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A POSITIVE ANSWER TO A QUESTION
ABOUT THE CANTOR SET

Abstract

It is proved that g(C × C) contains an interval if g : R × R → R
satisfies appropriate conditions and C is the Cantor set.

1 Introduction

Classical results of H. Steinhaus and S. Piccard show that A + B = {a + b :
a ∈ A, b ∈ B} contains an interval if either:

(a) A and B are both measurable subsets of the real line, each having positive
Lebesgue measure, or

(b) A and B are both subsets of the real line possessing the Baire property,
each being of the second category.

Proofs of these results can be found in Oxtoby [8, p. 21].
Many authors have generalized the above results by considering a general

function g : R×R → R (R the real line), satisfying appropriate conditions,
in place of + (i.e. g(x, y) = x + y). See [1], [3] and [4] for extensions of the
result of Steinhaus and [2] and [5] for extensions of the result of Piccard.

Conditions (a) and (b) are sufficient for A + B to contain an interval,
however neither is necessary. The classical Cantor set C (see Oxtoby [8]), is
of the first Baire category and has Lebesgue measure zero, but C +C = [0, 2].
Many proofs of this fact are known. For our purposes the geometric proof of
Utz [9] is most instructive.
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Several years ago the third author posed the problem of finding sufficient
conditions on g so that g(C × C) must contain an interval. In this paper we
give such conditions and offer two proofs, one we describe as analytic and the
other as geometric.

2 Results

The first proof of our main result is based on the following three lemmas.
Before stating Lemma 1, notice that each natural number k, k = 1, 2, . . . , 2n−1,
can be written uniquely in the form: k = 1 +

∑n−1
i=1 2n−1−idik, where dik ∈

{0, 1}. For each k, k = 1, 2, . . . , 2n−1, define ak ∈ C, by the formula:

ak =

n−1∑
i=1

2 dik 3−i. (1)

Lemma 1. The numbers (ak)2
n−1

k=1 , defined as above, have the following prop-
erties:

(i) 0 = a1 < a2 < . . . < a2n−1 < 1,

(ii) a2k = a2k−1 + 2 · 3−n+1 for k = 1, 2, . . . , 2n−2,

(iii) a2k−1 = 3 ak for k = 1, 2, . . . , 2n−2,

(iv) ak + 2
3 = a2n−2+k for k = 1, 2, . . . , 2n−2,

(v) 1− ak = a2n−1+1−k + 3−n+1 for k = 1, 2, . . . , 2n−1.

Proof. By (1) ak = 2 · 3−n+1
∑n−1

i=1 3n−1−i dik and therefore

1 ≤ k = 1 +

n−1∑
i=1

2n−1−i dik < k′ = 1 +

n−1∑
i=1

2n−1−i dik′ ≤ 2n−1

implies
n−1∑
i=1

3n−1−i dik <

n−1∑
i=1

3n−1−i dik′

which in turn implies that ak < ak′ , or that (i) is true.

Clearly, for each k = 1, 2, . . . , 2n−2, d1k = 0 and therefore:

k = 1 +

n−1∑
i=2

2n−1−i dik for each k = 1, 2, . . . , 2n−2 (2)
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which implies

2k = 2 +

n−1∑
i=2

2n−i dik = 2 +

n−2∑
i=1

2n−1−i di+1,k = 1 +

n−1∑
i=1

2n−1−i dik.

This implies that:

di,2k = di+1,k for i = 1, 2, . . . , n− 2 and dn−1,2k = 1. (3)

In addition we have:

2k − 1 = 1 +

n−2∑
i=1

2n−1−i di+1,k = 1 +

n−1∑
i=1

2n−1−i di,2k−1.

