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A NOTE ON THE GRADIENT PROBLEM

1 Introduction

In [Q] C. E. Weil formulated the following problem: “Assume that f is a
differentiable real-valued function of N real variables, N ≥ 2, and let g = ∇f
denote its gradient, which is a function from RN to RN . Let G ⊂ RN be
a nonempty open set and let g−1(G) 6= ∅. Does g−1(G) have positive N -
dimensional Lebesgue measure?” For N = 1 the answer is yes as was first
proved by Denjoy [D] in 1916. Z. Buczolich in [B] gave a partial answer
to this problem showing that g−1(G) has positive one-dimensional Hausdorff
measure. In other words, he proved that the gradient has the “one-dimensional
Denjoy-Clarkson property”.

In the present article, we prove the Buczolich result using quite different
method. Moreover, our method gives the following improvements and gener-
alizations.

(i) We prove slightly more about g−1(G); namely that any one-dimensional
projection of g−1(G) is of positive one-dimensional Hausdorff measure,
which clearly implies that g−1(G) has positive one-dimensional Hausdorff
measure.

(ii) We prove also that g−1(G) is not a σ-porous set.

(iii) We prove also that g−1(G) is porous at none of its point, which, together
with the Buczolich result, gives that the gradient g has a property which
can be called the “one-dimensional Zahorski M3-property”.
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(iv) Our method works also in some infinite-dimensional Banach spaces. We
prove the results also in the setting of Banach spaces since we feel that
they are of some interest also in this generality. However, for the reader
interested in the finite-dimensional case only, we give proofs for RN

(which are slightly easier) separately.

Unfortunately, it seems that our “perturbation” method based on the notion of
subdifferentiability cannot give a complete affirmative answer to the gradient
problem due to a deep example of D. Preiss [Pr]. (See Remark 1 below.)

2 Notation and Definitions

We will use the following notation and definitions.

Lebesgue measure on R will be denoted by λ.

If f is a real function on a Banach space X and x, v ∈ X, then we define
the (two-sided) directional derivative by

∂vf(x) = lim
t→0

f(x+ t v)− f(x)

t
.

Recall that f is Fréchet differentiable at a means there is f ′(a) ∈ X∗ such
that

lim
h→0
‖h‖−1 (f(a+ h)− f(a)−

(
f ′(a)

)
(h)) = 0.

In addition f is Gâteaux differentiable at a means there is f ′G(a) ∈ X∗

such that for each v ∈ X we have ∂vf(a) =
(
f ′G(a)

)
(v).

If X = RN , then differentiability means Fréchet differentiability and f ′(a)
is identified with the gradient ∇f(a) ∈ RN .

In a metric space (M,ρ), B(a, r) will denote the open ball with center a
and radius r. The closed ball {x | ρ(a, x) ≤ r} is denoted by B(a, r).

From many equivalent definitions of porosity we choose the following one.

Definition 1 Let M be a metric space, E ⊂ M and let a ∈ M . Then E is
porous at a means there exists a c(a) > 0 and a sequence of balls {B(xn, rn)}
such that B(xn, rn)∩E = ∅, rn > c(a)ρ(a, xn) for each n and limn→∞ xn = a.
The set E is porous means it is porous at each of its points. It is uniformly
porous means it is porous at each point a ∈ E and the corresponding c(a) (= c)
can be chosen independently of a ∈ E.

A set is σ-porous means it is a countable union of porous sets.
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Definition 2 A real function on a Banach space X is a bump function means
it is a nonzero function with a bounded support supp f .

The main idea of the article is based on the notion of subdifferentiability
of functions, cf. [DGZ, p. 339] or [Ph, p. 65].

Definition 3 Let X be a Banach space, f : X → R ∪ {+∞} and f(a) ∈ R.
Then f is Fréchet subdifferentiable at a means there exists p ∈ X∗ such that

lim inf
h→0

‖h‖−1 (f(a+ h)− f(a)− p(h)) ≥ 0.

Also f is Gâteaux subdifferentiable at a means there exists p ∈ X∗ such
that, for each v ∈ X,

lim inf
t→0

|t|−1 (f(a+ t v)− f(a)− p(t v)) ≥ 0.

The following facts will be used below. They are easily proved.

1. A real function f is Fréchet (Gâteaux) differentiable at a if and only if
both f and −f are Fréchet (Gâteaux) subdifferentiable at a.

2. Let f and g be Fréchet (Gâteaux) subdifferentiable at a and λ > 0. Then
f + g and λ f are Fréchet (Gâteaux) subdifferentiable at a.

