

B[p; s] ≤ B[p; q] +B[q; s]. (5.1.4)

As stated above, (5.1.1) follows from (5.1.4) by induction; we let the reader
furnish this as well as the routine arguments for (5.1.2) and (5.1.3).

Now, suppose the hypothesis of 2). It is well-known and easily shown that

sup
{∑

W

|f(z)− g(z)| : W a finite subset of [a; b]
}

= S <∞.

Suppose that a ≤ p ≤ x ≤ y ≤ q ≤ b and (j, k) is in {f, g} × {f, g}. Then

|j(x)− k(y)| ≤ |j(x)− j(y)|+ |j(y)− k(y)|

≤ max

{∫
[p;q]

|df |,
∫
[p;q]

|dg|

}
+ |f(y)− g(y)|.

So now suppose that H � {[a; b]}. Let N = the number of elements of H.
For each [p; q] in H there is x and y such that p ≤ x ≤ y ≤ q and (j, k) in
{f, g} × {f, g} such that

0 ≤ B[p; q]− |j(x)− k(y)| < 1

N
,

so that∑
H

B[p; q] <
∑
H

[
|j(x)− k(y)|+ 1

N

]
≤
∑
H

[
max

{∫
[p;q]

|df |,
∫
[p;q]

|dg|
}

+ |f(y)− g(y)|
]

+ 1

≤
∑
H

[∫
[p;q]

|df |+
∫
[p;q]

|dg|
]

+
∑
H

|f(y)− g(y)|+ 1

≤
∫
[a;b]

|df |+
∫
[a;b]

|dg|+ 2S + 1.

It therefore follows that
∫
[a;b]

B(I) exists. �

Theorem 5.2 Assume the setting of Theorem 4.3, and B defined for l and r
as for f and g as in Theorem 5.1. The following statements are true:

1) From Theorem 4.3 it follows that additionally the hypothesis of 2) of
Theorem 5.1 holds, so that

∫
[a;b]

B(I) exists.
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2) Let V denote the element of R[a; b] given by:

V (a) = 0, and, if a < x ≤ b, then V (x) =

∫
[a;x]

B(I).

Then, if a ≤ p < q < s ≤ b, and 0 < min{m|qp,m|sq}, then

(V (q) + V (p))−
h|qp
m|qp

≤ (V (s) + V (q))−
h|sq
m|sq

.

Proof. 1) is immediate.
Consider 2) Suppose that 0 < c. By Theorem 4.5 and with α as in that

theorem, it follows from some elementary inequality calculations that there
are subdivisions D1 and D2 of [p; q] and [q; s], respectively, such that∣∣∣∣ h|qpm|qp

−
∑

D1
α(I)m(I)

m|qp

∣∣∣∣ < c

2
and

∣∣∣∣ h|sqm|sq
−
∑

D2
α(I)m(I)

m|sq

∣∣∣∣ < c

2
.

Now,

(V (s) + V (q))−
h|sq
m|sq
−
[
(V (q) + V (p))−

h|qp
m|qp

]
= (V (s)− V (p))−

[
h|sq
m|sq
−
h|qp
m|qp

]
=

∫
[p;s]

B +

∑
D2
α(I)m(I)

m|sq
−
h|sq
m|sq

+
h|qp
m|qp
−
∑

D1
α(I)m(I)

m|qp

−
∑

D2
α(I)m(I)

m|sq
+

∑
D1
α(I)m(I)

m|qp

≥
∫
[p;s]

B(I)− c

2
− c

2
−max{α(I) : I in D2}+ min{α(I) : I in D1}

≥ B[p; s]− |max{α(I) : I in D2} −min{α(I) : I in D1}| − c ≥ −c.

It therefore follows that

(V (s) + V (q))−
h|sq
m|sq
−
[
(V (q) + V (p))−

h|qp
m|qp

]
≥ 0;

this establishes the conclusion of 2). �

Corollary 5.1 Assume the setting of Theorem 5.2. If a ≤ t < u ≤ w < v ≤ b
and 0 < min{m|ut ,m|vw}, then

V (u) + V (t)− h|ut
m|ut

≤ V (v) + V (w)− h|vw
m|vw

.
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Proof. Either 0 < m|wu or not.
In the first case, u < w, so by Theorem 5.2,

V (u) + V (t)− h|ut
m|ut

≤ V (w) + V (u)− h|wu
m|wu

≤ V (v) + V (w)− h|vw
m|vw

,

so in this case the conclusion holds.
We note that V is nondecreasing on [a; b].
Now, suppose that 0 = m|wu . Then, the final inequality below due to

Theorem 5.2,

V (u) + V (t)− h|ut
m|ut

= V (u) + V (t)− h|wt
m|wt

≤ V (w) + V (t)− h|wt
m|wt

≤ V (v) + V (w)− h|wv
m|wv

,

so that in this case the conclusion holds. �

Before we prove the decomposition theorem given in the introduction, we
state a simple inequality lemma.