Therefore we obtain:

di,2k−1 = di+1,k for i = 1, 2, . . . , n− 2 and dn−1,2k−1 = 0. (4)

Clearly (ii) follows immediately from (3) and (4).
From (2) and (4) it follows that for each k = 1, 2, . . . , 2n−2 we have:

3 ak =

n−1∑
i=2

2 dik 3−i+1 =

n−2∑
i=1

2 di+1,k 3−i =

n−1∑
i=1

2 di,2k−1 3−i = a2k−1,

which is (iii).
For 1 ≤ k ≤ 2n−2, (1) implies that:

d1,2n−2+k = 1 and di,2n−2+k = dik if i = 2, 3, . . . , n− 1

which yields (iv).

Since 2n−1 + 1− k = 1 +
∑n−1

i=1 2n−1−i(1− dik) it follows that:

di,2n−1+1−k = 1− dik for i = 1, 2, . . . , n− 1 (5)

and therefore

a2n−1+1−k =

n−1∑
i=1

2 (1− dik) 3−i =
2

3

n−2∑
i=0

3−i − ak = 1− 3−n+1 − ak,

or (v) holds. This completes the proof of Lemma 1.

The next two lemmas contain the main ideas of our analytic proof that
g(C × C) contains an interval, provided g satisfies appropriate conditions.

In the following C1([0, 1]2) will denote the collection of all real valued
functions g defined on [0, 1]2 = [0, 1]× [0, 1] whose partial derivatives, D1g and
D2g, exist and are continuous on [0, 1]2.



216 M. Crnjac, B. Guljaš and H. I. Miller

Lemma 2. Suppose that g ∈ C1([0, 1]2) and D2g(x, y) > 0 for every x, y ∈
[0, 1]. If there exists an n ∈ N (the set of natural numbers) such that

1

3n
≤ −D1g(x, y)

D2g(x, y)
≤ 1

3n−1
for every x, y ∈ [0, 1], (6)

then[
g(1, ak), g(0, ak + 3−n+1)

]
=

⋃
j=2i−1,2i

m=2e+1,2e+2

[
gm(1, aj), gm(0, aj + 3−n+1)

]
(7)

holds for each k = e 2n−1 + i, e ∈ {0, 1}, 1 ≤ i ≤ 2n−2, where ak ∈ C,
k = 1, 2, . . . , 2n−1 is defined as in (1) and the functions gm ∈ C1([0, 1]2),
m = 1, 2, 3, 4 are defined by

g2e+1(x, y) = g

(
x+ 2

3
,
y + 2e

3

)
, (8)

g2e+2(x, y) = g

(
x

3
,
y + 2e

3

)
, e = 0, 1.

Proof. First of all, by our hypothesis, it is clear that all the intervals in
formula (7) are non trivial. Formula (7) will be obvious if we can prove the
following four relations:

g(1, ak) =g2e+1(1, a2i−1), g(0, ak + 3−n+1) = g2e+2(0, a2i + 3−n+1), (9)

g2e+2(1, a2i−1) ≤ g2e+1(0, a2i−1 + 3−n+1), (10)

g2e+1(1, a2i) ≤ g2e+2(0, a2i−1 + 3−n+1), (11)

g2e+2(1, a2i) ≤ g2e+1(0, a2i + 3−n+1), (12)

where k = e 2n−2 + i, e ∈ {0, 1} and 1 ≤ i ≤ 2n−2.
From (8), using Lemma 1 (parts (iii) and (iv)) we have:

g2e+1(1, a2i−1) = g

(
1,
a2i−1

3
+

2e

3

)
= g

(
1, ai +

2e

3

)
= g(1, ak).

Similarly, from (8), using Lemma 1 (parts (ii), (iii) and (iv)) we have:

g2e+2

(
0, a2i +

1

3n−1

)
= g

(
0,
a2i
3

+
2e

3
+

1

3n

)
= g

(
0, ai +

2e

3
+

1

3n−1

)
= g

(
0, ak +

1

3n−1

)
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and therefore (9) is true.
There exist x ∈ ( 1

