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ON SELECTORS NONMEASURABLE WITH
RESPECT TO QUASIINVARIANT

MEASURES

Abstract

We discuss a question on the existence of partial µ-nonmeasurable
H-selectors, where µ is a given nonzero σ-finite measure defined on some
σ-algebra of subsets of a set E and quasiinvariant under an uncountable
group G of transformations of E, and H is an arbitrary countable sub-
group of G.

Let E be a nonempty set and G be a group of transformations of E. Let
S be a σ-algebra of subsets of E and µ be a measure defined on S. We recall
that µ is a G-quasiinvariant measure if

a) the σ-algebra S is a G-invariant class of sets;
b) for each X ∈ S and for each g ∈ G, the equality µ(X) = 0 implies the

equality µ(g(X)) = 0.
In particular, every G-invariant measure µ defined on S is simultaneously

a G-quasiinvariant measure.
Let H be an arbitrary subgroup of G. Then, obviously, we have a canonical

partition of E consisting of all H-orbits.
We say that a subset Y of E is an H-selector if Y is a selector of the above-

mentioned partition. We say that a subset Y of E is a partial H-selector if Y
is a selector of a subfamily of this partition. Clearly, every partial H-selector
can be extended to an H-selector.

A question on measurability of H-selectors, with respect to the given
nonzero σ-finite G-quasiinvariant measure µ, arises naturally. We recall that
the first result concerning this question was obtained by Vitali [11], who
showed that if E is the set of all real numbers, G is the additive group of
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reals and H is the additive group of rationals, then each H-selector is non-
measurable with respect to the classical Lebesgue measure on E.

This important result of Vitali was generalized in various directions. In
particular, some theorems and facts concerning measurability of H-selectors,
with respect to µ, were obtained in the papers [1], [5], [8] and [9]. Notice
that the case where H is an uncountable subgroup of the given group G was
discussed in those papers, too.

In the present paper we shall consider only the case when card (H) ≤
ω. First of all let us remark that, even in the classical situation, we cannot
assert the nonmeasurability of all H-selectors. Indeed, in [4] a measure ν is
constructed such that

1) ν is defined on some σ-algebra of subsets of the real line;

2) ν is a nonzero nonatomic σ-finite measure;

3) ν is invariant under the group of all isometric transformations of the
real line;

4) dom (ν) contains the family of all Lebesgue measurable subsets of the
real line;

5) there exists a Vitali set belonging to dom (ν).

We thus conclude that, for the above-mentioned measure ν and for the
countable group H coinciding with the additive group of rationals, there exists
a ν-measurable H-selector.

In connection with this result it is reasonable to pose the following question.

Let E be a set and G be an uncountable group of transformations of E. Let
µ be a nonzero σ-finite G-quasiinvariant measure defined on some σ-algebra
of subsets of E and let H be an arbitrary countable subgroup of the group G.
Denote by {H(x) : x ∈ E} the partition of E into H-orbits of points of E.
Does there exist a subfamily of {H(x) : x ∈ E} such that all selectors of this
subfamily are nonmeasurable with respect to µ?

Our goal is to show that, under some natural assumptions on G and µ, the
answer to this question is positive.

We say that the group G acts freely in the space E, with respect to the
given measure µ, if for any two distinct transformations g and h from G, we
have the equality

µ∗({x ∈ E : g(x) = h(x)}) = 0,

where µ∗ denotes, as usual, the outer measure associated with µ.

For example, if E is a finite-dimensional Euclidean space, G is a group of
affine transformations of E, and µ is a measure defined on some σ-algebra of
subsets of E and vanishing on all affine hyperplanes of E, then G acts freely
in E with respect to µ.
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Our further consideration needs the following statement which generalizes
a result obtained in [2], [3] and [7].

Theorem 1 Let E be a set, G be a group of transformations of E and let
µ be a nonzero σ-finite G-quasiinvariant measure defined on a σ-algebra of
subsets of E. Suppose also that G contains an uncountable subgroup Γ acting
freely in E with respect to µ. Let H be an arbitrary countable subgroup of Γ
and let {H(x) : x ∈ E} be a partition of E into H-orbits. Then there exists
a subfamily of {H(x) : x ∈ E} such that its union is a µ-nonmeasurable set
in E.

Proof. We may assume, without loss of generality, that
a) µ is a probability measure,
b) the group Γ coincides with the original group G,
c) card (Γ) = card (G) = ω1.