3. If lim suph→0 ‖h‖−1(f(a + h) + f(a − h) − 2 f(a)) > 0, then −f is not
Fréchet subdifferentiable at a.

4. A real function f : R→ R is Fréchet subdifferentiable at a (equivalently,
f is Gâteaux subdifferentiable at a) if and only if the Dini derivatives
satisfy f+(a) ≥ f−(a).

5. If L : X → R has a (two-sided) directional derivative ∂vL(a) 6= 0 for
some a, v ∈ X and H : R → R is not subdifferentiable at L(a), then
H ◦ L is not Gâteaux subdifferentiable at a.

3 Supporting Lemmas and Remarks

The following lemma is a refinement of Goffman’s construction from [G].

Lemma 1 Let Z ⊂ R with λZ = 0. Then there exists a Lipschitz function H
on R which is subdifferentiable at no point of Z.
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Proof. By induction we define a sequence {Gn}∞n=1 of open subsets of R in
the following fashion.

(i) Choose an open set G1 ⊃ Z such that λ(G1) < 1.
(ii) If an open set Gn ⊃ Z is defined, we choose an open set Gn+1 so that

Gn ⊃ Gn+1 ⊃ Z,

λGn+1 <
1

n+ 1
and (1)

λ((x− h, x+ h) ∩Gn+1) <
h

n+ 1
for x ∈ R \Gn and h > 0. (2)

The existence of Gn+1 follows e.g. from Principal Lemma 6.32 of [LMZ].
Now put P =

⋃∞
n=1(G2n−1 \ G2n) and H(x) =

∫ x

0
χP (t) dt. Clearly H is a

1-Lipschitz function. Let x ∈ Z. We will show that H is not subdifferentiable
at x. To this end consider a positive integer k. Let (ak, bk) be the component
of Gk which contains x. By (1), bk − ak < 1

k and (2) implies that

λ(Gk+1 ∩ (x, bk)) ≤ bk − x
k + 1

, λ(Gk+1 ∩ (ak, x)) ≤ x− ak
k + 1

. (3)

If k is odd, then Gk \Gk+1 ⊂ P and therefore (3) gives

H(bk)−H(x)

bk − x
=
λ(P ∩ (x, bk))

bk − x
≥ 1− 1

k + 1
and

H(ak)−H(x)

ak − x
=
λ(P ∩ (ak, x))

x− ak
≥ 1− 1

k + 1
.

If k is even, then P ∩ (ak, bk) ⊂ Gk+1 and therefore by (3)

H(bk)−H(x)

bk − x
≤ 1

k + 1
and

H(ak)−H(x)

ak − x
≤ 1

k + 1
.

Since H is nondecreasing and 1-Lipschitz, we easily obtain the values of the
Dini derivatives of H at x:

H+(x) = H−(x) = 1 and H+(x) = H−(x) = 0.

Hence H is not subdifferentiable (nor superdifferentiable) at x. �

Remark 1 Unfortunately, Lemma 1 cannot be generalized to RN . In fact,
D. Preiss in [Pr] has proved that in RN , N ≥ 2, there exists a set A of N -
dimensional Lebesgue measure zero such that each Lipschitz function on RN

is (Fréchet) differentiable at some point of A.
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We prove that the following modification of [PT, Proposition 1] holds.

Lemma 2 Let X be a Banach space which admits a bump function b which
is Lipschitz and Fréchet differentiable at every element of X. Let E be a σ-
porous subset of X. Then there is a Lipschitz function h : X → R which is
Fréchet subdifferentiable at no point of E.

Remark 2 We follow the part of proof of [PT, Proposition 1] concerning the
case of separable X with separable dual. The difference which requires a few
slight changes in that proof is that we do not suppose that E is contained
in a countable union of closed porous sets. Thereby we partially answer the
question posed in [PT] before Proposition 1.

We note first that the following stronger formulation of [PT, Lemma 1]
was in fact proved there.

Lemma 3 Let M be a metric space and let E be a closed uniformly porous
subset of M . Then there are a C > 1 and a set S ⊂ M × (0, 1) such that the
family B = {B(x, r) | (x, r) ∈ S} is disjoint,

⋃
B∩E = ∅, and, for each δ > 0,

B ∪
⋃
{B(x,Cr) | (x, r) ∈ S, r < δ} = M. (4)

Proof of Lemma 2. Assume, as we may, that b(0) = β > 0, supp b ⊂ B(0, 1),
b is K-Lipschitz for some K > 0 and b ≥ 0. (By taking b̃(x) = b2(tx − a) for
suitable t ∈ R and a ∈ X we get obviously a Lipschitz Fréchet differentiable
function.) It is easy to see that E can be written in the form E =

⋃∞
i=1Ei

where each Ei is a uniformly porous set (cf. [Z, Lemma 3.5]). (For a stronger
result which we will not need here see [Z, Theorem 4.5].) We apply Lemma 3
to each Ei as a subset of the metric space Mi = X \ (Ei \ Ei). Obviously, Ei

is uniformly porous and closed in Mi. We find Si and Ci > 1 according to
Lemma 3.