3 ,
2
3 ) and y ∈ (ak, ak + 3−n) such that

g2e+2(1, a2i−1)− g2e+1

(
0, a2i−1 +

1

3n−1

)
= g

(
1

3
,
a2i−1

3
+

2e

3

)
− g
(

2

3
,
a2i−1

3
+

1

3n

)
= g

(
1

3
, ak

)
− g
(

2

3
, ak +

1

3n

)
=
D2g(x, y)

3

(−D1g(x, y)

D2g(x, y)
− 1

3n−1

)
≤ 0,

or (10) is true.
Also there exists x ∈ (0, 1) and y ∈ (ak + 3−n, ak + 2 3−n) such that

g2e+1(1, a2i)− g2e+2

(
0, a2i−1 +

1

3n−1

)
= g

(
1,
a2i
3

+
2e

3

)
− g
(

0,
a2i−1

3
+

2e

3
+

1

3n

)
= g

(
1, ak +

2

3n

)
− g
(

0, ak +
1

3n

)
= D2g(x, y)

( 1

3n
+
D1g(x, y)

D2g(x, y)

)
≤ 0,

or (11) is true.
In a similar way, there exists x ∈ ( 1

3 ,
2
3 ) and y ∈ (ak + 2

3n , ak + 1
3n−1 ) such

that

g2e+2(0, a2i)− g2e+1

(
0, a2i +

1

3n−1

)
= g

(
1

3
,
a2i
3

+
2e

3

)
− g
(

2

3
,
a2i
3

+
2e

3
+

1

3n

)
= g

(
1

3
, ak +

2

3n

)
− g
(

2

3
, ak +

1

3n−1

)
=
D2g(x, y)

3

(−D1g(x, y)

D2g(x, y)
− 1

3n−1

)
≤ 0,



218 M. Crnjac, B. Guljaš and H. I. Miller

or (12) holds, completing the proof of Lemma 2.

Our next lemma gives an exact description of the set g(C,C).

Lemma 3. Suppose that g ∈ C1([0, 1]2) and that D2g(x, y) > 0 for every
x, y ∈ [0, 1]. For each n ∈ N the following statements are true, where the
numbers ak (k = 1, 2, . . . , 2n−1) are defined by formula (1):

(i) If 1
3n ≤

−D1g(x,y)
D2g(x,y)

≤ 1
3n−1 for every x, y ∈ [0, 1], then

g(C,C) =

2n−1⋃
k=1

[
g(1, ak), g

(
0, ak +

1

3n−1

)]
.

(ii) If 3n−1 ≤ −D1g(x,y)
D2g(x,y)

≤ 3n for every x, y ∈ [0, 1], then

g(C,C) =

2n−1⋃
k=1

[
g

(
ak +

1

3n−1
, 0

)
, g(ak, 1)

]
.

(iii) If −1
3n−1 ≤ −D1g(x,y)

D2g(x,y)
≤ −13n for every x, y ∈ [0, 1], then

g(C,C) =

2n−1⋃
k=1

[
g(0, ak), g

(
1, ak +

1

3n−1

)]
.

(iv) If −3n ≤ −D1g(x,y)
D2g(x,y)

≤ −3n−1 for every x, y ∈ [0, 1], then

g(C,C) =

2n−1⋃
k=1

[
g(ak, 0), g

(
ak +

1

3n−1
, 1

)]
.

Proof. First we will show that (i) holds, and then the remaining statements
will follow at once.

Suppose that x0, y0 ∈ C. then there exists a natural number k, k =
1, 2, . . . , 2n−1, such that ak ≤ y0 ≤ ak + 3−n+1.

Since D2g(x, y) > 0 for all x, y ∈ [0, 1] we have

g(x0, ak) ≤ g(x0, y0) ≤ g(x0, ak + 3−n+1). (13)

Furthermore (i) implies that D1g(x, y) < 0 for all x, y ∈ [0, 1] and since x0 ∈
[0, 1] we have

g(1, ak) ≤ g(x0, ak) and g(x0, ak + 3−n+1) ≤ g(0, ak + 3−n+1). (14)



A Question about the Cantor Set 219

From (13) and (14) it follows that g(1, ak) ≤ g(x0, y0) ≤ g(0, ak + 3−n+1)
and therefore

g(C,C) ⊂
2n−1⋃
k=1

[
g(1, ak), g

(
0, ak +

1

3n−1

)]
.