Let us denote by {gξ : ξ < ω1} a family of elements of G such that

gξH 6= gζH (ξ < ω1, ζ < ω1, ξ 6= ζ).

The existence of such a family is obvious since card (G) = ω1 and card (H) ≤ ω.
Next, since H is a countable group, we can write H = {hn : n ∈ ω}. Let
F be a subset of E for which the family {G(y) : y ∈ F} is injective and
consists of all G-orbits in E (in other words, F is a G-selector). Consider
a family {H(y) : y ∈ F} and put Y = ∪{H(y) : y ∈ F}. If the set Y is
nonmeasurable with respect to µ, then there is nothing to prove. Suppose
now that Y ∈ dom (µ). Then it is not hard to check that, for any two distinct
ordinals ξ < ω1 and ζ < ω1, we have the inclusion

gξ(Y ) ∩ gζ(Y ) ⊆ gξ(∪{hn(Xnm) : n ∈ ω, m ∈ ω}),

where a set Xnm is defined by the formula

Xnm = {x ∈ E : gξhn(x) = gζhm(x)}.

But µ∗(Xnm) = 0, since G acts freely in E with respect to µ. Taking into
account the fact that µ is a G-quasiinvariant measure, we obtain

µ(gξ(Y ) ∩ gζ(Y )) = 0,

for all ξ < ω1, ζ < ω1, ξ 6= ζ. The latter relation implies the equality µ(Y ) = 0,
since µ (being a σ-finite measure) satisfies the countable chain condition.

Now, it is easy to see that we can represent the set E in the form

E = ∪{Yα : α < ω1},
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where
1) the sets Yα (α < ω1) are pairwise disjoint,
2) for each α < ω1, the set Yα is the union of a family of H-orbits in E,
3) for each α < ω1, we have µ(Yα) = 0.
According to the classical theorem of Ulam [10], there exists a subset A of

ω1 such that the set ∪{Yα : α ∈ A} does not belong to dom (µ). But it is clear
that ∪{Yα : α ∈ A} can be represented as the union of a family of H-orbits
in E. Thus, the theorem is proved. �

Now, we can easily deduce from Theorem 1 the following statement.

Theorem 2 Let E be a set and G be an uncountable group of transformations
of E. Let µ be a nonzero σ-finite G-quasiinvariant measure defined on some
σ-algebra of subsets of E. Suppose that G acts freely in E with respect to µ.
Fix a countable subgroup H of G and denote by {H(x) : x ∈ E} the partition of
E consisting of all H-orbits. Then there exists a subfamily of {H(x) : x ∈ E}
such that all its selectors are nonmeasurable with respect to µ.

Proof. According to Theorem 1, there exists a subset D of E such that
the family {H(x) : x ∈ D} is injective and the set ∪{H(x) : x ∈ D} is
nonmeasurable with respect to µ. Let us show that all selectors of {H(x) :
x ∈ D} are µ-nonmeasurable, too. Denote by Z an arbitrary selector of
{H(x) : x ∈ D}. Obviously, we have the equality

∪{H(x) : x ∈ D} = ∪{h(Z) : h ∈ H}.

Suppose that Z ∈ dom (µ). Then, taking into account the fact that H is a
countable group and µ is a G-quasiinvariant measure, we obtain

∪{h(Z) : h ∈ H} ∈ dom (µ)

and, consequently,

∪{H(x) : x ∈ D} ∈ dom (µ),

which contradicts the definition of the family {H(x) : x ∈ D}. This contra-
diction finishes the proof. �

Remark 1 It is essential for validity of Theorem 2 that the partition {H(x) :
x ∈ E} of the set E consists of all H-orbits, where H is a countable subgroup
of the original transformation group G. In order to show this, let us take an
arbitrary group G with card (G) = ω1 and let us put E = G. Clearly, we can
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identify G with the group of all left translations of E, which acts freely in E.
Further, we can represent G in the form

G = ∪{Gξ : ξ < ω1},

where a family {Gξ : ξ < ω1} satisfies the following conditions:

1. for each ξ < ω1, we have card (Gξ) = ω,

2. for each ξ < ω1, the set Gξ is a subgroup of the group G,

3. for each ξ < ω1, the set ∪{Gζ : ζ < ξ} is a proper subset of Gξ.