Note that the family B∗i = {B(x, r) | (x, r) ∈ Si} is disjoint where as
expected B(x, r) = {y ∈ X | ρ(y, x) < r}. In fact, if an intersection I of two
members of B∗i contains a point, it must belong to Ei; consequently I contains
a point from Ei ⊂ Mi, which is impossible. From (4) we get that, for each
δ > 0, ⋃

{B(x,Cir) | (x, r) ∈ Si, r < δ} ⊃ Ei. (5)

For each i we define fi by

fi(x) =

{
0 if x 6∈

⋃
B∗i

r b(x−y
r ) if x ∈ B(y, r), (y, r) ∈ Si.
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Then fi, being the supremum of K-Lipschitz functions, is K-Lipschitz, is
Fréchet differentiable on

⋃
B∗i , 0 ≤ fi ≤ 2K (Here we use Si ⊂ X × (0, 1).)

and fi(x) = rβ for (x, r) ∈ Si. Therefore, for x ∈ Ei, we have

lim sup
h→0

fi(x+ h) + fi(x− h)− 2fi(x)

‖h‖
≥ β

Ci
> 0 (6)

due to (5) and to the fact that Ei ∩
⋃
B∗i = ∅. For x ∈

⋃
B∗i since fi is Fréchet

differentiable at x,

lim
h→0

fi(x+ h) + fi(x− h)− 2fi(x)

‖h‖
= 0 (7)

and for x /∈
⋃
B∗i because fi(x) = min fi = 0 in such a case,

lim inf
h→0

fi(x+ h) + fi(x− h)− 2fi(x)

‖h‖
≥ 0. (8)

For x ∈ X let f(x) =
∑∞

i=1
1
2i fi(x). For x ∈ Ej we get

lim sup
h→0

f(x+ h) + f(x− h)− 2f(x)

‖h‖

≥ lim inf
h→0

j−1∑
i=1

1

2i
fi(x+ h) + fi(x− h)− 2fi(x)

‖h‖

+ lim sup
h→0

1

2j
fj(x+ h) + fj(x− h)− 2fj(x)

‖h‖

+ lim inf
h→0

J∑
i=j+1

1

2i
fi(x+ h) + fi(x− h)− 2fi(x)

‖h‖

−
∞∑

i=J+1

(2K)
1

2i
≥ β

Cj
− 2K

1

2J
> 0

for J sufficiently large. Here we have used (6), (7) and (8) for i ≤ J , and
the fact that each fi is K-Lipschitz (for i > J). Hence −f is not Fréchet
subdifferentiable at x and is K-Lipschitz. �

Roughly speaking, the following lemma says that under some assumptions
on the space a function can’t be “very small” on a ball while its derivative is
“big” on it except for a “small” set.

For the reader interested just in the case X = RN , only (α) is relevant.
The items (β) and (γ) concern some “bad” Banach spaces. More precisely, (β)
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is concerned with spaces which admit Gâteaux differentiable Lipschitz bump
functions but not Fréchet differentiable ones, and (γ) pertains to spaces X
which don’t admit any Gâteaux differentiable Lipschitz bump functions.

Lemma 4 Let X be a Banach space, B(z, r) ⊂ X an open ball and E ⊂
B(z, r). Let v, d, r,m be positive real numbers such that 8m < r d v. Suppose
that b : X → R is 1-Lipschitz, b(0) = v and supp b ⊂ B(0, 1). Let F be a
continuous function on the closed ball B(z, r) such that

|F (x)| ≤ m for each x ∈ B(z, r), (9)

F ′(x) exists at each x ∈ B(z, r), ‖F ′(x)‖ > d for each x ∈ B(z, r) \ E.

Then none of the following three assertions holds.

(α) b is Fréchet differentiable and there exists a Lipschitz function h on X
which is Fréchet subdifferentiable at no point of E.

(β) b is Gâteaux differentiable and there exists a Lipschitz function h on X
which is Gâteaux subdifferentiable at no point of E.

(γ) E = ∅.