We will now show that the reverse inclusion holds.
For any sequence 〈ji : i ∈ N〉 with ji ∈ {1, 2, 3, 4} we will define inductively

a sequence of functions from C1([0, 1]2) in the following manner. The function
gji is defined as in formula (8) in the statement of Lemma 2, and for p ≥ 2 by

gj1,j2,...,jp = 〈gj1,j2,...,jp−1
〉jp . (15)

By induction it is easy to see that

gj1,j2,...,jp(x, y) = g
( p∑
i=1

2di
3i

+
x

3p
,

p∑
i=1

2bi
3i

+
y

3p

)
(16)

where

di = 1, bi = 0 if ji = 1 (17)

di = 0, bi = 0 if ji = 2

di = 1, bi = 1 if ji = 3

di = 0, bi = 1 if ji = 4.

Clearly by the Mean Value Theorem we have:∣∣∣∣gj1,j2,...,jp(1, akp
)− gj1,j2,...,jp

(
0, akp

+
1

3n−1

)∣∣∣∣
≤M1

1

3p
+M2

1

3p+n−1 (18)

for every p ∈ N, where Mi = maxx,y∈[0,1]

∣∣∣Dig(x, y)
∣∣∣, i = 1, 2.

For each r ∈
[
g(1, ak), g(0, ak + 3−n+1)

]
, it follows from formula (7) in

Lemma 2 that there exists a sequence 〈ji : i ∈ N〉 with the property that

r ∈

[
gj1,j2,...,jp(1, akp

), gj1,j2,...,jp

(
0, akp

+
1

3n−1

)]
(19)

for all p ∈ N. From (19), using (18) we have

r = lim
p→∞

gj1,j2,...,jp(1, akp
). (20)
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By formula (16) and the continuity of g, this in turn implies that

r = lim
p→∞

g
( p∑
i=1

2di
3i

+
1

3p
,

p∑
i=1

2bi
3i

+
akp

3p

)
= g
( ∞∑
i=1

2di
3i
,

∞∑
i=1

2bi
3i

)
= g(x0, y0), (21)

where

x0 =

∞∑
i=1

2di
3i

and y0 =

∞∑
i=1

2bi
3i

are both in C. Therefore the proof of (i) is complete.
Clearly 1 − C = C. Using this fact, (ii), (iii) and (iv) can be shown by

using (i) with g(1−y, 1−x), g(1−x, y) and g(y, 1−x), respectively, playing
the role of g(x, y). This completes the proof of Lemma 3.

We are now in a position to give an easy analytic proof of the fact that
g(C,C) contains an interval if g satisfies appropriate conditions. We then
provide a second geometric proof.

Theorem 4. Suppose g ∈ C1([0, 1]2). If there exist x0, y0 ∈ C such that
D1g(x0, y0) 6= 0, D2g(x0, y0) 6= 0 and one of the following conditions holds:

(i) |D1g(x0, y0)/D2g(x0, y0) | 6= 3n for each n ∈ Z,
(ii) (x0, y0) is the location of a local extremum of the function D1g/D2g,

then g(C,C) contains an interval.

First Proof (Analytic). Our first proof uses Lemmas 1, 2 and 3. Without
loss of generality we can assume that D2g(x0, y0) > 0. If either condition (i)
or condition (ii) holds then there exists a neighborhood U(x0, y0) of (x0, y0)
and an n ∈ N such that,

D2g(x, y) > 0 for all (x, y) ∈ U(x0, y0) (22)

−D1g(x, y)

D2g(x, y)
∈ In, (23)

where In is one of the following four intervals: [1/3n, 1/3n−1], [3n−1, 3n],
[−1/3n−1,−1/3n] and [−3n,−3n−1]. As we saw in the proof of Lemma 3,
since x0, y0 ∈ C, there exists m ∈ N and k1, k2 ∈ {1, 2, . . . , 2m−1} such that