Lemma 5.1 Suppose that a < b, m is an element of R[a; b], nondecreasing on
[a; b] and α is an element of RSI[a; b] such that if a ≤ i < j ≤ k < l ≤ b and
0 < min{m|ji ,m|lk}, then α[i; j] ≤ α[k; l]. Then, if a ≤ t < u ≤ w < v ≤ b,
0 < min{m|ut ,m|vw}, D1 � {[t;u]} and D2 � {[w; v]}, then∑

D1
α(I)∆Im

m|ut
≤
∑

D2
α(I)∆Im

m|vw
;

in particular, if
∫
[t;u]

αdm and
∫
[w;v]

αdm exist, then∫
[t;u]

αdm

m|ut
≤

∫
[w;v]

αdm

m|vw
.

Indication of proof. Letting

g1 = max{α(I) : I in D1, ∆Im 6= 0} and g2 = min{α(I) : I in D2, ∆Im 6= 0},

we see that∑
D1
α(I)∆Im

m|ut
≤
∑

D1
g1∆Im

m|ut
=
g1m|ut
m|ut

= g1 ≤ g2

=
g2m|ut
m|ut

=

∑
D1
g2∆Im

m|ut
≤
∑

D2
α(I)∆Im

m|ut
. �
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The next theorem consists of a sequence of statements which, except for 5-
b-i) below, on the basis of the preceding results, require a treatment sufficiently
routine that we can leave matters to the reader.

Theorem 5.3 Assume the setting of Theorem 5.2, with V as in statement 2)
of the conclusion. Let C1 and C2 denote elements of RSI[a; b] given, respec-
tively, by:

C1[p; q] = V (q) + V (p), C2[p; q] = C1[p; q]−
h|qp
m|qp

The following statements are true:

1) V is nondecreasing on [a; b], so, as is well-known, for each [u; v] ⊆ [a; b],∫
[u;v]

C1 dm exists.

2) C1 clearly satisfies the (α) hypothesis of Lemma 5.1.

3) By Corollary 5.2, C2 satisfies the (α) hypothesis of Lemma 5.1.

4) If a ≤ u < v ≤ b, then
∫
[u;v]

C2 dm exists and is
∫
[u;v]

C1 dm− h|vu.

5) Suppose that f1 and f2 are elements of R[a; b] such that f1(a) = f2(a) =
0 and, if i = 1, 2 and a < x ≤ b, then fi(x) =

∫
[a;x]

Ci dm. Then,

a) if a ≤ x ≤ b, then f1(x)− f2(x) = h(x)− h(a), and

b) if i = 1, 2, then fi is in Lip(m)[a; b] and
i) for some Mi ≥ 0, nondegenerate subdivision Di of [a; b] and each

refinement E of Di,

∑
Eo

∣∣∣∣ fi(q)− fi(p)m(q)−m(p)
− fi(q

′)− fi(p′)
m(q′)−m(p′)

∣∣∣∣ ≤Mi,

notation as before, and
ii) from Lemma 5.1, fi is “m - convex upward on [a; b]”, i.e., if a ≤

t < u ≤ w < v ≤ b and 0 < min{m|ut ,m|vw}, then

fi|ut
m|ut

≤ fi|vw
m|vw

.

Proof of 5-b-i). We first show that the statement holds for f1. Suppose that
E is a nondegenerate subdivision of [a; b]. Then

∑
Eo

∣∣∣∣f1(q)− f1(p)

m(q)−m(p)
− f1(q′)− f1(p′)

m(q′)−m(p′)

∣∣∣∣ =
∑
Eo

∣∣∣∣∣
∫
[p;q]

C1 dm

m|qp
−

∫
[p′;q′]

C1 dm

m|q′p′

∣∣∣∣∣
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=
∑
Eo

[
max

{∫
[p;q]

C1 dm

m|qp
,

∫
[p′;q′]

C1 dm

m|q′p′

}

−min

{∫
[p;q]

C1 dm

m|qp
,

∫
[p′;q′]

C1 dm

m|q′p′

}]
≤
∑
Eo

[2V (q)− 2V (p′)] = 2
∑
Eo

[V (q)− V (p) + V (q′)− V (p′)]

= 2

(∑
Eo

[V (q)− V (p)] +
∑
Eo

[V (q′)− V (p′)]

)
≤ 2(V (b)− V (a) + V (b)− V (a)) = 4(V (b)− V (a)).

To see that the statement holds for f2, we need only note that for a ≤ x ≤ b,

f2(x) = f1(x)− [h(x)− h(a)];

clearly the desired conclusion follows from a routine application of the triangle
inequality.

Let us note that it follows immediately from Theorem 5.3 that for Theo-
rem 5.4, 1) implies 2). With regard to showing that for Theorem 5.4, 2) im-
plies 1), we note that given 2), for a ≤ x ≤ b

h(x) = f1(x)− f2(x) + h(a);

again, a routine application of the triangle inequality gives the desired conclu-
sion. �
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