Proof. The proof in general Banach spaces is based on variational principles.
For readers who are interested only in the case X = RN (where no variational
principle is necessary and only (α) is interesting) we give the proof separately.

I. The case X = RN

Suppose that (α) holds. Put b∗(x) = b(x−z
r ). It is easy to see that

b∗(z) = v, supp b∗ ⊂ B(z, r) and b∗ is
1

r
-Lipschitz. (10)

Since 8m < r d v, there is a number ω such that

4m

v
< ω <

d r

2
(11)

and put G = F − ω b∗. Applying (9), (10) and (11) we obtain that

|G(x)| = |F (x)| ≤ m for each x ∈ ∂B(z, r) and G(z) ≤ m−ω v < −3m. (12)

We can clearly find c > 0 so small that for the function h∗ = ch we have

|h∗(x)| < m

2
for x ∈ B(z, r) and h∗ is

d

4
-Lipschitz on B(z, r). (13)

Now put G∗(x) = G(x) +h∗(x) for x ∈ B(z, r). By (12) and (13) we easily get
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G∗(x) ≥ −3

2
m for x ∈ ∂B(z, r) and G∗(z) < −5

2
m. (14)

The continuity of G∗ and (14) give that G∗ attains its minimum at point
x0 ∈ B(z, r). Thus G∗ is Fréchet subdifferentiable at a point x0. Since G
is Fréchet differentiable at x0, we obtain that h∗ is Fréchet subdifferentiable
at x0 and therefore x0 /∈ E by (α). Consequently, (9) implies that we can
choose a vector y ∈ X with ‖y‖ = 1, such that ∂yF (x0) < −d. Formulas (10)
and (11) imply that ω b∗ is d

2 -Lipschitz, we obtain that ∂yG(x0) < −d
2 . This

inequality and (13) imply that G∗ does not attain its minimum at x0, which
is a contradiction.

II. The case of an arbitrary Banach space X
Suppose that at least one of the statements (α), (β), (γ) holds. We define

G∗ on B(z, r) in the same manner as in case I. (We put h∗ = h = 0 in case
(γ) holds.) Further we put G∗(x) = ∞ for x /∈ B(z, r). Now, choose λ > 0
such that

0 < λ < min(
d

8
,
m

3
,
m

3r
). (15)

We add, to the proper lower semicontinuous function G∗ a third “perturbation
function” ϕ such that G∗ + ϕ attains its minimum at a point x0 ∈ X, where

if (α) holds, then ϕ is a Fréchet differentiable function on X such that
|ϕ(x)| ≤ λ and ‖ϕ′(x)‖ ≤ λ for each x ∈ X, (The existence of such ϕ
and x0 follows from the smooth variational principle. See [Ph, Theorem
4.10].),

if (β) holds and (α) does not hold, then ϕ is a Gâteaux differentiable
function on X such that |ϕ(x)| ≤ λ and ‖ϕ′G(x)‖ ≤ λ for each x ∈ X
([Ph, Theorem 4.10]) and

if (γ) holds and (β) does not hold, then ϕ(x) = λ‖x−x0‖. (The existence
of such a ϕ and x0 follows from Ekeland’s variational principle. See [Ph,
Lemma 3.13].)

In all three cases (15) implies that |ϕ(x)| ≤ m
3 on B(z, r) and therefore

(14) gives x0 ∈ B(z, r). We know that G∗ + ϕ is Fréchet subdifferentiable at
x0. If (α) (resp. (β)) holds, we obtain that h∗ is Fréchet (resp. Gâteaux)
subdifferentiable at x0 and thus (α) (resp. (β)) implies x0 /∈ E. Thus in any
case (9) implies that we can choose a vector y ∈ X with ‖y‖ = 1 such that
∂yF (x0) < −d. Since (10) and (11) imply that ωb∗ is d

2 -Lipschitz, we obtain

that ∂yG(x0) < −d
2 . By (13), h∗ is d

4 -Lipschitz on B(z, r) and (15) implies
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that ϕ is d
8 -Lipschitz on B(z, r). Thus G∗ + ϕ = G + h∗ + ϕ does not attain

its minimum at x0, which is a contradiction. �

4 Main Results

Theorem 5 Let D ⊂ RN be an open set and let f be a (Fréchet) differentiable
function on D. Denote g(x) = ∇f(x) for x ∈ D and suppose that G ⊂ RN is
an open set such that g−1(G) 6= ∅. Then the following assertions hold.

(i) g−1(G) is porous at none of its point.