(x0, y0) ∈
[
ak1 , ak1 +

1

3m−1

]
×
[
ak2 , ak2 +

1

3m−1

]
⊂ U(x0, y0).
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The proof of the theorem is completed by applying Lemma 3 with the function
g(ak1 + x/3m−1, ak2 + y/3m−1) playing the role of g(x, y). We remark that
x, y ∈ C imply that (by (v) from Lemma 1) ak1

+ x/3m−1, ak2
+ y/3m−1

∈ C.

The following lemma, based on a result of Utz [9], will be needed in the
second (geometric) proof of our theorem.

Lemma 5. If f ∈ C1([0, 1]) and either (i) 1 ≤ | f ′(x) | ≤ 3 for all real

numbers x or (ii) 1/3 ≤ | f ′(x) | ≤ 1 for all real numbers x, is satisfied then

F = {(x, f(x)) : x ∈ R}, the graph of f , satisfies the condition F∩(C×C) 6= ∅
provided F ∩ ([0, 1]× [0, 1]) 6= ∅.
Proof. Since F ∩ ([0, 1] × [0, 1]) 6= ∅ and either (i) or (ii) holds F ∩ S1i 6= ∅
for some i ∈ {1, 2, 3, 4}, say F ∩ S1i1 6= ∅, where {S1i : i = 1, 2, 3, 4} are the
four “corner” squares (clockwise) of [0, 1]× [0, 1] formed in the first step of the
construction of C × C.

Sketch of [0, 1]× [0, 1]:
S11 S12

S14 S13

0 1/3 2/3 1

Since F ∩ S1i1 6= ∅ and either (i) or (ii) holds, it follows that F ∩ S2i 6= ∅
for some i ∈ {1, 2, 3, 4}, say F ∩ S2i2 6= ∅ where {S2i : i = 1, 2, 3, 4} are
the four “corner” squares (clockwise) of S1i1 formed in the second step of the
construction of C × C.

Sketch of S1i1 :
S21 S22

S24 S23

Continue this process. Then we obtain a sequence of nested squares {Snin :
n ∈ N} satisfying: F ∩ Snin 6= ∅ for each n ∈ N. Furthermore clearly,
∩∞n=1Snin = {(x0, y0)}, x0, y0 ∈ C and (x0, y0) ∈ F . Therefore F∩(C×C) 6= ∅,
completing the proof of Lemma 4.

Second Proof (Geometric). If either condition (i) or (ii), in the statement
of our theorem holds then there exists a neighborhood U(x0, y0) of (x0, y0) and
an n ∈ N such that

|D1g(x, y)/D2g(x, y) | ∈ In for all (x0, y0) ∈ U(x0, y0) (24)
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where In is an interval of the form [1/3n, 1/3n−1] or [3n−1, 3n]. Notice, that
without loss of generality we may assume, in addition to x0, y0 ∈ C, that x0, y0
satisfy: 0 < x0, y0 < 1 and U(x0, y0) ⊂ (0, 1)× (0, 1). From this it follows that
there exists c1, c2 ∈ C and m ∈ N such that:

Tm =

[
c1, c2 +

1

3m

]
×
[
c1, c2 +

1

3m

]
is one of the 4m squares in the m-th stage of the construction of C × C and
Tm ⊂ U(x0, y0).

Now let h denote the translate of g to Sm := [0, 1/3m] × [0, 1/3m], i.e.
h(x, y) = g(c1 +x, c2 + y) for each (x, y) ∈ Sm. Notice that c1 +x, c2 + y ∈ C
whenever x, y ∈ C ∩ [0, 1/3m].