Let us fix a point e ∈ E and let us put

Eξ = Gξ(e) \ ∪{Gζ(e) : ζ < ξ},

for all ordinals ξ < ω1. Then we obtain a partition {Eξ : ξ < ω1} of the set
E such that card (Eξ) = ω, for any ξ < ω1. We assert now that an analogue
of Theorem 2 is not true for the above-mentioned partition. Indeed, let λ be
a probability diffused measure defined on the σ-algebra of subsets of the set
E, generated by the family of all countable subsets of E, and let Z be a fixed
selector of {Eξ : ξ < ω1}. Denote by J the G-invariant σ-ideal of subsets
of E, generated by the one-element family {Z}. It is easy to check that, for
any set X ∈ J , we have the equality λ∗(X) = 0, where λ∗ denotes, as usual,
the inner measure associated with λ. Starting with this property of J we can
easily extend the measure λ to a measure µ such that

a) dom (µ) coincides with the σ-algebra of subsets of E, generated by
dom (λ) ∪ J ,

b) µ(X) = 0 for all sets X ∈ J ,

c) µ is a G-invariant measure.

Now, it is clear that, for any subset Ξ of ω1, there exists a µ-measurable
selector of the family {Eξ : ξ ∈ Ξ}.

A similar argument shows us that if H is an arbitrary uncountable sub-
group of our group G and {H(x) : x ∈ E} is a partition of E into H-orbits,
then for every selector Z of {H(x) : x ∈ E} there exists a measure ν satisfying
the following conditions:

(1) ν is a complete probability diffused G-invariant measure defined on
some σ-algebra of subsets of E,

(2) Z belongs to dom (ν) and ν(Z) = 0.

In particular, we obtain immediately from (2) that, for each subset F of
E, there is a selector of {H(x) : x ∈ F} belonging to dom (ν).

The next result is an easy consequence of Theorem 2.
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Proposition 1 Let the assumptions of Theorem 2 be satisfied and let, in addi-
tion, a countable subgroup H of G be such that card (H(x)) ≥ 2, for all points
x ∈ E. Then there exists an H-selector nonmeasurable with respect to µ.

Proof. Indeed, it immediately follows from Theorem 2 that there exists a
partial H-selector Z nonmeasurable with respect to µ. Evidently, we can find
twoH-selectors Z1 and Z2 which extend Z and satisfy the equality Z = Z1∩Z2.
Now, since the set Z is µ-nonmeasurable, at least one of the sets Z1 and Z2

is µ-nonmeasurable. Thus, we see that there exists a µ-nonmeasurable H-
selector. �

In fact, the preceding argument shows that, for a measure µ defined on
some σ-algebra of subsets of a set E, the following two assertions are equiva-
lent:

a) there exists a subset of E nonmeasurable with respect to µ,
b) if {Ei : i ∈ I} is a partition of E such that 2 ≤ card (Ei) ≤ ω, for all

i ∈ I, then there exists a selector of {Ei : i ∈ I} nonmeasurable with respect
to µ.

Remark 2 Let E be a set and let G be an uncountable group of transforma-
tions of E, acting freely in E with respect to a nonzero σ-finite G-invariant
measure µ defined on some σ-algebra of subsets of E. It was proved in [9]
that there always exists a countable subgroup H of G such that all H-selectors
are nonmeasurable with respect to every G-invariant measure extending µ. In
other words, the group H plays a role similar to the role played by the additive
group of rationals in the classical Vitali construction [11]. In connection with
this result, we wish to notice that the method of [9] is essentially based on the
assumption of G-invariance of the measure µ and, therefore, it does not work
for nonzero σ-finite G-quasiinvariant measures.

Remark 3 Let (G,+) be an uncountable commutative group equipped with a
nonzero σ-finite G-quasiinvariant measure µ. It was shown in [6] that there
always exists a µ-nonmeasurable subgroup of G. Starting with this result it is
not difficult to prove that, if H is an arbitrary countable subgroup of G, then
there exists a family of H-orbits whose union is a µ-nonmeasurable subgroup
of G. Notice also that an analogous assertion is not true, in general, for
uncountable noncommutative groups (see [6]).

Remark 4 It is easy to see that the results presented above can be formulated
and proved in a more general form, namely, in terms of the pair (S, J), where

1) S is a G-invariant σ-algebra of subsets of E,
2) J is a G-invariant σ-ideal of subsets of E,
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3) J is contained in S,
4) (S, J) satisfies the countable chain condition.
In particular, we have the respective analogues of Theorems 1, 2 and Propo-

sition for the Baire property.
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