(ii) If T ⊂ RN is open and T ∩ g−1(G) 6= ∅, then L(T ∩ g−1(G)) is of
one-dimensional Lebesgue measure zero for no nonzero linear function
L : RN → R. In particular, the one-dimensional Hausdorff measure
of T ∩ g−1(G) is positive.

(iii) If T ⊂ RN is open and T ∩g−1(G) 6= ∅, then T ∩g−1(G) is not σ-porous.

Remark 3 It is easy to see that (i), (ii) and (iii) hold iff the following state-
ment is true.

(iv) Suppose that a ∈ g−1(G) and B(zn, rn), n = 1, 2, ..., is a sequence of
open balls such that zn → a and rn > c‖zn − a‖ for some c > 0 and all
n. Then there exists an n0 such that, for all n ≥ n0,

(a) L(g−1(G)∩B(zn, rn)) is of one-dimensional Lebesgue measure zero
for no nonzero linear function L on RN . In particular the one-
dimensional Hausdorff measure of g−1(G) ∩B(zn, rn) is positive.

(b) g−1(G) ∩B(zn, rn) is not σ-porous.

Remark 4 It can be seen from the proof that (ii) holds also if L is a Lipschitz
function on RN which has a (two-sided) directional derivative ∂vxL(x) 6= 0 at
each point x ∈ T ∩ g−1(G) for some vx ∈ RN .

Proof of Theorem 5. We shall prove statement (iv) of Remark 3. To this
end suppose that a, zn, rn, c are as in (iv). We may suppose that rn → 0.
It is easy to see that there exist v > 0 and a Fréchet differentiable function
b on RN such that b is 1-Lipschitz, b(0) = v and supp b ⊂ B(0, 1). Since
G is open, there exists d > 0 such that ‖g(x) − g(a)‖ > d for each n and
x ∈ B(zn, rn) \ g−1(G). Now we can find δ > 0 such that

|f(x)− f(a)− g(a)(x− a)| ≤ d v ‖x− a‖
16 (1 + 1/c)

whenever x ∈ B(a, δ).
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Set F (x) := f(x)−f(a)−g(a)(x−a) and let n0 be such thatB(zn, rn) ⊂ B(a, δ)
for each n > n0. Then, for n > n0 and x ∈ B(zn, rn), we have

|F (x)| ≤ d v ‖x− a‖
16 (1 + 1/c)

≤ d v (rn + ‖zn − a‖)
16 (1 + 1/c)

<

<
dv(rn + rn/c)

16(1 + 1/c)
=
d v rn

16
:= m.

Further, for x ∈ B(zn, rn) \ g−1(G) we have ‖∇F (x)‖ = ‖g(x) − g(a)‖ > d.
Thus the assumptions of Lemma 4 are satisfied for z = zn , r = rn and
E = B(zn, rn) ∩ g−1(G).

To prove (a), suppose to the contrary that Z := L(E) is of measure zero
for a nonzero linear function L : RN → R. Thus we can apply Lemma 1 and
obtain a Lipschitz function H on R which is subdifferentiable at no point of Z.
Therefore the function h(x) := H(L(x)) is not Fréchet subdifferentiable (even
Gâteaux subdifferentiable) at any point of E. Thus (α) of Lemma 4 holds,
which is a contradiction.

To prove (b), suppose that E is σ-porous. Then Lemma 2 implies that
there exists a Lipschitz function h which is Fréchet subdifferentiable at no
point of E. Thus (α) of Lemma 4 holds as well, which is a contradiction. �

The corresponding generalization to general Banach spaces is the following.

Theorem 6 Let X be a Banach space, let D ⊂ X be an open set and let f
be a Fréchet differentiable function on D. Put g(x) = f ′(x) for x ∈ D and
suppose that G ⊂ X∗ is an open set such that g−1(G) 6= ∅. Let (i), (ii), (iii)
be the statements from Theorem 5 in which X is substituted for RN and L is
a continuous linear function (or, more generally, L is as in Remark 4). Then

(a) (i) holds,

(b) (ii) holds if X admits a Lipschitz Gâteaux differentiable bump function,

(c) (iii) holds if X admits a Lipschitz Fréchet differentiable bump function.

Sketch of the proof. It is easy to see that we can proceed quite analo-
gously as in the proof of Theorem 5. The only difference is that we use not
only (α) of Lemma 4, but also (β) and (γ) to prove (b) and (a), respectively.
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[PT] D. Preiss and J. Tǐser, Two unexpected examples concerning differ-
entiability of Lipschitz functions on Banach spaces, Proceedings of
GAFA seminar, Tel Aviv, to appear.

[Q] Queries section, Real Analysis Exchange, 16 (1990–91), 373.
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