Next, suppose 0 < a, b < 1, a and b fixed and consider F (x, y) = h(ax, by)
for each (x, y) ∈ Sm. Denote g(c1, c2) by t0. There exists δ, ε > 0, with
δ < 1/3m, such that, for each t ∈ I (where I is either the interval (t0, t0 +ε] or
the interval [t0−ε), t0], depending on the signs of D1g(x0, y0) and D2g(x0, y0))
and x ∈ [0, δ) there exists a unique yt(x) ∈ [0, 1/3m] such that

F (x, yt(x)) = t. (25)

Therefore, for each fixed t ∈ I

h(ax, byt(x)) = t for all x ∈ [0, δ). (26)

This implies that

y′t(x) = −aD1h(ax, byt(x))

bD2h(ax, byt(x))
for all x ∈ [0, δ). (27)

Let E denote the number |D1g(x0, y0)/D2g(x0, y0) |. We now consider three
cases using formula (24).

1a. If 3n−1 ≤ E ≤ 3n and n = 0, set a = 1 and b = 1, then by (24) we have
1/3 ≤ | y′t(x) | ≤ 1 for every x ∈ [0, δ) and every t ∈ I.

1b. If 3n−1 ≤ E ≤ 3n and n = 1, set a = 1 and b = 1, then by (24) we have
1 ≤ | y′t(x) | ≤ 3 for every x ∈ [0, δ) and every t ∈ I.

2. If 3n−1 ≤ E ≤ 3n and n > 1, set a = 3−n and b = 1, then by (24) we
have 1/3 ≤ | y′t(x) | ≤ 1 for every x ∈ [0, δ) and every t ∈ I.

3. If 3n−1 ≤ E ≤ 3n and n < 0, set a = 1 and b = 3n, then by (24) we have
1/3 ≤ | y′t(x) | ≤ 1 for every x ∈ [0, δ) and every t ∈ I.
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Now, for each t ∈ I, we will examine Gt, the graph of yt. Taking δ =
1/3n0 , n0 > m and ε sufficiently small, Gt (for each t ∈ I) “hits” [0, 1/3n0 ]×
[0, 1/3n0 ], that is

Gt ∩
[
0,

1

3n0

]
×
[
0,

1

3n0

]
6= ∅ for every t ∈ I. (28)

Then, by the argument used in the proof of Lemma 4, for each t ∈ I, there
exists (xt, yt) ∈ C × C such that yt(xt) = yt and therefore

h(axt, byt) = t for every t ∈ I. (29)

But h(axt, byt) = g(c1 +axt, c2 + byt). By the definition of c1 and c2, the fact
that xt, yt ∈ C ∩ [0, 1/3n0 ] and a, b ∈ {1, 1/3, 1/32, . . .} in all cases, it follows
that

c1 + axt, c2 + byt ∈ C (30)

and therefore g(C × C) ⊇ I, completing our second proof.

We conclude this paper with the following observations.

Remark 1. First of all we will give an example of our theorem. Let g(x, y) =
xy, x0 = 2/3 and y0 = 1/3. Clearly condition (i) of our theorem holds and
therefore g(C,C) contains an interval.

Remark 2. For each n ∈ N, let C2n+1 denote the “Cantor-like” subset of
[0, 1] obtained by removing the middle 1

2n+1 -th of each interval at each step
of the “Cantor-like” construction. In particular C3 = C (the ordinary Cantor
set) and C2n+1 has Lebesgue measure zero for n ∈ N. We remark that a result
like our Theorem can be proved for each set C2n+1, n ∈ N.

Remark 3. There exists a perfect set A, A ⊂ [0, 1], and a Baire measure µ
(i.e., a measure induced by a nondecreasing continuous function), such that
µ(A) > 0 and such that A−A has Lebesgue measure zero (and therefore A−A
contains no interval). This result can be found in [6], where it was conjectured
that g(C × C) contains an interval provided that g satisfies appropriate con-
ditions.

Remark 4. A set A, A ⊂ R, is called a universal null set if µ(A) = 0 for each
Baire measure µ. There exists a universal null set A such that A − A = R.
This result was shown in [7].
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